
On the Proftability of Selfsh Mining Against
Multiple Diÿculty Adjustment Algorithms

Michael Davidson1 and Tyler Diamond2

1 National Institute of Standards and Technology, michael.davidson@nist.gov
2 National Institute of Standards and Technology tyler.diamond@nist.gov

January 16, 2020

Abstract. The selfsh mining attack allows cryptocurrency miners to mine more than
their "fair share" of blocks, stealing revenue from other miners while reducing the
overall security of payments. This malicious strategy has been extensively studied in
Bitcoin, but far less attention has been paid to how the strategy may impact other
cryptocurrencies. Because selfsh mining is an attack against the diÿculty adjustment
algorithm (DAA) of a cryptocurrency, it may have a di˙erent e˙ect when used on
coins with di˙erent DAAs. In this work, we study the degree to which selfsh mining
can increase the revenue of miners for a wider variety of cryptocurrencies than have
been studied before, including Bitcoin, Litecoin, Bitcoin Cash, Dash, Monero, and
Zcash. To do so, we generalize the selfsh mining strategy to blockchains with variable
diÿculty, and use simulations to measure how proftable the strategy is. We fnd
that the other cryptocurrencies under consideration are far more susceptible to selfsh
mining than Bitcoin is, and that the strategy is proftable for miners with a lower
hash rate. We also show that by dishonestly reporting block timestamps, selfsh
miners can generate enormously disproportionate revenues up to 2.5 times larger
than they would through honest mining for some DAAs. For each DAA, we consider
what happens when parameters are changed, and suggest parameter sets that would
improve the algorithm’s resilience against selfsh mining.
Keywords: Bitcoin · Cryptocurrency · Selfsh Mining · Diÿculty Adjustment Algo-
rithm · Blockchain

1 Introduction
Bitcoin, the frst cryptocurrency, was initially described by the pseudonymous Satoshi
Nakamoto in 2008 [23]. Since then, thousands of additional cryptocurrencies have been
created. The primary innovation that allowed cryptocurrencies to exist securely was to
incentivize a distributed, pseudonymous set of “miners” to produce proof of work puzzle
solutions in order to agree on a consistent ordering of transactions into blocks, and then
adjust the “diÿculty” of these puzzles to approximately track changes in mining activity
(“hash rate”). These puzzles typically involve hashing a block header and nonce repeatedly
until fnding a hash that is below a certain target value determined by the diÿculty level.
In the literature, this is commonly described as an attempt to hash until the resulting
digest has “a certain number of leading zeros”.1

By including the previous block header hash in each block header, this proof of work
process creates a chain of blocks (“blockchain”) that are cryptographically linked, and
would require even greater work to overwrite. As such, it was widely believed that

1This is an oversimplifcation which ignores the mantissa; changes to the target are not performed in
neat multiples of two.

mailto:michael.davidson@nist.gov
mailto:tyler.diamond@nist.gov
http:di�erentDAAs.In

2 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

cryptocurrencies such as Bitcoin were secure as long as the majority of the hash rate is
following the protocol honestly. In particular, if a given miner has x% of the hash rate,
they should in expectation receive x% of the total block rewards over an extended period
of time.

However, as Bitcointalk user RHorning pointed out in 2010, miners with less than half
of the hash rate can force other miners to waste computing power by not honoring their
blocks [29]. Later, Eyal and Sirer (and Bahack independently) formalized the idea through
what they dubbed the “selfsh mining” strategy [2, 7]. An honest miner is expected to
broadcast any newly-found blocks to his peers so they quickly propagate across the network.
However, by strategically or “selfshly” withholding blocks to build a private blockchain,
he can choose to broadcast his private chain at a time that will maximize his revenue;
essentially, he can force other miners to waste work on blocks that are destined to be
“orphaned” and become stale; that is, those blocks will not be in the canonical blockchain
recognized as valid. The miners of those now stale blocks will not be compensated for
their work.

This work investigates the proftability of selfsh mining against diÿculty adjustment
algorithms other than Bitcoin’s and Ethereum’s, while suggesting parameter changes that
may improve the algorithms’ resistance to selfsh mining. To this end, we generalize the
selfsh mining strategy for chains of variable diÿculty. Furthermore, we demonstrate the
relative importance of manipulating block timestamps as part of the selfsh mining strategy
space.

Section 2 provides necessary background information. Section 3 covers related work on
selfsh mining and diÿculty adjustment algorithms. Section 4 describes our methodology,
and section 5 reports the results of our simulations for each diÿculty adjustment algorithm.
Section 6 provides some general discussion, and section 7 concludes.

2 Background

2.1 Selfsh Mining
Typically, when a miner mines a new block, they will broadcast that block to their peers
with the intention of having it propagate to the rest of the network as quickly as possible.
A miner does not get to spend the block reward until a certain number of blocks have been
built on top of his, so it is generally in the miner’s best interest to get any new blocks
into the hands of competing miners quickly, so other miners can mine on top of the newly
found block.

Under some conditions, however, a deviant strategy will allow a miner with x% of
the global hash rate to receive more than x% of the total reward. The strategy works
by forcing honest miners to waste e˙ort mining on top of blocks that are destined to
become stale when the selfsh miner broadcasts the blocks he has withheld. The following
description of the strategy assumes that each block has the same diÿculty; we describe the
necessary modifcations for chains of variable diÿculty in section 4. It is parameterized by
�, the fraction of the total hash power controlled by the selfsh miner, and , the fraction
of honest hash power that mines on top of a selfsh block if there is a race between honest
and selfsh blocks (that is, the network infuence of the selfsh miner, when competing
blocks are broadcast at the same time). Figure 1 shows the algorithm that a selfsh miner
will use to determine whether or not they publish their block.

A selfsh miner will have “more than their fair share” of blocks added to the canonical
blockchain; however, this alone is insuÿcient to be proftable. As long as the diÿculty of
the mining puzzle remains constant, the selfsh miner loses with this strategy, but honest
miners lose even more. Only when the diÿculty adjusts downward does the strategy
become proftable in the traditional sense. Most existing work captures this idea of the

3 Michael Davidson and Tyler Diamond

Figure 1: The original selfsh mining strategy [7]

share of blocks added to the canonical blockchain by the selfsh miner as "relative revenue".
For example, if the selfsh miner has 35% of the hash rate but mines 40% of the blocks that
are accepted by the network, their relative revenue is 0.40. However, fewer total blocks
will have been mined per unit of time (before the diÿculty adjusts), and the selfsh miner
will mine fewer blocks than they otherwise would have, had they mined honestly.

In this work, we take the impact of time into account in order to create a revenue
metric with more applicability to the real world. To do so, we adjust the relative revenue
by the ratio of the elapsed time of the attack over the expected time for honest mining,
and then use the percent change relative to the selfsh miner’s �. This metric, which we
call time-adjusted relative gain (TARG), more accurately captures the revenue beneft to a
selfsh miner compared to mining honestly. Note that, consistent with prior literature, we
sometimes confate this measure of revenue with proftability in the text; in this case, we
do so here to avoid confusion with the term "relative revenue". However, cryptocurrency
mining is a low margin business, so even a small increase in revenue can correspond to a
substantial increase in proftability.

The hash rate where a selfsh miner can improve their relative revenue above and

1
41

3

1
2

beyond what they would earn from mining honestly is given in the following formula. If
, selfsh mining is proftable when � � , and if = 0, selfsh mining is proftable

when � �
 =

.

1 − 1
< � < (1) 3 − 2 2

http:formula.If

4 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

2.2 Diÿculty Adjustment Algorithms
Because proof-of-work cryptocurrencies do not have a central authority that determines who
can mine and at what rates, the total amount of hash power supplied to the network will
vary over time. However, to maintain a planned monetary policy and better user experience,
new blocks should be found at predictable times regardless of the hash power (for instance,
Bitcoin targets 10 minute block intervals). Without a diÿculty adjustment algorithm
(DAA), an increasing hash rate would have blocks found more and more frequently, infating
the currency more quickly and making payments less predictable and secure. The role of
the DAA is to change the diÿculty of the mining puzzle to adjust to changes in hash rate
in order to have blocks be produced at a constant rate.

While the primary purpose of a DAA is to keep the interblock arrival times consistent
over the long term in the face of fuctuations in hash rate in order to enforce the monetary
policy of the cryptocurrency, there are a variety of other considerations that may go into
its design. For example, the DAA should avoid sudden diÿculty changes when the hash
rate remains constant, discourage wild oscillations from the feedback between hash rate
and diÿculty, and avoid exceptionally long intervals between new blocks.

2.3 Time and Timestamps
Maintaining accurate clocks in distributed systems is a challenging problem, but relatively
accurate timekeeping is a prerequisite for having the diÿculty adjustment algorithm
maintain its desired interblock arrival time in cryptocurrencies.

Some cryptocurrencies have di˙erent timestamp rules, but the ones studied here are
largely identical. There are three notions of time that a node cares about: system clock
time, the block timestamp, and the network adjusted time. When nodes connect, they
each send a timestamp to each other. A node’s network adjusted time is the local system
clock time plus the median o˙set of the reported timestamps from all nodes they are
connected to, bounded by a maximum 70 minute adjustment in either direction away from
the system time. Monero is the only cryptocurrency studied here that doesn’t use network
adjusted time.

Because block timestamps are the only times that nodes can objectively agree upon, it
is these timestamps that are used in DAA calculations. There are two rules to determine
whether a node will consider a block valid based on its timestamp:

• The block timestamp must be less than 2 hours ahead of the network adjusted time
(or in Monero’s case, the system clock time).

• The timestamp must be greater than the median timestamp of the previous 11 blocks.

Together, these rules should prevent the block timestamps from diverging more than a
couple hours from real time, and provide nodes with an agreed-upon notion of time for
the purposes of diÿculty adjustments. However, if the DAA is poorly designed (or poorly
implemented), malicious miners may be able to strategically set block timestamps that
"confuse" the algorithm and rapidly drive the diÿculty down, allowing them to mine blocks
more quickly than intended by the coin’s monetary policy. The is known as a timewarp
attack, and has successfully been executed on several cryptocurrencies, infating the coin
supply.

Another possible attack that utilizes timestamps is the timejacking attack, which takes
advantage of the network adjusted time. By connecting to a target node multiple times
and reporting incorrect timestamps, an attacker that maintains more than half of the
target’s connections can move the victim’s network adjusted time forward or backward by
up to 70 minutes. This can be used to force a target node to temporarily consider a block
valid or invalid, depending on the block timestamp and the direction the attacker moves
the victim’s clock [5].

5 Michael Davidson and Tyler Diamond

3 Related Work
Since the initial selfsh mining papers [2, 7] were published, extensive work has been done
to investigate selfsh mining attacks in a variety of scenarios.

3.1 Selfsh Mining
While it was generally known that selfsh mining wasn’t proftable until a diÿculty
adjustment occurred, this was proven in [12]. This may be why no selfsh mining attacks
have been seen against Bitcoin; although Neudecker and Hartenstein did notice that the
observed frequency of short block intervals between two consecutive blocks mined by the
same miner is conspicuously large, which could be caused by selfsh mining, it was more
likely other factors [25].

Nayak et al showed that a variety of “stubborn mining” strategies could enhance miner
profts beyond naïve selfsh mining [24]. Furthermore, combining these strategies with
an eclipse attack (partitioning a node from the remainder of the network) could enhance
these profts, and counterintuitively even beneft the eclipsed “victim”. Sapirshtein et al
further improved the strategy by using a Markov Decision Process to derive optimum
selfsh mining strategies, and showed that using an optimal strategy, miners can lower the
fraction of the total hash rate needed to be proftable from 25% to 23.21% [31].

Others have studied the performance of selfsh mining with more detailed models
or realistic environments. For instance, [10] included block propagation delays in their
model, and showed that can increase dramatically as the variance in propagation delays
increases, which further increases the e˙ectiveness of selfsh mining. Carlsten et al show
that selfsh mining is more e˙ective in an environment where there is a large maximum
block size and transaction fees secure the chain instead of mostly being secured by a block
subsidy [6]. In this environment, selfsh miners will tend to build bigger blocks and thus
collect more in fees. Gervais et al incorporate block propagation times, block size, expected
block times, and the possibility of eclipse attacks into their model, and show that larger
block sizes and shorter expected block times increase the relative revenue of selfsh miners,
but that advanced block propagation techniques can minimize this [9].

The above studies only consider models where a single selfsh miner exists, but others
expand this to consider multiple selfsh miners acting simultaneously [3, 11, 20, 21]. A
formalization of multiple selfsh miners is provided in [21], which concludes that Bitcoin’s
security is further degraded when more than one selfsh miner exists. For example,
with two independent selfsh miners, the threshold for proftably selfsh mining drops to
21.48% [3]. The more selfsh miners that exist, the lower the threshold for proftability,
according to [20], which also demonstrates a Nash equilibrium of multiple selfsh miners
earning disproportionate rewards if they have equal and suÿciently large hash rates. The
simulations from [11] show that a few selfsh miners, each with � > 0.1, can simultaneously
earn a 10 − 30% relative revenue increase, but that relative revenue decreases when there
are too many selfsh miners at once.

Ethereum, unlike Bitcoin, has a di˙erent consensus mechanism that includes the
existence of stale blocks (“uncles”) as part of its diÿculty adjustment algorithm and
reward scheme. The “uncle blocks” mechanism in Ethereum lowers the threshold for selfsh
mining proftability, because their own stale blocks still give the selfsh miner some reward,
making the strategy less risky. Ritz and Zugenmaier showed that, using the observed uncle
block ratio from Ethereum in December 2017, the proftability threshold for selfsh mining
was � = 0.185 ± 0.012 [30]. Niu and Feng’s Markov model found that with � > 0.163,
selfsh mining is proftable, and that beneath this value, the selfsh miner loses far less
than they would on Bitcoin [26]. Furthermore, the revenue for both the selfsh miner and
the honest miners increase with � due to uncle rewards, and thus could lead to higher
infation of the Ether asset. Finally, [13] more formally analyzes Ethereum’s susceptibility

6 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

to selfsh mining, and proposes new variants of the strategy.
There are other mining attacks that are related to but distinct from selfsh mining.

For example, the Fork After Withholding attack presented in [19] involves withholding
a proof of work solution from the mining pool that the attacker belongs to, and then
only propagating it when an external honest miner publishes their own solution, creating
deliberate forks. This strategy is always proftable, and is in fact a dominant strategy for
large pools to attack small pools with. Coin-hopping is another attack where an adversarial
miner switches from mining one coin to another at the beginning of an epoch, leaving
honest miners with a higher diÿculty chain, and then switches back when the diÿculty
decreases [22]. This allows a miner to mine at the lowest cost possible while saddling more
“loyal” miners with a higher electricity bill.

3.2 Countermeasures
In their initial paper, Eyal and Sirer propose that honest miners, when presented with two
competing chains, choose randomly instead of prioritizing the frst one seen [7]. This is
the equivalent of setting = 0.5, and thus makes selfsh mining unproftable if � < 0.25.
If the attacker didn’t have that high of a initially, this countermeasure will improve the
selfsh miner’s performance. Heilman proposes a technique, Freshness Preferred, where
instead of miners accepting the frst seen block, they accept the block with the most
recent timestamp from a trusted source embedded within it [14]. He suggests using the
NIST Randomness Beacon [16] for “unforgeable timestamps”, which raises the proftability
threshold for selfsh mining to 0.32. ZeroBlock attempts to prevent selfsh mining by
having miners append “dummy” blocks to the tip of their local chain if they haven’t seen
a new block within a certain period of time [31]. Zhang and Preneel propose a backwards
compatible defense against selfsh mining that punishes miners for publishing their blocks
later by changing the fork choice rule from most work to one that accounts for competing
blocks that were seen later [32]. The primary disadvantage of the scheme in [32] is that it
would take longer for the network to recover from a partition.

3.3 Diÿculty Adjustment Algorithms
There has been surprisingly little research performed on diÿculty adjustment algorithms,
despite their prominent status in proof of work cryptocurrencies.

In [8], the security of the Bitcoin blockchain and its Nakamoto Consensus algorithm are
proven in the context of blockchains where the diÿculty varies. Kraft shows that Bitcoin’s
DAA performs poorly when the hash rate is growing exponentially, leading to blocks being
found too quickly [17]. In [27], the Bitcoin DAA is shown to be susceptible to a collapse in
the rate of fnding new blocks if Bitcoin’s price decreases signifcantly in a short period of
time. The original CryptoNote DAA was analyzed in [28], fnding that it was susceptible
to a time warp attack, which was then fxed. Aggarwal and Tan investigated the behavior
of miners switching their hash power between Bitcoin and Bitcoin Cash to take advantage
of Bitcoin Cash’s temporary "Emergency Diÿculty Adjustment" algorithm [1]. Hovland
and Kucera take a “feedback control engineering” approach to DAAs, and show that if
the diÿculty adjusts every block, it will quickly adjust to “disturbances” in the hash
rate [15]. Furthermore, they claim that moving averages are optimal for reducing random
noise while maintaining this quick response. The same authors propose an alternative
DAA that reduces the diÿculty if it has been a long time since the last block was seen,
in order to reduce the long tail of interblock arrival times [18], which is similar to how
the Bitcoin Testnet works. Finally, [4] proposes Bobtail, a DAA that would dramatically
reduce the variance in block arrival times and would reduce the proftability of selfsh
mining, but would require substantially increasing the size of block headers (3KB for
Bitcoin, as opposed to 80 bytes).

Michael Davidson and Tyler Diamond 7

Table 1: Algorithm notation
Notation Meaning
chain[x]

chain[−1]
chain[x : y]
chain[x :]

sumW ork(chain)
filter(x)

len(chain)
median(chain)
expectedT ime

�+

The block in the blockchain at height x
The top (most recent) block in the blockchain, or the chain tip

The blocks in the blockchain from height x to height y
The blocks in the blockchain from height x to the chain tip.

If x is negative, then returns the most recent |x| blocks
A function that will compute the total work of every block in the chain

Bound a value x to a minimum and maximum value, dependent upon the DAA used
Return the length of the chain

Return the block with the median timestamp of the chain
Target block solving time � Lookback period

The lowest � where TARG > 0

4 Methodology
We implemented a simulator that uses Monte Carlo methods in order to establish the
proftability of selfsh mining against a variety of DAAs.2 The DAAs selected correspond
to those used in the top proof of work cryptocurrencies by market capitalization with
the exception of Ethereum, which uses a proof of work consensus mechanism that is
more complicated and thus out of scope. The coins considered here are Bitcoin, Bitcoin
Cash, Litecoin, Monero, Dash, and Zcash. Inter-block arrival times are modeled as an
exponential distribution, consistent with the literature. For each variant of each DAA, we
ran simulations for all even �’s between 0.06 and 0.48, all ’s between 0 and 0.9 by multiples
of 0.05 (although this paper only reports on 0 and 0.5 due to space considerations), and
timestamps reported honestly, 1 hour in the future, or 2 hours in the future. For each of
these parameter sets, we ran 30 simulations of 10000 blocks each, and averaged the results.

While we selected DAAs based on their use in specifc cryptocurrencies, it is important
to note that the results from our simulations do not necessarily refect the realities of mining
on those chains. Factors beyond the DAA that impact consensus are not accounted for in
our models. As such, the results here should not be broadly applied to the cryptocurrency
as a whole, but rather just the DAA employed. The notation used in describing the various
DAAs in the paper are in Table 1.

In particular, for Bitcoin Cash, we do not consider the reorg protection added to the
Bitcoin ABC client3 (one of several prominent Bitcoin Cash implementations), which
added a proof of work penalty for reorgs of three blocks or more in depth, and won’t
reorg more than ten blocks by default. Enforcing these rules may reduce the eÿcacy
of selfsh mining, but we consider this out of scope, because our focus is on the DAA
in isolation. This conveniently allows us to sidestep the more philosophical question of
whether consensus-related client-side mitigations that may not be universally enforced
constitute a consensus rule for the cryptocurrency system as a whole. For Dash, we do
not consider the ChainLocks feature which fnalizes blocks and prevents reorgs, and would
thus largely neutralize the impact of selfsh mining.4 These techniques have their own
tradeo˙s, and may make it easier for an attacker to cause permanent or longer-lasting
chain splits, despite protecting against selfsh mining.

Our simulator makes a number of simplifying assumptions: 1) constant block reward,
2) constant hash rate (no new miners come online or disappear), 3) there is no propagation
delay for blocks, 4) the exchange rate of the cryptocurrency remains constant despite the
attack, and 5) only one selfsh miner (or mining pool) exists. Furthermore, we do not take

2https://github.com/usnistgov/SelfshMiningSim
3https://github.com/Bitcoin-ABC/bitcoin-abc/releases/tag/v0.18.5
4https://github.com/dashpay/dips/blob/master/dip-0008.md

8 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

into account how honest miners would respond upon detecting selfsh mining. In theory,
the honest miners may be able to take actions that would reduce the e˙ectiveness of selfsh
mining. However, existing research suggests that selfsh mining tends to be more proftable
when multiple miners apply the strategy simultaneously, so we do not believe that this
exaggerates our results [3, 11, 20]. To bootstrap each simulation, we assume there exists a
suÿciently long chain of blocks with a constant baseline diÿculty of 1, where each block
timestamp matches the expected interblock arrival time.

A limitation of our simulator is in the case where honest miners mine a block on top of
a selfsh miner’s block after the attacker won a block race. With constant diÿculty, the
probability of this event should be determined solely by . When the diÿculty changes
every block, however, it could be the case that the tie-breaking block’s required diÿculty
will di˙er depending on the timestamp in the racing blocks. In this case, the winner of
the tie depends on both and the two diÿculties, but our simulator only accounts for .
This also adds a strategic aspect to the choice of which chain tip to mine on for the honest
miners, because the frst seen one isn’t necessarily the "best" choice.5 Fixing this would
require redefning , but we leave this for future work; for this paper, the reader should
think of as representing a range (− �1, + �2) for an unknown �1 and �2. It is unclear
to us whether this limitation biases the results in any particular direction, but due to the
possible strategic aspects, we ignore this e˙ect. This should have no impact on results
when = 0, however, if we make the typical assumption that miners mine on top of the
frst valid block they see.

Another limitation arises with respect to timestamps on simulated blocks. We make
the unrealistic assumption that all miners have their local system clocks synchronized. In
the networks studied in this paper, a miner will not accept a block as valid if its timestamp
is more than 2 hours (7200 seconds) past either its network adjusted time or the local
system clock. Thus, in real world scenarios, if a miner puts a timestamp 7200 seconds
past their system time into their block, it is likely that some other miners will consider
that block invalid and would not mine on top of it until the block is reconsidered and the
timestamp is within those bounds. Incorporating this factor into the simulation would
signifcantly complicate the analysis. Our results only attempt a maximum of 7200 seconds
of timestamp manipulation in each block. However, combined with a timejacking attack,
even longer manipulations are possible, so a clever attacker may be able to proft even
more. This is similar to an Eclipse attack, which increases proft from selfsh mining [24],
and would be a promising avenue for future research. In addition, when our selfsh miners
manipulate timestamps, they do this for every block they mine, even though there may be
more intricate and proftable strategies than this.

Crucially, we needed to alter the selfsh mining strategy described above in order to
accommodate chains with variable diÿculty. In traditional selfsh mining models, where
diÿculty is assumed to be constant, each block has an equal impact on the state change.
In our setting, where each block has a di˙erent diÿculty, a new notion of state is required.
Because we take the variable diÿculty of blocks into account, our selfsh mining strategy
does not perfectly match existing literature, nor do we claim to have found the optimal
strategy. The details of the adjusted algorithm are in Algorithm 1.

The metrics that we used to evaluate the selfsh mining strategy are relative revenue
(RR), time-adjusted relative revenue (TARR), and, most importantly, the time-adjusted
relative gain (TARG), defned as follows:

blocks mined by selfish miner that make the main chain RR = total blocks mined on main chain
RR TARR = elapsed time

expectedT ime

T ARR−� TARG = �

5For instance, whichever block requires higher diÿculty might be the superior choice, because the lower
diÿculty block would lose if there was another race, or the low diÿculty one might be best just to be able
to solve it faster in expectation.

9 Michael Davidson and Tyler Diamond

Algorithm 1 Selfsh Mining: Chains of Variable Diÿculty
DEFINITIONS:
effectiveState := sumW ork(privateChain) − sumW ork(mainC hain)
ifLose := effectiveState − nextM ainC hainBlockDifficulty
INIT:
effectiveState 0
ifLose −(nextM ainC hainBlockDifficulty)
ON SELFISH MINER FINDS BLOCK:
append new block to private chain and continue mining on private chain
effectiveState effectiveState + newPrivateBlockDifficulty
ifLose ifLose + newPrivateBlockDifficulty
ON OTHER MINERS FIND BLOCK:
append new block to public, main chain
effectiveState effectiveState − newPublicBlockDifficulty
ifLose ifLose − newPublicBlockDifficulty
if ifLose � 0 and len(privatechain) > 0 and effectiveState > 0 then

publish private chain, overtake main chain, and mine on top of new public chain tip
else if effectiveState = 0 and len(privatechain) > 0 then

publish private chain and enter race
else if ifLose > 0 then

continue mining on private chain
else if len(privatechain) = 0 then

mine on top of new public chain tip
end if

Recall that we frequently use the term "proftability" when we actually mean revenue,
in order to reduce the possible confusion with the term "relative revenue". In the tables of
data throughout this paper, if no timestamp is mentioned, the result displayed is the most
signifcant one, regardless of the timestamp used.

5 Results
5.1 Bitcoin and Litecoin
Unlike the other DAAs investigated in this paper, Bitcoin’s DAA does not adjust the
diÿculty level each block. Instead, it changes every 2016 blocks by looking at the
timestamps for the frst and last blocks of that period, taking the di˙erence, dividing by
1209600 (the expected number of seconds for the interval, or two weeks), and then limiting
the diÿculty change to at most a factor of 4 in either direction, if necessary. The actual
Bitcoin implementation has an o˙-by-one error; it is clear that the intention was to include
the timestamp of the last block of the previous period rather than the frst block of the
existing period, but it would require a hard fork to fx this error. Litecoin uses the same
DAA, but fxed the o˙-by-one bug, and scaled back their target block time from Bitcoin’s
600 seconds to just 150 seconds (and thus divides by 302400, or approximately 3.5 days).

In Bitcoin and Litecoin, we found the selfsh mining strategy to be far riskier than
prior work would suggest, and substantially less lucrative than selfsh mining against other
algorithms. We suspect that the primary reason for this is that approximately 20% of the
simulation occurs before the frst diÿculty adjustment, which acts as a “loss leader” for
the strategy against these two coins (if the simulator mined more than 10000 blocks, the
strategy would be more proftable). When is zero, selfsh mining was not proftable until
� was approximately 0.42 (6.31% TARG); even the relative revenue doesn’t exceed � until

http:algorithms.We

10 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

Table 2: TARG results of Bitcoin. Default parameters in gray.
 = 0 = 0.50

Lookback TARG (�+) � = 0.40 � = 0.48 TARG (�+) � = 0.40 � = 0.48
2016/OB1 6.31% (0.42) -3.03% 37.56% 0.59% (0.32) 17.73% 48.89%
2016 6.54% (0.42) -3.36% 37.7% 1.69% (0.32) 17.63% 47.94%
Litecoin 5.38% (0.42) -5.03% 38.59% 1.31% (0.32) 17.56% 47.48%
1008 7.33% (0.40) 7.33% 53.3% 1.61% (0.30) 25.8% 63.64%
288 6.63% (0.38) 14.22% 69.14% 0.93% (0.28) 32.04% 74.43%
144 6.71% (0.38) 14.66% 72.15% 0.33% (0.28) 32.66% 75.42%
60 0.64% (0.36) 18.15% 75.54% 1.73% (0.28) 35.23% 79.54%
24 1.41% (0.36) 21.23% 78.74% 1.59% (0.28) 35.65% 80.49%
12 5.15% (0.36) 24.18% 79.93% 3.22% (0.28) 39.18% 82.83%

� � 0.38. With = 0.5, the strategy becomes proftable with approximately 1/3 of the
hash rate. For both coins, a miner with 48% of the hash rate and no network infuence,
the selfsh mining strategy is approximately 37.5% more proftable than honest mining.
This increases to 46.7% and 47.5% for Bitcoin and Litecoin, respectively, when = 0.5.
We hypothesize that if block propagation time were factored into the simulation, Litecoin
would be more susceptible to selfsh mining than Bitcoin due to shorter block intervals.

We also performed the same simulations for Bitcoin, but with the o˙-by-one bug fxed
and lookback periods of 2016, 1008, 288, 144, 60, 24, and 12 blocks, in order to see if
diÿculty responsiveness could be improved without making the coin more susceptible
to selfsh mining. The results are in Table 2. By itself, fxing the o˙-by-one bug had
no discernible impact. Unfortunately, any substantial reduction in the lookback period
results in selfsh mining becoming dramatically more proftable. It may be the case that a
lookback of 1008 could be a compromise between selfsh mining resilience and the ability
to recover from sudden hash rate collapses: with = 0, selfsh mining became proftable
when � = 0.4, with a 7.33% TARG.

Timestamp manipulation was, overall, not an e˙ective strategy for increasing the
proftability of selfsh mining against Bitcoin’s DAA. Despite a slightly higher TARG
from fddling with block timestamps, fewer of the simulation runs did better than honest
mining when � was small, which suggests a high variance in e˙ectiveness and thus high
risk in applying the strategy. For lookback periods of 1008 and 288, manipulation has an
ambiguous impact. For lookback of 144 blocks, timestamp manipulation provides a similar
and sometimes better RR, but lowers TARG. For lookback of 60, 24, or 12, timestamp
strategies improve RR but dramatically reduce TARG, with a decreasing impact as �
increases.

Summary: Selfsh mining is probably a less signifcant risk to Bitcoin in practice than
has been emphasized in the literature, due to the lengthy period leading up to the diÿculty
adjustment. Furthermore, timestamp manipulation strategies are either ine˙ective or risky
with little beneft. Reducing the lookback period to 1008 blocks (approximately 1 week)
can be done with only a small sacrifce in selfsh mining resilience.

5.2 Bitcoin Cash (D601)
Bitcoin Cash adopts a very di˙erent DAA from Bitcoin, which adjusts every block and
is parameterized by both a lookback period and the “MedianTimePast” (MTP), with a
default lookback period of 144 blocks and MTP of 3 blocks. Bitcoin Cash uses the same
600 second expected block time as Bitcoin. The algorithm is a slightly modifed simple
moving average of the diÿculties over the prior 144 blocks (or more generally, the lookback
period), with changes bounded by a factor of 2. Algorithm 2 shows how to calculate the
next required diÿculty.

11 Michael Davidson and Tyler Diamond

Algorithm 2 Bitcoin Cash DAA
Require: chain : array of blocks
Require: MTP : number of blocks to check for the median timestamp of
Require: LOOKBACK : number of blocks in diÿculty adjustment window
Require: flter() : bounds input between expectedTime/2 and 2*expectedTime

topBlocks chain[−MTP :]
bottomBlocks chain[−(LOOKBACK + MTP) : −LOOKBACK]
topMed median(topBlocks)
botMed median(bottomBlocks)
actualT ime filter(topM ed.timestamp − botM ed.timestamp)

sumW ork(chain[botMed : topMed]) � expectedT ime newDiff actualT ime

With a default lookback period of 144 blocks and MTP of 3 blocks, a selfsh miner
with = 0 becomes proftable when � = 0.34, with a TARG of 6.22%, which increases to
30.9% when � = 0.4, and 76.75% when � = 0.48. If the selfsh miner has = 0.5, then
the strategy becomes proftable when � = 0.26, with a TARG of 2.5%. This increases to
41.72% when � = 0.4, and 80.47% when � = 0.48.

In addition to the default parameter set, we ran simulations for (lookback, MTP) of
(12, 3), (24, 3), (24, 11), (48, 3), (48, 11), (48, 17), (144, 11), (144, 17), (144, 45), (288, 3),
(288, 11), (288, 17), (288, 45), (288, 73), (2016, 3), (2016, 11), (2016, 17), (2016, 45), and
(2016, 505). While we expected the proftability of selfsh mining to be highest with shorter
lookback periods, the strategy performed worst for a lookback of 12, improved as the
lookback period increased to 288, and then became less proftable at 2016. Increasing the
MTP forces the selfsh miner to have a greater hash rate to be proftable, and signifcantly
lowers the proftability when � is low. As � increases, the protective e˙ect of higher MTPs
becomes smaller. Timestamp manipulation may sometimes make up some of the di˙erence
for the selfsh miner, but their best options get worse as MTP increases. Finally, the
MTP should not be set too high relative to the lookback period; doing so leads to wild
oscillations and diÿculty drops, because the top and bottom blocks are more likely to be
close together.

The e˙ectiveness of manipulating timestamps depends on the parameter set. With
default parameters, reporting dishonest timestamps severely decreases the proftability of
selfsh mining. When MTP = 3, timestamp manipulation tends to be proftable for lower
lookback periods and harmful for larger ones, but the optimal timestamp isn’t necessarily
the one furthest in the future. Furthermore, while consistently leading to higher RR with
short lookback periods, manipulation tended to have a larger positive impact on the TARG
for lower �, and a more muted impact when � was large. This suggests that selfsh mining
with timestamp manipulation could be a proftable strategy for smaller miners on a coin
that uses relevant diÿculty algorithm parameters, like a shorter lookback period.

Interestingly, manipulating timestamps was more consistently benefcial with MTPs
greater than 3, which we did not expect. Our intuition was that a smaller MTP would
make it easier for the selfsh miner to “capture” the median timestamp and decrease the
diÿculty of their next private block to a greater degree. It’s possible that this is still
the case, but because the lower diÿculty also makes their private chain have less work,
it counts against the selfsh miner. The relationship between DAA parameters and the
e˙ectiveness of timestamp manipulation requires more study, but since a higher MTP
made selfsh mining less e˙ective, it is still recommended to use a higher MTP.

Results for various parameter sets can be found in Table 3. The parameter set that
was most resistant to selfsh mining, particularly when = 0.5, was (12, 3). The selfsh
miner has consistently higher relative revenue even at lower �’s, but the strategy is less
proftable when time-adjusted. While we do not know for sure why this is, one possibility

12 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

Table 3: TARG for Bitcoin Cash DAA. Default parameters in gray. Recommended
parameters in blue.

 = 0 = 0.50
Lookback/MTP TARG (�+) � = 0.40 � = 0.48 TARG (�+) � = 0.40 � = 0.48
144/3 6.22% (0.34) 30.9% 76.75% 2.5% (0.26) 41.72% 80.47%
144/11
144/45

0.78% (0.34)
4.59% (0.36)

24.69%
20.33%

75.58%
72.04%

0.31% (0.26)
4.01% (0.28)

37.37%
34.52%

78.19%
76.27%

12/3 1.99% (0.36) 16.40% 58.85% 7.92% (0.34) 24.48% 60.45%
288/3
2016/3

6.52% (0.34)
3.73% (0.34)

30.2%
26.81%

78.74%
68.39%

3.17% (0.26)
1.22% (0.26)

41.93%
37.81%

81.25%
72.07%

2016/505 1.67% (0.36) 15.82% 60.07% 1.67% (.28) 34.53% 76.6%

is that selfsh mining is risky with short lookback periods because of the high variance
in inter-block arrival time, which is smoothed out with larger lookback periods. We have
greater confdence in the more modest improvements seen with (2016, 505), which was the
best parameter set at resisting selfsh mining when = 0.

Summary: The default DAA parameters for D601 as used by Bitcoin Cash are
among the least optimized for selfsh mining resistance. This could be improved by
making the lookback period substantially longer or shorter, as well as increasing the MTP.
Timestamp manipulation isn’t e˙ective against the default parameters, but is e˙ective
against other confgurations; however, this is mitigated by the reduced proftability of
selfsh mining strategies against other confgurations and thus shouldn’t discourage a
change in parameters.

5.3 Dash (Dark Gravity Wave)
Dash uses a DAA dubbed Dark Gravity Wave, which adjusts every block and is parameter-
ized by the lookback period. While the implementation itself is convoluted,6 it ultimately
ends up being a simple moving average that assigns double weight to the most recent
block, and bounds changes by a factor of 3.7 There is also an o˙-by-one bug in Dash’s
implementation, so that there is one fewer timestamp counted in the calculation than there
should be. Dash targets 150 seconds between blocks, but the o˙-by-one bug biases this
such that it ends up being closer to 159 seconds in practice. To calculate the next block’s
diÿculty, Dash uses Algorithm 3.

Algorithm 3 Dash DAA (Dark Gravity Wave)
Require: chain : array of blocks
Require: LOOKBACK : number of blocks in diÿculty adjustment window
Require: OB1 : if the implementation has an o˙-by-one error, this value is 1. Otherwise,

this value is 0.
Require: flter() : bounds input between (old diÿculty)/3 and 3*(old diÿculty)

WORK 2 � chain[−1].difficulty + sumW ork(chain[−LOOKBACK:])
LOOKBACK+1

chain[−1].timestamp−chain[−(LOOKBACK−OB1)].timestamp newDiff filter(WORK �) expectedT ime

For Dark Gravity Wave, we tested the default Dash parameters – that is, a lookback
period of 24 blocks and an o˙-by-one error – as well as lookback periods of 24, 48, 60, 144,
and 2016 blocks, with the o˙-by-one error fxed. The most striking result was the degree
to which timestamp manipulation made selfsh mining more proftable, even with very low
�, as can be seen in Figure 2a.

6https://github.com/dashpay/dash/blob/master/src/pow.cpp
7https://github.com/zawy12/diÿculty-algorithms/issues/31

13 Michael Davidson and Tyler Diamond

Table 4: TARG results for Dash. The frst column represents �+ for any timestamp, and
the second column represents �+ when all timestamps are proftable. Default parameters
in gray. Recommended parameters in blue.

Lookback TARG (�+) any TARG (�+) all � = 0.40 � = 0.48
 = 0

24/OB1 15.5% (0.12) 0.69% (0.32) 131.38% 97.17%
24
48
60
144

0.53% (0.10)
1.13% (0.16)
1.46% (0.18)
0.62% (0.26)

170.15% (0.24)
6.59% (0.32)
7.93% (0.32)
0.63% (0.30)

143.75%
82.03%
71.98%
43.3%

105.59%
93.31%
91.56%
82.31%

2016 - 4.71% (0.32) 34.51% 71.84%
 = 0.50

24/OB1 11.42% (0.08) 1.94% (0.26) 131.66% 97.1%
24
48
60
144

15.50% (0.08)
0.24% (0.10)
1.53% (0.12)
3.67% (0.20)

156.10% (0.24)
3.36% (0.24)
3.46% (0.24)
0.33% (0.22)

142.29%
85.29%
76.63%
51.57%

105.69%
94.82%
92.93%
84.40%

2016 - 1.88% (0.24) 41.47% 73.8%

With default parameters and a selfsh miner with = 0, the selfsh mining strategy
provides a 15.5% TARG when � = 0.12 and timestamps are moved forward by 2 hours.
It isn’t until � = 0.32 that selfsh mining becomes proftable without manipulating
timestamps, at which point the TARG for this miner becomes 0.69%, 57.06%, or 155.89%
for honest timestamps, 1 hour in the future, or 2 hours in the future, respectively. With
� = 0.4, this changes to 29.98%, 71.74%, and 131.38%, and for � = .48, we have 72.71%,
84.17%, and 97.17%. If the selfsh miner has = 0.5, then selfsh mining with timestamps
2 hours in the future provides 11.42% of extra proftability with � as low as .08. At
� = 0.26, selfsh mining becomes more proftable to the tune of 1.94%, 52.92%, or 152.13%
for honest timestamps, 1 hour in the future, or 2 hours in the future, respectively. For
� = 0.4, these numbers are 38.66%, 75.56%, 131.66%, and for � = .48, these numbers
rise to 75.16%, 84.72%, and 97.11% proftability increases. Notably, the o˙-by-one bug
provides slight protection against the selfsh mining attack. Recall that TARG is scaled to
�, which explains why it is lower for the highest � values.

To contextualize these numbers, consider a selfsh miner with 32% of the global hash
rate for a Dark Gravity Wave coin and no network infuence (= 0) that normally collects
$1M per month in revenue, with $950,000 per month in expenses, resulting in a $50,000
per month proft. If they were to employ the selfsh mining strategy while manipulating
timestamps by 2 hours, their revenue would increase to $2.5589M, for a total proft of
$1.6089M. In this example, while the revenue increased by a factor of 2.5, the actual profts
increased by a factor of 32.

Increasing the lookback period to 48, 60, or 144 has a neutral or even a slightly positive
infuence on selfsh mining proftability, as we saw with Bitcoin Cash above. However, this
is more than o˙set by the reduction in the e˙ectiveness of timestamp manipulation as the
lookback period increases. With a lookback period of 2016, timestamp manipulation is no
longer e˙ective. With shorter lookback periods, as � grows, RR may be higher without
timestamp manipulation, but TARR and TARG are signifcantly higher with timestamp
manipulation despite this. Stated di˙erently, while the selfsh miner who manipulates
timestamps may not get a particularly large fraction of the blocks, their impact on the
diÿculty will speed up the time between blocks such that they mine more blocks per unit
time. Finally, observe that timestamp manipulation appears as though it can be used as a
substitute for network power; matters far less to the proftability of selfsh mining when
reporting dishonest timestamps.

http:1.6089M.In
http:profitabletothetuneof1.94

14 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

We recommend adopting a radically longer lookback period of 2016 blocks in order to
mitigate the impact of selfsh mining on Dark Gravity Wave coins.

Summary: Dark Gravity Wave with a short lookback period is dangerously susceptible
to selfsh mining attacks, particularly when combined with timestamp manipulation. Even
miners with very low hash rates can proft substantially with this strategy, but this
is mitigated as the lookback period increases. Dash’s Chainlocks mitigate this issue,
but timestamp manipulation is likely still a proftable strategy for miners. This DAA
demonstrates that timestamp manipulation should be considered in future analysis of
selfsh mining.

5.4 Monero
Monero uses a DAA that adjusts for every new block, and is parameterized by a delay
period, a quantity of outliers to exclude, and a lookback period. To calculate the next
block’s diÿculty, use Algorithm 4.

Algorithm 4 Monero DAA
Require: chain : array of blocks
Require: LOOKBACK : number of blocks in diÿculty adjustment window
Require: DELAY : number of blocks to ignore, starting from the chain tip
Require: OUTLIERS : number of array entries to remove from both ends of the array

window chain[−(LOOKBACK + DELAY) : −DELAY]
for block in window do

timestamps.append(block.timestamp)
end for
timestamps timestamps.sort()
filteredT imestamps timestamps[OUTLIERS : LOOKBACK −OUTLIERS]
filteredWork window[OUTLIERS : LOOKBACK −OUTLIERS]

sumW ork(filteredW ork)�expectedT ime newDiff filteredT imestamps[−1]−filteredT imestamps[0]

Monero has an expected inter-block arrival time of 120 seconds, a delay of 15 blocks, 60
outliers (which means that 120 total outliers are actually removed), and a lookback period
of 720 blocks. When = 0, a selfsh miner has a 3.96% TARG for � = 0.36, a 19.15%
TARG for � = 0.4, and a 68.99% TARG for � = 0.48. If = 0.5, the selfsh miner can
get a TARG of 3.67% when � = 0.28, 33.84% when � = 0.4, and 74.0% when � = 0.48.
Timestamp manipulation usually provides a small beneft to the selfsh miner with these
default parameters.

In addition to the default (15, 60, 720) parameter set, we tested performance for the
following parameter sets: (60, 60, 720), (15, 120, 720), (60, 120, 720), (15, 60, 240), (5,
20, 240), (5, 20, 2160), (15, 60, 2160), and (45, 180, 2160). Simulation results for each
parameter set are in Table 5. Holding the lookback period constant at 720, changing the
other parameters had at best a minor impact on the proftability of selfsh mining. Lowering
the lookback period to 240 without changing the delay or number of outliers removed led
to a slight reduction in selfsh mining proftability; however, scaling all parameters down
by an equal factor made the algorithm substantially more susceptible to selfsh mining,
particularly when reporting dishonest timestamps. The higher lookback period of 2160
blocks was most resistant to selfsh mining, and scaling all parameters up by a factor of 3
was the best parameter set tested. That said, the di˙erences between most parameter sets
were not large enough to warrant a specifc recommendation.

For a lookback period of 720 blocks, timestamp manipulation was often helpful, but
not substantially so. For the (15, 60, 240) parameter set, timestamp manipulation had
an ambiguous but small impact. In contrast, the (5, 20, 240) set gave the selfsh miner a

http:andalookbackperiod.To

15 Michael Davidson and Tyler Diamond

Table 5: TARG results of Monero, DOL = Delay/Outliers/Lookback. Default parameters
in gray. Most resistant parameters in blue.

 = 0 = 0.5
DOL � = 0.36 � = 0.40 � = 0.48 � = 0.28 � = 0.40 � = 0.48
15/60/720 3.96% 19.15% 68.99% 3.67% 33.84% 74.00%
60/60/720
15/120/720
60/120/720
15/60/240
5/20/240
5/20/2160
15/60/2160

4.16%
4.32%
3.02%
2.53%
11.70%
2.23%
1.52%

18.29%
18.64%
18.36%
18.07%
31.24%
17.1%
16.0%

68.48%
69.07%
67.63%
70.0%
76.91%
62.24%
61.73%

3.99%
4.31%
3.18%
3.02%
8.64%
1.95%
1.73%

33.28%
33.87%
32.44%
32.94%
46.72%
29.81%
29.52%

72.52%
72.66%
71.97%
73.25%
81.02%
65.10%
66.32%

45/180/2160 0.46% 14.06% 60.42% 1.48% 28.8% 66.06%

substantial advantage when setting timestamps 2 hours in the future. When the lookback
period was 2160 blocks, timestamp manipulation had a small beneft to the selfsh miner
when � was large, but not to a substantial degree, for the (15, 60, 2160) and (45, 180,
2160) parameter sets. For (5, 20, 2160), timestamp manipulation consistently provided a
slight beneft to the selfsh miner. Short delay periods and removing fewer outliers tended
to exaggerate the impact of timestamp manipulation in favor of the selfsh miner.

Summary: Monero’s DAA (and its variants) was fairly resistant to selfsh mining,
and there wasn’t substantial room for improvement. By including a delay and removing
outliers, the actions of selfsh miners take time to have an impact on the diÿculty, thus
reducing the ability of the miner to beneft from short term strategic manipulations.

5.5 Zcash (Digishield v3)
The Digishield v3 DAA is fairly popular, and is most notably used in Zcash. This algorithm
is a “tempered” simple moving average, and is parameterized by the lookback period,
“MedianTimePast” (MTP), a damping factor, and maximum upward and downward
adjustments. The next block’s diÿculty is calculated using Algorithm 5.

The default parameters in Zcash are (lookback, MTP, damping, maxup, maxdown) =
(17, 11, 4, 16, 32), with a target 150 second block interval. We also ran simulations for the
following (lookback, MTP) pairs with damping of 2, 4, or 8, and maxup and maxdown of
16 or 32: (17, 3), (17, 11), (144, 3), (144, 11), (144, 45), (2016, 3), (2016, 11), and (2016,
505). The results can be found in Table 6.

With Zcash’s default parameters and = 0, TARG turns positive when � = 0.32 and
timestamps are manipulated by 1 or 2 hours, with gains of 1.53% and 8.06%, respectively.
When � = 0.36, the TARG is positive for all timestamps: 5.05%, 23.44%, and 35.35%.
For � = 0.4, the TARGs are 22.58%, 46.30%, and 62.0%, and for � = 0.48, this increases
to 76.03%, 84.36%, and 87.59%. If the selfsh miner has = 0.5, using timestamps 2
hours in the future achieves a TARG of 1.51% when � = 0.24. It isn’t until � = 0.28
that selfsh mining is proftable without timestamp manipulation, but manipulation helps
substantially: for honest, 1 hour ahead, and 2 hour ahead timestamps, selfsh mining
generates TARGs of 4.14%, 11.66%, and 16.67%, respectively. When � = 0.4, the TARG
increases to 37.48%, 60.23%, and 80.43%, and for � = 0.48, the TARG is 76.66%, 85.35%,
and 89.21%.

Clearly, timestamp manipulation is extremely e˙ective against Zcash’s current DAA, as
can be seen in Figure 2b. However, making the maxup and maxdown parameters symmetric
- or even allowing faster upward adjustments and slower downward ones – negates this
e˙ect. When (maxup, maxdown) is (16, 16), timestamp manipulation is sometimes slightly
e˙ective, but it doesn’t lower the needed � for proftability. Timestamp manipulation

http:secondblockinterval.We

16 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

Algorithm 5 Zcash DAA (Digishield v3)
Require: chain : array of blocks
Require: LOOKBACK : number of blocks in diÿculty adjustment window
Require: MTP : number of blocks to check for the median timestamp of
Require: DAMPING : reduce the impact of time variations by this factor
Require: MAXUP : used to determine minTimespan for maximum upward adjustment
Require: MAXDOWN : used to determine maxTimespan for maximum downward ad-

justment
Require: flter() : bounds input between minTimespan and maxTimespan

B chain[−1]
A chain[len(chain) − LOOKBACK − 1]
bMedian median(chain[B.height−MTP : B.height])
aMedian median(chain[A.height −MTP : A.height])
actualT imespan bMedian.timestamp − aMedian.timestamp

expectedT ime + actualT imespan−expectedT ime actualT imespan DAMP ING

minT imespan expectedT ime � 100.0−MAXUP
100.0

maxT imespan expectedT ime � 100.0+MAXDOW N
100.0

actualT imespan filter(actualT imespan)
avgTarget 0.0
for block in chain[B.height-LOOKBACK: B.height] do

avgTarget += 1.0
block.difficulty

end for
avgT arget avgTarget LOOKBACK

avgTarget � actualT imespan bnN ew expectedT ime
1.0 newDiff bnN ew

is ine˙ective for (32, 32) and extremely counterproductive for (32, 16). However, selfsh
mining performance without timestamp manipulation is nearly identical regardless of the
maximum adjustments. For otherwise default parameters, lowering the MTP to 3 made
selfsh mining signifcantly more proftable, especially with a lower �. The damping factor
has a strange impact on the e˙ectiveness of timestamp manipulation for otherwise default
parameters: an increase in the damping factor protects against selfsh mining with 1 hour
future timestamps, but makes selfsh mining far more proftable than otherwise with 2
hour future timestamps. A lower damping factor has little impact in this case.

Adjusting the lookback period to 144 blocks but otherwise keeping default parameters
has comparable resistance to selfsh mining as the default lookback of 17 blocks, but it
negates the impact of timestamp manipulation. With this higher lookback, increasing
the damping factor to 8 makes the DAA slightly more resistant to selfsh mining and
makes timestamp manipulation counterproductive. Decreasing the damping factor to 2
makes selfsh mining slightly more proftable and makes timestamp manipulation mildly
e˙ective. With a lookback of 144 and a lower MTP of 3, selfsh mining is more e˙ective,
but timestamp manipulation still doesn’t help. When the MTP is 45 blocks, selfsh mining
is less e˙ective, but timestamp manipulation is sometimes slightly more proftable. In
either case, the various combinations of maximum adjustments had only a small impact
on the proftability of selfsh mining, without an easily discernible pattern.

Increasing the lookback period to 2016 blocks but using otherwise default parameters,
the DAA is substantially more resistant to selfsh mining as well as timestamp manipulation.
Decreasing the MTP to 3 makes selfsh mining more proftable, but is still a dramatic
improvement over the default. When MTP = 505, selfsh mining is noticeably less proftable.
With (lookback, MTP) of (2016, 11), lowering the damping factor to 2 makes selfsh mining

17 Michael Davidson and Tyler Diamond

Table 6: Zcash TARG for select parameter sets. LMDUN = Lookback, MTP, Damping,
maxup, maxdown. The frst column represents �+ for any timestamp, and the second
column represents �+ when all timestamps are proftable. Default parameters in gray.
Recommended parameters in blue.

LMDUN TARG (�+) any TARG (�+) all � = 0.40 � = 0.48
 = 0

17/11/4/16/32 8.06% (0.32) 35.35% (0.36) 61.99% 87.59%
17/11/4/32/32
17/3/4/16/32
144/11/4/16/32
144/11/2/16/32
144/11/8/16/32
144/3/4/16/32
144/45/4/16/32

6.08% (0.36)
0.73% (0.28)
6.30% (0.36)
0.56% (0.34)
5.46% (0.36)
3.57% (0.34)
4.80% (0.36)

6.08% (0.36)
4.55% (0.34)
6.30% (0.36)
9.03% (0.36)
5.46% (0.36)
3.57% (0.34)
4.80% (0.36)

22.71%
72.60%
23.75%
24.78%
21.97%
27.39%
20.35%

74.21%
92.64%
73.40%
75.05%
71.28%
74.39%
72.16%

2016/505/8/32/16 2.04% (0.42) 2.04% (0.42) -3.17% 25.10%
 = 0.50

17/11/4/16/32 1.51% (0.24) 16.67% (0.28) 80.43% 89.21%
17/11/4/32/32
17/3/4/16/32
144/11/4/16/32
144/11/2/16/32
144/11/8/16/32
144/3/4/16/32
144/45/4/16/32

0.06% (0.26)
5.37% (0.22)
0.66% (0.26)
0.42% (0.26)
3.84% (0.28)
0.96% (0.26)
0.28% (0.26)

3.93% (0.28)
22.18% (0.26)
4.63% (0.28)
4.90% (0.28)
3.84% (0.28)
0.96% (0.26)
4.65% (0.28)

36.66%
86.85%
36.47%
38.03%
35.03%
39.09%
34.53%

78.19%
94.74%
76.47%
78.36%
73.15%
78.26%
75.78%

2016/505/8/32/16 1.58% (0.36) 1.58% (0.36) 8.36% 28.26%

signifcantly more proftable, and increasing it to 8 makes selfsh mining far less proftable.
More specifcally, when the damping factor is 2 and = 0.5, the TARG turns positive
when � = 0.28. For = 0, gains begin at the same � as it would with a damping factor
of 4 (that is, � = 0.38), but with a far higher TARG. In contrast, with a damping factor
of 8 and = 0.5, gains start at � = 0.36, and for = 0, the TARG doesn’t become
positive until � = 0.42. These improved results are comparable to Bitcoin’s level of selfsh
mining resistance. The parameter set most resistant to selfsh mining was (2016, 505, 8,
32, 16), although the results for other maximum adjustment values are comparable. In this
case, the Digishield DAA was even more resistant to selfsh mining than Bitcoin, which is
notable.

While the interactions between parameters are somewhat complex in Digishield, there
are a few patterns. Increasing the lookback period improves the algorithm’s resistance to
selfsh mining, frst by making timestamp manipulation less e˙ective, and then in general
when the lookback period is suÿciently long. Increasing the MTP is also protective. When
lookback = 17, decreased damping has little impact, but increased damping makes 2
hour timestamps signifcantly more proftable (and 1 hour timestamps less proftable than
with damping = 4). This changes when lookback = 144, where decreased damping is
slightly harmful and increased damping is slightly protective. When lookback = 2016,
lower damping makes selfsh mining more proftable, and a higher damping factor o˙ers
signifcant protection.

The maximum adjustment parameters had very little impact when the lookback period
was increased. This makes sense, because each new block contributes a smaller amount of
work relative to the total, and thus would adjust the diÿculty by a smaller amount. The
result is that these flters don’t come into play as often. For higher lookback periods, these
parameters would need to be scaled down signifcantly in order to be relevant. That said, it
does appear that reducing the maximum downward adjustment helps prevent selfsh mining

http:higherTARG.In

18 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

(a) The signifcance of manipulating the
timestamp for Dash.

(b) The signifcance of manipulating the
timestamp for Zcash.

Figure 2: Timestamp manipulation e˙ectiveness in regards to � and .

by forcing the diÿculty to take longer to adjust to the selfsh miner’s suddenly “missing”
hash rate. Similarly, a higher maximum upward adjustment can reduce the proftability
by allowing the diÿculty to “recover” from the selfsh miner’s “absence” more quickly. In
the case of Zcash, the asymmetric fast adjustment down with slow adjustments back up is
what makes timestamp manipulation so e˙ective, and making the adjustments symmetric
closes this attack vector. Unfortunately, changing the maximum adjustment parameters
makes the coin more susceptible to sudden hash rate drops as well as fy-by-night miners
that rapidly change which coin they are mining based on proftability (“coin-hopping”).

Summary: The Digishield DAA has many parameters that interact with each other
in potentially complex ways. In general, a higher MTP is protective against selfsh mining,
and a higher damping factor is also protective – but only when the lookback period
is increased. The Zcash developers should consider making the maximum adjustment
parameters symmetric in order to improve selfsh mining resistance with minimal changes
to the algorithm.

6 Discussion
Algorithm comparison: Table 7 summarizes the above results for the default parameter
sets for each algorithm. We emphasize again that the results here are for the DAA itself,
and not necessarily the coin employing it, because some cryptocurrencies like Bitcoin Cash
and Dash have other mitigations in place that may make selfsh mining more challenging
or less proftable.

That said, it is clear from this comparison that Bitcoin forces the selfsh miner to have
a substantially larger fraction of the global hash rate in order to be proftable, and with a
substantially lower TARG when it is proftable, than other coins’ algorithms. With 40% of
the Bitcoin hash rate and no network infuence, a selfsh miner will still lose money (over
10000 blocks); for the next best competitor, Monero, the same selfsh miner increases its
time-adjusted revenue by 19.15%. However, the gap tends to close as the selfsh miner’s
network infuence increases. On the other side of the spectrum are Dash’s Dark Gravity
Wave algorithm and zCash’s Digishield, with DGW in particular being highly susceptible to
timestamp manipulation. Bitcoin Cash’s D601 algorithm performs somewhere in between.

We believe that the wildly divergent results across algorithms and their parameteriza-
tions lends support to the idea that selfsh mining is fundamentally an attack on the DAA
itself.

http:revenueby19.15
http:eachalgorithm.We
http:complexways.In

19 Michael Davidson and Tyler Diamond

Table 7: TARG results of each coin with default parameters. The frst column represents
�+ for any timestamp, and the second column represents �+ when all timestamps are
proftable.

Coin TARG (�+) any TARG (�+) all � = 0.40 � = 0.48
 = 0

Bitcoin
Bitcoin Cash
Dash
Monero
Zcash

6.31% (0.42)
6.22% (0.34)
15.5% (0.12)
3.80% (0.36)
8.06% (0.32)

6.31% (0.42)
6.22% (0.34)

155.89% (0.32)
3.80% (0.36)
35.35% (0.36)

-0.87%
30.9%

131.38%
19.15%
61.99%

37.56%
76.75%
97.17%
68.99%
87.59%

 = 0.50
Bitcoin
Bitcoin Cash
Dash
Monero
Zcash

0.59% (0.32)
2.5% (0.26)

11.42% (0.08)
3.67% (0.28)
1.51% (0.24)

4.63% (0.34)
2.5% (0.26)

152.13% (0.26)
3.67% (0.28)
16.67% (0.28)

17.73%
41.72%
131.66%
33.84%
80.43%

46.89%
80.47%
97.11%
74.0%
89.21%

Timestamps: Our results indicate that timestamp manipulation and a cryptocur-
rency’s timestamp validity rules must be considered when choosing a DAA, and particularly
when considering how the DAA will perform against selfsh mining attacks. Timestamp
manipulation in some cases can signifcantly reduce the hash rate required by a selfsh
miner in order to proft, as observed for variants of Dark Gravity Wave, Digishield, and
some non-default variants of Bitcoin Cash’s DAA. This means that even small miners
may attempt to use the selfsh mining strategy, to the network’s detriment. In some cases,
even, selfsh miners may perform poorly based on the relative revenue metric used in prior
research, but still have a positive time-adjusted gain – an inversion of the standard selfsh
mining results as have been historically applied to Bitcoin.

While we expected timestamp manipulation to be advantageous to the selfsh miner
in many cases, we were surprised to see that naively setting timestamps 2 hours into the
future was not universally the best strategy, even when manipulation was benefcial. That
is, there were cases where setting timestamps 1 hour into the future outperformed 2 hours
for the selfsh miner; this suggests that there may be a rich strategy space for miners to
consider when setting block timestamps.

Furthermore, we propose that the combination of block timestamp manipulation and
strategically timejacking nodes can have a synergistic e˙ect for the attacking selfsh miner.
Recall that timejacking is a variant of Sybil attack where nodes report faulty system
times in order to change a target node’s “network adjusted time”. Combining this with
block validity rules requiring blocks to be no more than 2 hours ahead of the network
adjusted time can allow a miner to artifcially increase their ; adjust a target node’s clock
backwards, and blocks that have future timestamps will be considered temporarily invalid
and won’t be relayed to other nodes or built on top of by timejacked miners.

Lookback periods and MedianTimePast: We had originally hypothesized that
shorter lookback periods would be more susceptible to selfsh mining, and that the
e˙ectiveness of selfsh mining would decrease as the lookback period lengthened. However,
our results indicate that that both short and long lookback periods can be protective, and
that selfsh mining is most proftable somewhere in the middle. This was the case for
Bitcoin Cash, Dash (with honestly reported timestamps), and to a lesser extent, Monero
(when the delay period and number of outliers removed remains constant). One possible
reason for this is that when lookback periods are suÿciently short, there will be a larger
observed variance in interblock arrival times, and this gets “smoothed out” when the
lookback period increases. This higher variance for short lookback periods may make
selfsh mining riskier. Therefore, increasing the lookback period may at frst help a selfsh

20 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

miner due to reducing this variance, but beyond a certain point, longer lookback periods
dilute the impact of the selfsh miner on the diÿculty, reducing profts.

We expected that increasing the MTP would improve an algorithm’s resistance to
selfsh mining, which indeed was the case. What we did not expect, however, was for
timestamp manipulation to be more e˙ective for higher MTPs. It is unclear to us why this
is the case, but the reduced proftability of selfsh mining in general from higher MTPs
outweighs this e˙ect.

Finally, we note that there exists a relationship between the lookback period and MTP.
For instance, we simulated selfsh mining against the Bitcoin Cash DAA with lookback of
12 blocks and MTP of 11 blocks, and the diÿculty had wild swings of 90% or more in a
single block due to sometimes having very little work occur between the median blocks
chosen, which may be close together. If using a variant of Bitcoin Cash’s D601 algorithm,
cryptocurrency designers should be careful not to set these values too close. This was less
of an issue for Zcash/Digishield, because of the damping factor.

DAA tradeo˙s: This work only investigated the relationship between diÿculty
adjustment algorithms and selfsh mining. However, the choice of DAA impacts many
other aspects of a cryptocurrency. In particular, there appears to be a direct tradeo˙
between resistance to selfsh mining and responsiveness to changes in hash rate. The
DAA is unable to ascertain, for instance, whether a sudden increase in the time between
blocks is due to a selfsh miner directing their hash rate to a private chain or if a food
destroyed a miner’s hardware. Similarly, the DAA doesn’t know if a sudden decrease in
the time between blocks is a result of new, honest miners coming online, or a temporary
coin-hopping attack.

Cryptocurrency communities should recognize that these tradeo˙s may be valued
di˙erently at di˙erent stages of a coin’s “life cycle”. For example, coins that share proof
of work mining algorithms and have the minority of the hash rate for that algorithm
(like Bitcoin Cash at the time of writing), or “ASIC resistant” coins that can be mined
with general purpose hardware (like Monero) may consider coin-hopping attacks as more
serious than selfsh mining, but then switch when they become majority hash rate, when
specialized hardware is made for the mining algorithm, or when they become substantially
bigger.

7 Conclusion and Future Work

This paper is the frst (that we are aware) comparative investigation into the eÿcacy of
selfsh mining against a variety of diÿculty adjustment algorithms. Furthermore, we have
demonstrated that some algorithms are far more susceptible to selfsh mining than others,
and that selfsh miners should include block timestamp manipulation as a new component
of their strategy space.

There remain many questions to investigate in future work. For instance, how does
a miner determine the optimal timestamp, and are there more advanced strategies than
naively setting the timestamp to be an o˙set from the miner’s system time? How does
timejacking infuence the proftability of selfsh mining? What about multiple small
selfsh miners simultaneously mining on a cryptocurrency where timestamp manipulation
dramatically lowers the proftability threshold?

There are also many other potential diÿculty adjustment algorithms that can be
analyzed, including simple combinations such as Dark Gravity Wave but including a delay
(as in Monero). Finally, future work should examine how e˙ective certain mitigations are,
such as those currently employed by Bitcoin Cash and Dash.

21 Michael Davidson and Tyler Diamond

References
[1] Vipul Aggarwal and Yong Tan. A structural analysis of bitcoin cash’s emergency

diÿculty adjustment algorithm. Available at SSRN 3383739, 2019.

[2] Lear Bahack. Theoretical bitcoin attacks with less than half of the computational
power (draft). arXiv preprint arXiv:1312.7013, 2013.

[3] Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, and Qingsheng Kong.
A deep dive into blockchain selfsh mining. arXiv preprint arXiv:1811.08263, 2018.

[4] George Bissias and Brian Neil Levine. Bobtail: A proof-of-work target that minimizes
blockchain mining variance (draft). arXiv preprint arXiv:1709.08750, 2017.

[5] Alex Boverman. Timejacking & bitcoin, 2011.

[6] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On
the instability of bitcoin without the block reward. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 154–167.
ACM, 2016.

[7] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Communications of the ACM, 61(7):95–102, 2018.

[8] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable diÿculty. In Annual International Cryptology Conference,
pages 291–323. Springer, 2017.

[9] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,
and Srdjan Capkun. On the security and performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pages 3–16. ACM, 2016.

[10] Johannes Göbel, Holger Paul Keeler, Anthony E Krzesinski, and Peter G Taylor.
Bitcoin blockchain dynamics: The selfsh-mine strategy in the presence of propagation
delay. Performance Evaluation, 104:23–41, 2016.

[11] Jake A Gober. The Dynamics of a" Selfsh Mining" Infested Bitcoin Network: How
the Presence of Adversaries Can Alter the Proftability Framework of Bitcoin Mining.
PhD thesis, 2018.

[12] Cyril Grunspan and Ricardo Pérez-Marco. On proftability of selfsh mining. arXiv
preprint arXiv:1805.08281, 2018.

[13] Cyril Grunspan and Ricardo Pérez-Marco. Selfsh mining in ethereum. arXiv preprint
arXiv:1904.13330, 2019.

[14] Ethan Heilman. One weird trick to stop selfsh miners: Fresh bitcoins, a solution for
the honest miner. In International Conference on Financial Cryptography and Data
Security, pages 161–162. Springer, 2014.

[15] Geir Hovland and Jan Kucera. Nonlinear feedback control and stability analysis of a
proof-of-work blockchain. 2017.

[16] John Kelsey. The new randomness beacon format standard: An exercise in limiting the
power of a trusted third party. In Cas Cremers and Anja Lehmann, editors, Security
Standardisation Research - 4th International Conference, SSR 2018, Darmstadt,
Germany, November 26-27, 2018, Proceedings, volume 11322 of Lecture Notes in
Computer Science, pages 164–184. Springer, 2018.

http:RicardoP�rez-Marco.On
http:securityandperformanceofproofofworkblockchains.In

22 On the Proftability of Selfsh Mining Against Diÿculty Adjustment Algorithms

[17] Daniel Kraft. Diÿculty control for blockchain-based consensus systems. Peer-to-Peer
Networking and Applications, 9(2):397–413, 2016.

[18] Jan Kucera and Geir Hovland. Tail removal block validation: Implementation and
analysis. 2018.

[19] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yongdae Kim.
Be selfsh and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 195–209. ACM, 2017.

[20] Tin Leelavimolsilp, Long Tran-Thanh, and Sebastian Stein. On the preliminary
investigation of selfsh mining strategy with multiple selfsh miners. arXiv preprint
arXiv:1802.02218, 2018.

[21] Francisco J Marmolejo-Cossío, Eric Brigham, Benjamin Sela, and Jonathan Katz.
Competing (semi)-selfsh miners in bitcoin. arXiv preprint arXiv:1906.04502, 2019.

[22] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. Short paper: Revisiting dif-
fculty control for blockchain systems. In Data Privacy Management, Cryptocurrencies
and Blockchain Technology, pages 429–436. Springer, 2017.

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[24] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining:
Generalizing selfsh mining and combining with an eclipse attack. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 305–320. IEEE,
2016.

[25] Till Neudecker and Hannes Hartenstein. Short paper: An empirical analysis of
blockchain forks in bitcoin.

[26] Jianyu Niu and Chen Feng. Selfsh mining in ethereum. arXiv preprint
arXiv:1901.04620, 2019.

[27] Shunya Noda, Kyohei Okumura, and Yoshinori Hashimoto. A lucas critique to the
diÿculty adjustment algorithm of the bitcoin system. Available at SSRN 3410460,
2019.

[28] Surae Noether and Sarang Noether. Diÿculty adjustment algorithms in cryptocurrency
protocols. 2014.

[29] RHorning. Mining cartel attack, 2010.

[30] Fabian Ritz and Alf Zugenmaier. The impact of uncle rewards on selfsh mining in
ethereum. In 2018 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pages 50–57. IEEE, 2018.

[31] Siamak Solat and Maria Potop-Butucaru. Zeroblock: Timestamp-free prevention of
block-withholding attack in bitcoin. arXiv preprint arXiv:1605.02435, 2016.

[32] Ren Zhang and Bart Preneel. Publish or perish: A backward-compatible defense
against selfsh mining in bitcoin. In Cryptographers’ Track at the RSA Conference,
pages 277–292. Springer, 2017.

	Introduction
	Background
	Selfish Mining
	Difficulty Adjustment Algorithms
	Time and Timestamps

	Related Work
	Selfish Mining
	Countermeasures
	Difficulty Adjustment Algorithms

	Methodology
	Results
	Bitcoin and Litecoin
	Bitcoin Cash (D601)
	Dash (Dark Gravity Wave)
	Monero
	Zcash (Digishield v3)

	Discussion
	Conclusion and Future Work

