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A framework is applied to quantify information gain from neutron or X-ray

reflectometry experiments [Treece, Kienzle, Hoogerheide, Majkrzak, Lösche &

Heinrich (2019). J. Appl. Cryst. 52, 47–59], in an in-depth investigation into the

design of scattering contrast in biological and soft-matter surface architectures.

To focus the experimental design on regions of interest, the marginalization of

the information gain with respect to a subset of model parameters describing the

structure is implemented. Surface architectures of increasing complexity from a

simple model system to a protein–lipid membrane complex are simulated. The

information gain from virtual surface scattering experiments is quantified as a

function of the scattering length density of molecular components of the

architecture and the surrounding aqueous bulk solvent. It is concluded that the

information gain is mostly determined by the local scattering contrast of a

feature of interest with its immediate molecular environment, and experimental

design should primarily focus on this region. The overall signal-to-noise ratio of

the measured reflectivity modulates the information gain globally and is a

second factor to be taken into consideration.

1. Introduction

In the past decade, specular neutron reflection has emerged as

a powerful technique to determine the structure of membrane-

associated proteins at fluid lipid bilayer membranes under

conditions that closely resemble the thermodynamic nature of

membrane–protein interactions in the cell (Heinrich &

Lösche, 2014). This novel application of a well established

technique (Russell, 1990) thus addresses an important gap in

structural biology where most traditional methods such as

X-ray crystallography, nuclear magnetic resonance (NMR)

spectroscopy and electron microscopy require sample envir-

onments that are very different from physiological conditions.

Neutron scattering is the method of choice in such experi-

ments because of the absence of beam damage and the ability

to change the scattering properties of specific structures within

the sample by isomorphic isotopic substitution (Heinrich,

2016). In addition, the function of a protein–membrane

complex can be monitored by complementary surface-

sensitive characterization techniques. For example, ion

transfer across a channel-reconstituted membrane can be

quantified via electrochemical impedance spectroscopy and

compared with that observed in other functional studies

(McGillivray et al., 2009). A functional protein–membrane

complex can further be exposed to tertiary reaction partners,
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such as biological ligands, and the ensuing protein reorgani-

zation can be assessed in sequential measurements (Datta et

al., 2011).

Although reflectometry only yields one-dimensional struc-

tural profiles at low resolution, integrative structural modeling

can provide atomistic three-dimensional models of a protein–

membrane complex (Akgun et al., 2013; Shenoy et al., 2012). In

such an approach, (partial) high-resolution structural infor-

mation is provided by X-ray crystallography or NMR, while

molecular dynamics (MD) simulation is used to construct a

structural model of the membrane-associated protein that is

consistent with all experimental techniques. Information from

neutron reflectometry (NR) can strongly confine the confor-

mational space available to such a structural model, for

example, when converted into a steering potential for the MD

simulation (Treece et al., 2020). Having such advanced

modeling strategies in mind, we recently developed a frame-

work based on information theory and Bayesian statistics to

optimize the design of reflectometry experiments with respect

to the information gain (Treece et al., 2019).

The aim of any reflectometry experiment is to improve on

prior knowledge about a structure, which can be expressed as

a probability density function (PDF) pð�Þ of the parameter

vector � of an underlying structural model. The analysis of a

measured neutron or X-ray reflection data set provides pð�jyÞ,
the posterior PDF of � given the data y. The measure of the

information gain �H within the model description is defined

as the difference in entropy between these two PDFs,

�H ¼ Hð�Þ �Hð�jyÞ, with the Shannon entropy Hð�Þ ¼
�
R

pð�Þ log pð�Þ d�. Information gain is computed for virtual

experiments in which we systematically vary experimental

design variables for the measurement of representative

interfacial structures (Treece et al., 2019).

The major experimental design strategy for increasing the

information content in biological NR is optimizing the scat-

tering contrast between different parts of the interfacial

surface architecture. In most cases, this is achieved by selective

deuteration of a subset of molecular components. In studies of

lipid membranes and membrane-associated proteins, the

neutron scattering length density (nSLD) is typically varied on

three components: (i) the lipid molecules constituting the

bilayer membrane, (ii) the protein and (iii) the aqueous bulk

solvent that partitions into all regions of the surface structure

that are not completely filled with organic material (Heinrich,

2016). Using information theory we investigate optimal

deuteration strategies in such situations. In virtual experi-

ments we analyze a simplified one-layer system with features

similar to a lipid bilayer that floats in close proximity to a solid

support structure (Section 3.1). In Section 3.2, we then discuss

more realistic lipid bilayer structures and finally proceed to

bilayers with associated protein (Section 3.3). In particular, we

investigate empirically whether contrast matching between

the bulk solvent and parts of the interfacial architecture that

are not of interest to the experimenter, such as the substrate, is

efficient. This question is of particular practical importance, as

(somewhat simplified) two different contrast strategies are in

use: (i) maximizing the overall contrast between all compo-

nents of the sample structure, and (ii) contrast matching parts

of the sample that are not of interest and, thus, highlighting

only the feature of interest.

2. Methods

2.1. Neutron reflectometry and information gain

A large body of experimental work established the general

structure of substrate-supported bilayers and their physical

properties (Budvytyte et al., 2013; Fragneto, 2012; Knoll et al.,

2008; Shenoy et al., 2010; Wacklin, 2010). Because it is gener-

ally not possible to directly invert the reflectivity from inter-

faces into a structural profile, such data are often analyzed in

terms of a parameterized real-space model ŷy ¼ XS;Eð�Þ. The

model X reflects both structure (S) and experimental setup

(E) and relates the expected (noise-free) reflectivity ŷy to a

particular parameter vector � 2 �. Because neutron scattering

does not damage the sample, it is common practice to perform

a series of related measurements under a sequence of

experimental conditions, for example, by measuring a lipid

membrane before and after incubation with a protein. The

obtained series of measurement results y (with statistical

noise) can then be evaluated in a global context by sharing

values of parameters conserved between the structural

representations of individual measurements while refining

other parameter values separately for each representation

(Heinrich & Lösche, 2014).

In general, such data analysis seeks to find the posterior

PDF pð�jyÞ, which quantifies the probability by which a

parameter vector � is realized given the data y and model XS;E.

A sample of the posterior PDF is obtained via differential

evolution Monte Carlo Markov chain (MCMC) model fitting

of the experimental data (Maranville et al., 2016). MCMC

requires a prior PDF pð�Þ that represents the knowledge about

the model parameters before the experiment. We assume that

the prior PDF is uniform over parameter intervals of width

��i, with pð�iÞ ¼ 1=��i within ��i and pð�iÞ ¼ 0 elsewhere,

and that parameters are uncorrelated. Thereby,

pð�Þ ¼
Q

pð�iÞ ¼
Q

1=��i.

The information gain �bHH from an experiment is defined as

the difference between the entropies of the prior and posterior

PDFs, taken as a weighted average over all realizations of the

experimental data y 2 Y according to the probability of each

experimental realization pðyÞ. This is equivalent to the mutual

information IðY;�Þ between Y and �,

IðY;�Þ ¼ �bHH ¼ Hð�Þ �Hð�jYÞ: ð1Þ

In practical terms, IðY;�Þ is approximated by averaging 10–20

computations of �H for independently simulated data y

(Treece et al., 2019):

�H ¼ Hð�Þ �Hð�jyÞ: ð2Þ

To optimize an experimental design, the information gain �H

is computed for simulated experiments from structures of

interest under systematic variation of instrument and sample

configurations. As discussed in detail by Treece et al. (2019),
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experiments are simulated for one representative sample

vector �, instead of drawing a random vector from the prior

PDF for each simulation. We therefore focus on optimizing

the experimental design for a relatively well known sample

structure and not for a sample about which little prior infor-

mation exists. Statistical noise in the simulated experimental

data is assumed to originate from counting statistics only. The

examples presented here were computed to represent the

current generation of neutron reflectometers at the NIST

Center for Neutron Research (NCNR), specifically, the Magik

reflectometer (Dura et al., 2006). However, the methodology is

straightforward to adapt to other neutron or X-ray instru-

ments, and even future instrumentation whose design para-

meters are known.

While Hð�Þ can be calculated analytically, the computation

of Hð�jyÞ requires numerical methods. An unnormalized

sample of the posterior PDF pð�jyÞ is obtained from an

MCMC simulation implemented in Refl1D (Kirby et al., 2012)

with the simulated data y and the model XS;Eð�Þ as inputs.

Hð�jyÞ is obtained from Monte Carlo sampling over the

unnormalized MCMC output (sample size: 5000), for which

the normalization factor is determined by integration over a

Gaussian mixture model (GMM) (Hastie et al., 2009). This

approach is equivalent to the KDN approximation (Silverman,

1986) used earlier (Treece et al., 2019), except that the Gaus-

sian kernel density estimate of the posterior PDF has been

replaced by a GMM estimate. Details on determining Hð�jyÞ
are provided in the supporting information.

2.2. Marginal entropy of the posterior PDF

In previous work, we computed �H associated with the

entire parameter vector � of a model (Treece et al., 2019) and

quantified its dependency on experimental design variables

such as maximum accessible momentum transfer, counting

time and substrate surface structure for simplified model

surface architectures. Here, this framework is applied to more

realistic architectures of surface-supported lipid membranes

and protein–membrane complexes. This implies that we now

must focus on selected parameters relevant to features of

interest while marginalizing over other parameters that are

required to build a valid model but are not of practical value to

the experimenter. Thereby, the vector � ¼ ð�; �Þ is partitioned

into components describing the parameters of interest � and

nuisance parameters �. As shown in the supporting informa-

tion, the marginal entropy H�ð�jyÞ with respect to the para-

meters of interest can be obtained via Monte Carlo sampling

of log pð�jyÞ over the sample of the posterior PDF pð�jyÞ
obtained by the MCMC optimizer:

H�ð�jyÞ ¼ �
R

pð�jyÞ½log pð�jyÞ� d�: ð3Þ

The marginal PDF pð�jyÞ is approximated by a GMM estimate

from a sample of size n ¼ 5000.

3. Results

3.1. A simplified test structure

We first demonstrate entropy marginalization on a test

structure (Treece et al., 2019) (Fig. 1) that serves as an idea-

lized prelude to the bilayer structures discussed later. A

porous layer (5 vol.% porosity) is suspended above an Si

wafer and surrounded by aqueous solvent. Distinct from our

earlier analysis, the nSLD of the porous layer is systematically

varied alongside the nSLD of the aqueous solvent. We varied

the solvent and porous layer nSLDs between that of H2O

(�n ’ �0.5 � 10�6 Å�2) and D2O (�n ’ 6.5 � 10�6 Å�2) in

steps of ��n = 0.5 � 10�6 Å�2 to identify favorable solvent

contrasts as a function of the nSLD of the porous layer. A

typical NR experiment protocol for the determination of

membrane structures is to perform a series of up to three

individual measurements with aqueous solvents of different

isotopic compositions, each with a counting time of�6 h and a

maximum momentum transfer of QZ = 0.25 Å�1. Accordingly,

we quantified the expected information gain in virtual

experiments that either attributed 18 h to a single measure-

ment of the structure in a particular solvent or distributed the

same time equally between two or three measurements with
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Figure 1
Structural model of a simple test system (a) and outcomes of virtual NR measurements of this structure with isotopically different aqueous solvents (b).
A 30 Å-thick porous layer (5% volume porosity) of tuneable nSLD is surrounded by aqueous solvent and suspended at a distance of 20 Å from an Si
surface. Pores in the layer are solvent filled. Calculated reflectivities with simulated noise for the NCNR’s Magik reflectometer in a configuration where
the nSLD of the porous layer matches that of the Si support are shown in panel (b) for three different solvent nSLDs. Also shown are fitted reflectivity
curves and their associated nSLD profiles (inset). Figure adapted from the work of Treece et al. (2019).



different solvents. The parameterization of the simulated

structure is reported in Table 1 together with limits on the

model parameters that define the prior PDF. Series of

measurements with different solvents were simultaneously

analyzed, sharing values of invariant parameters across

measurements.

The idealized sample shown in Fig. 1(a) captures the

essential features of a lipid bilayer on a solid support without

the complications of headgroup structures of a realistic

membrane. Here, we investigate how different nSLDs of the

surrounding medium and the number of measured reflectiv-

ities with distinct isotopic solvent compositions (solvent

contrasts) affect the information gain about the suspended

porous layer. The marginal information gain from all para-

meters that describe this layer – its thickness, material nSLD

and completeness – is shown in the upper row of Fig. 2. The

lower rows report 68% confidence limits on the parameters of

interest, which provide an intuitive insight into individual

contributions to the information gain (while neglecting para-

meter correlations).

The first column in Fig. 2 provides insights into the optimal

experimental design for measuring such a minimal system

using only one measurement (i.e. solvent contrast). The largest

information gain of up to 13 bits is obtained for D2O-based
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Figure 2
Marginal information gain (top row), and 68% confidence limits on the thickness (second row), volume fraction (third row) and nSLD (fourth row) of
the porous layer (Fig. 1). Virtual NR experiments comprise one to three individual measurements, with one bulk solvent (first column), two bulk solvents
(second column, one bulk solvent nSLD fixed at �n = 6.5 � 10�6 Å�2) and three bulk solvents (third column, a second bulk solvent nSLD fixed at �n =
�0.5 � 10�6 Å�2). Individual reflectivity curves for experiments with more than one measurement were analyzed simultaneously. The total simulated
measurement time is 18 h in all experiments.



solvent (�n ’ 6.5 � 10�6 Å�2), except when the layer nSLD

approaches that same value. Across the diagonal where the

solvent nSLD matches that of the layer material, the infor-

mation gain is reduced to a few bits. In addition, there is a

streak of low information content when the layer nSLD

matches that of the silicon substrate (�n ’ 2� 10�6 Å�2). The

lower panels in the first column of Fig. 2 show that the

uncertainties on individual structural parameters do not

always correlate with information gain: as expected, the

uncertainty on the layer thickness is particularly high in

regions of low information gain.1 However, the uncertainty on

the layer material nSLD is lower along the diagonal trough for

�H. This reflects the fact that, near the match points for the

layer nSLD with its surrounding, the ensuing lack of scattering

carries information. But overall this information gain is

dwarfed by losses for other structural parameters.

The general picture changes if one performs a set of two

virtual measurements with independent bulk solvents. We

assume that one of them was performed with D2O, in response

to the outcome of the single-measurement results. The central

column of Fig. 2 shows that almost any choice of solvent nSLD

for the second measurement increases the information gain

significantly, with the exception of D2O, which effectively

reproduces the single-measurement predictions. �H increases

from right to left, approaching 16 bits when the difference

between the two solvent nSLDs becomes largest. If the layer

material has an nSLD of �n ’ 3� 10�6 Å�2, �H is lower than

for other values due to a strong correlation between the

parameters for the porous layer thickness and nSLD, and

nuisance parameters such as the thickness of the interstitial

water layer and the global surface roughness (data not shown).

A reason for this emergent behavior is difficult to isolate, even

in this simple test example. The parameter standard deviations

in the lower panels reveal that the increase in �H from

performing a two-measurement experiment mainly results

from a higher accuracy in determining layer completeness.

This result follows the expectation that the solvent content of

the porous layer can be precisely determined by measuring

two distinct solvents, whereas it remains less precise if one

only uses one solvent.

Adding a third measurement with independent solvent

(with fixed choices of D2O and H2O for the first two) does not

further increase the information gain. The shallow horizontal

trough in the center of the top panel of the right column in

Fig. 2 is carried over from the two-solvent experiment and just

better recognized because the left-to-right slope is now

equalized. Overall, it is evident that measuring a third contrast

is rather ineffective. However, there is a slight advantage

in spending 2/3 of the measurement time on H2O and 1/3

on D2O.

Under no conditions did we observe that contrast matching

of the solid substrate with the bulk solvent was beneficial for

information gain. Contrast matching of the Si substrate

yielded slightly lower �H than the unmatched situations in an

experiment using a single solvent nSLD (see vertical �H

trough in top-left panel of Fig. 2), and virtual experiments

using more than one bulk solvent contrast proved rather

indifferent towards including a silicon-matched contrast. The

common practice of measuring silicon-matched solvent

contrasts is therefore not recommended for systems similar to

the idealized structure investigated here. As discussed above,

Fig. 2 also reveals that not all parameters are best resolved

under the same condition. It is therefore helpful to assess

confidence limits on parameters of interest simultaneously

with marginal entropies.

To further support the conclusion that two measurements

are sufficient to maximize information gain, an experiment of

three measurements with independently varied bulk solvent

nSLDs was performed. The nSLD of the porous layer was

fixed to that of the interior of a bilayer (�n ¼ �0.5 �

10�6 Å�2). The result shown in Fig. S4 confirms that two bulk

solvent contrasts are sufficient to maximize information gain,

while measuring a single bulk solvent is insufficient.

3.2. Solid-supported bilayers

Increasing the complexity of the interfacial structure, we

now consider a 1,2-dipalmitoyl-2-sn-glycero-3-phosphocholine

(DPPC) lipid membrane on a planar Si wafer (�n = 2.07 �

10�6 Å�2) with a thin silicon oxide surface layer (�n = 3.55 �

10�6 Å�2) as a model for a solid-supported bilayer of any lipid

composition (Fig. 3). The bilayer is separated from its support

by a 2.5 Å-thick aqueous layer and 95% complete, with

membrane-spanning defects lined with lipid headgroups and

filled with solvent. Lipid volumes and hydrocarbon thick-

nesses were taken from X-ray diffraction studies of stacked

lipid membranes (Kučerka et al., 2006). We employ a

composition-space model of the membrane (Shekhar et al.,

2011) that is based on component volume occupancy (CVO)

profiles of suitably parsed molecular components along z

research papers

804 Frank Heinrich et al. � Information gain from neutron reflectometry J. Appl. Cryst. (2020). 53, 800–810

Table 1
Simulation parameters for virtual NR experiments of the test system
shown in Fig. 1.

Where ranges are given in the first data column, parameters were
systematically varied in the optimization. The nSLD of bulk Si is fixed at
�n ¼ 2.07 � 10�6 Å�2. When the structure was characterized using more than
one solvent contrast, each additional measurement carried its own parameter
for the solvent nSLD and scattering background.

Model parameter
Parameterized sample
representation, �

Fit boundaries,
prior PDF limits

Thickness of interstitial water (Å) 20 �10
Thickness of porous layer (Å) 30 �10
SLD of porous layer (10�6 Å�2) [�0.5, 6.5] �1
Volume fraction of porous layer 0.95 �0.05
SLD of solvent, �n (10�6 Å�2) [�0.5, 6.5] �0.5
Interfacial roughness (Å) 3 �2
Log10 of background† �8 �1

† A constant background is routinely fitted as a free parameter to each experimental NR
curve, and the same procedure is adopted here. This accounts for insufficient background
subtraction during data reduction and is typically 10% or less of the total background.

1 Note that the diamond structures, in particular along steep ridges or troughs,
in the heat plots are artifacts of the two-dimensional interpolation near very
sharp features of the map. Their center values reflect accurate computation
results but regions surrounding the centers are shifted towards values of the
surrounding computed data points.



[Fig. 3(c)]. This parameterization gives rise to nSLD distri-

butions [inset in Fig. 3(b)] that define the simulated reflec-

tivities [main panel in Fig. 3(b)] (Heinrich & Lösche, 2014;

Shekhar et al., 2011). The major structural difference from the

test structure in Fig. 1 is that the hydrocarbon core of the lipid

bilayer is lined by a solvent-containing layer of headgroups

(�n = 1.86 � 10�6 Å�2) on either side. These headgroup layers

provide additional scattering contrast with the hydrocarbon

chains and the bulk solvent.

We sought to identify the number and combination of

solvent contrasts that maximize the information gain about

the bilayer structure from the experiment. The isotopic

composition of the bilayer core was continuously varied

between tail-protiated DPPC (chain nSLD, �n ’ �0.4 �

10�6 Å�2) and tail-deuterated DPPC-d62 (chain nSLD, �n ’

7.8 � 10�6 Å�2). Marginal entropy and confidence limits of

the membrane-relevant model parameters – thickness,

completeness and molar fraction of DPPC-d62 – were

computed for one, two and three measurements under

different solvent conditions with the same approach as for the

porous layer structure discussed above. Here, this translates to

the simultaneous variation of the DPPC-d62 fraction and the

nSLD of one solvent while keeping the optional second and

third solvent constant. All measurements with different

solvent contrasts were simultaneously analyzed and their

model parameters shared, except for the bulk solvent nSLD

and the scattering background (Table 2). The total simulated

counting time per experiment was kept constant at 18 h, either

attributed to a single measurement with a particular solvent or

distributed equally between two or three individual

measurements with different solvents.

The marginal information gain from virtual NR experi-

ments with up to three simulated solvent contrasts is shown in

Fig. 4, and the results exhibit analogy to those from the

previously analyzed test structure (see Fig. 2). The best

experimental choice for a single measurement (first column in

Fig. 4) is a solvent with high nSLD such as D2O in combination

with either highly deuterated or protiated lipid chains.

However, a combination of D2O with a 1:1 mix of protiated

and deuterated chains works poorly, and solvent mixtures with
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Figure 3
(a) Schematic structure of a DPPC membrane on an oxidized silicon
support. (b) Calculated reflectivities with simulated noise for this
structure for a virtual experiment on NCNR’s Magik reflectometer using
tail-protiated DPPC. The experiment consists of three measurements
with isotopically different aqueous solvents (see Table 2 for model
parameters). Shown also are fitted reflectivity curves and their associated
nSLD profiles (inset). (c) Component volume occupancies for the
substrate and molecular groups that constitute the lipid bilayer from the
fit to the data using a composition-space model.

Table 2
Simulation parameters for virtual NR measurements of the solid-
supported lipid bilayer shown in Fig. 3(a), in which the isotopic
composition of the bilayer and one bulk solvent nSLD were system-
atically varied.

Where ranges are given in the first data column, the parameter was
systematically varied within these boundaries during the optimization. The
nSLD of bulk Si is fixed at �n = 2.07 � 10�6 Å�2. If the bilayer was
characterized using more than one solvent, each additional measurement
carried its own parameter for the solvent nSLD and the scattering
background.

Model parameter

Parameterized
sample
representation, �

Fit boundaries,
prior PDF
limits

Thickness of Si oxide (Å) 18 [10, 30]
nSLD of Si oxide (10�6 Å�2) 3.55 [3.2, 3.8]
Thickness of sub-membrane water

layer (Å)
2.5 [1, 10]

Thickness of hydrocarbon chains per
bilayer leaflet (Å)

14.1 [10, 20]

Molar fraction of DPPC-d62 in the
membrane

[0.0, 1.0] [0.0, 1.0]

Volume fraction of lipid bilayer 0.95 [0.9, 1.0]
nSLD of bulk solvent (10�6 Å�2) [�0.5, 6.5] �0.5
Interfacial roughness, � (Å) 3 �2
Bilayer roughness, � (Å) 2.5 [2, 5]
Log10 of background �8 �1



�n ’ 4 � 10�6 Å�2 or even pure H2O provide more infor-

mation. This is due to a well developed trough in �H that

coincides with a match of the nSLDs of hydrated lipid head-

groups and chains. Because the average nSLD of the hydrated

lipid headgroup region is sensitive to solvent composition, the

matching points shift linearly between 20 mol% DPPC-d62 in

pure H2O and 50 mol% DPPC-d62 in pure D2O. A more

shallow trough in �H is oriented vertically along �n = 2.07 �

10�6 Å�2, which corresponds to matching of the Si substrate

by the solvent. Inspection of parameter standard deviations

shows that �H largely follows the ability of the experiment to

determine the leaflet thickness. Membrane volume fraction is

ill-resolved by a single measurement, except for a combination

of high nSLDs of solvent and lipid chains, which creates a

situation in which the headgroups assume a large scattering

contrast with their environment. Similarly, the fraction of

DPPC-d62 in the membrane is determined with reasonable

accuracy under those conditions.

The center column of Fig. 4 provides results for an experi-

ment of two measurements with independent solvent nSLDs.

As observed for the porous layer model, �H increases as the

difference in solvent nSLD between the two measurements
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Figure 4
Marginal information gain (top row), and 68% confidence limits on the thickness (second row), volume fraction (third row) and molar fraction of DPPC-
d62 (fourth row) of a solid-supported DPPC bilayer membrane (Fig. 3). Shown are optimization results for virtual NR experiments employing one bulk
solvent nSLD (first column), two bulk solvent contrasts (second column, one bulk solvent nSLD fixed at �n = 6.5 � 10�6 Å�2) and three bulk solvent
contrasts (third column, a second bulk solvent nSLD fixed at �n = �0.5 � 10�6 Å�2). Reflectivity curves for experiments with more than one solvent
contrast were analyzed simultaneously. The total simulated measurement time was 18 h for all three types of experiments. nSLD values of the
hydrocarbon chains of the DPPC bilayer scale linearly with the molar fraction of DPPC-d62 from �n = �0.4 � 10�6 Å�2 for 0 mol% DPPC-d62 and �n =
7.8 � 10�6 Å�2 for 100 mol% DPPC-d62. Thereby, the hydrocarbon nSLD matches that of D2O at approximately 75 mol% DPPC-d62.



grows. Matching the solvent nSLD and that of the Si substrate

(�n = 2.07 � 10�6 Å�2) affects �H negatively. Performing a

third measurement (right column in Fig. 4) increases �H by

�1/2 bit for a bulk solvent nSLD in the range of �n = (3� 1)�

10�6 Å�2. Similarly to the porous layer model, there is a

trough of low �H at 45 mol% DPPC-d62 for experiments with

two and three measurements, which corresponds to a chain

nSLD of �n ’ 3 � 10�6 Å�2. Additional regions of low �H

are visible in the standard deviation plots for the bilayer

volume fraction at 20 and 60 mol% DPPC-d62. As discussed

for the porous layer, it is difficult to identify the cause for these

increased uncertainties. Overall, Fig. 4 leads to the conclusion

that, for maximizing �H on the bilayer structure, two inde-

pendent measurements at high and low solvent nSLDs are

sufficient. A slight increase in information content can be

achieved by adding a third measurement with an intermediate

solvent nSLD. Matching of the substrate and solvent nSLDs is

not advantageous for information gain.

A representative experiment that successively uses three

bulk solvent contrasts was simulated under systematic varia-

tion of all three solvent nSLDs (Fig. S5) for a lipid bilayer with

protiated lipid (�n ’�0.5� 10�6 Å�2). In agreement with the

results in Fig. 4, measurements with two bulk solvent nSLDs

(�n = �0.5 � 10�6 Å�2 and 6.5 � 10�6 Å�2) are sufficient to

gain most of the available information (�16 bits), while

measuring a single bulk solvent contrast is insufficient. An

additional 1/2 bit in information is gained by adding a third

bulk solvent nSLD of �n = 3.0 � 10�6 Å�2.

3.3. Protein structure at membranes and the utility of protein
deuteration

There is a growing body of NR studies determining the

structure of protein–membrane complexes (Akgun et al., 2013;

Heinrich & Lösche, 2014; Hoogerheide et al., 2017; Rondelli et

al., 2018; Sani et al., 2020; Shenoy et al., 2012; Wacklin et al.,

2016; Yap et al., 2015). Due to large variations in protein size,

conformational flexibility and mode of membrane binding,

general rules concerning the expected information gain from

such measurements are difficult to devise. For a compact,

medium-sized protein (�40 Å diameter), we determine how

isotopic variation of the solvent, the bilayer and the protein

affects information gain for different penetration depths of the

protein. In Section 3.2 we concluded that the major part of

recoverable information on the structure of the naked bilayer

is obtained in a combination of measurements at high and low

solvent nSLD. Since a protein in its membrane-associated

state typically occupies not more than 20% of the available in-

plane area, the reflectivity from the protein–membrane

complex is dominated by the bilayer structure and only

perturbed by the protein. Consequently, we simulate NR

measurements that interrogate the structures of the naked and

the protein-associated bilayer successively in D2O and H2O

bulk solvents. In addition, the nSLDs of the lipid hydrocarbon

chains and the protein are systematically varied. The DPPC

bilayer supported by an Si substrate discussed in the previous

section (Fig. 3) was used as a representative membrane

structure. The protein was placed at three different penetra-

tion depths with respect to the membrane: peripheral, inserted

into the lipid headgroup region and deeply inserted into the

lipid hydrocarbon core, as shown in Fig. 5.

Virtual NR experiments of the as-prepared and protein-

decorated bilayer were simulated, comprising two measure-

ments per condition with bulk solvent nSLDs of �n = �0.5 �

10�6 and 6.5 � 10�6 Å�2. The nSLD of the hydrocarbon

membrane core was tuned by changing the fraction of DPPC-

d62 in the bilayer between 0 and 100 mol%. The nSLD of

protein in H2O solvent was varied between �n = 2.0 � 10�6

and 6.0 � 10�6 Å�2, i.e. the range between fully protiated and

fully deuterated protein. The exchange of labile hydrogens in

D2O-containing solvents was taken into account.

Fig. 6 shows that NR measurements are most informative

for membrane-peripheral proteins and that proper contrast

engineering becomes ever more important as the protein

protrudes deeper into the bilayer. Not only is the marginal

information gain �H largest for peripherally localized

protein, but the �H landscape is also rather flat, with a

difference between maximum and minimum information gain

of only 5 bits for any combination of protein and bilayer nSLD

(top-right panel of Fig. 6). In comparison, this difference

increases to 10 bits if the protein penetrates the membrane

substantially (top-left and center panels of Fig. 6). A deep

trough is observed diagonally along the locations where the

nSLDs between the membrane interior and the protein match,

for example at 30 mol% DPPC-d62 in the bilayer for an

experiment with fully protiated protein (�n = 2.0 � 10�6 Å�2).

The cause of this trough is rather easily identified upon

inspection of the standard deviations associated with the
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Figure 5
Model structures of a protein–membrane complex in which the protein
penetrates the bilayer at different depths. In three separate optimizations,
a generic protein CVO profile is parameterized by a Hermite spline
(control points: numbered black dots) and is placed at three different
membrane penetration depths: membrane-peripheral, penetrating the
substrate-distal lipid headgroups and penetrating deeply into the
hydrocarbon core of the bilayer. The bilayer structure adapts seamlessly
to the protein, such that overfilling of the space does not occur. The
submolecular components of the lipid bilayer (lipid headgroups, chain
polymethylene and chain-end methyl groups) are shown for the protein-
free membrane.



protein volume occupancies at each control point (second to

fourth rows in Fig. 6). To a first approximation, every control

point contributes independently to �H. If a control point is

located in the hydrocarbon region of the lipid bilayer, the

uncertainty on the volume occupancy is large when the protein

and hydrocarbon nSLDs match, which affects �H negatively.

If a control point is located in the highly hydrated headgroup

region, this correlation is much weaker, but matching protein,

hydrocarbon and headgroup nSLDs (�n = 1.9 � 10�6 Å�2) is

highly unfavorable. Volume occupancies of control points

outside the lipid bilayer are well resolved independent of

protein or hydrocarbon nSLD, generally showing only a weak

advantage of high protein and hydrocarbon nSLDs.

In summary, for a protein embedded in the lipid bilayer,

high nSLD contrast to its immediate surrounding (hydro-

carbon or headgroup) is beneficial. This can be achieved by

fully deuterating either the lipid chains or the protein, but not

both. At the same time, sufficient contrast with lipid chains

and headgroups should be established, so it is generally

advantageous to deuterate the protein, thereby increasing the

contrast with the lipid headgroups, rather than the lipid chains.

Only for extra-membranous protein, where a well defined

hydrated layer provides contrast between both the lipid chains

and the protein, should the highest nSLD of protein and

hydrocarbon chains available be chosen to maximize �H.

However, deviating from those rules sacrifices only a
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Figure 6
Marginal information gain (top row), and 68% confidence limits on the volume occupancies of the protein associated with control points 1–3 of the
protein Hermite spline (second to fourth rows). Shown are optimization results for virtual NR experiments using two bulk solvent nSLDs (�n = 6.5 �
10�6 and �0.5 � 10�6 Å�2). The total simulated measurement time is 18 h. nSLD values of the hydrocarbon chains of the DPPC bilayer scale linearly
with the molar fraction of DPPC-d62 from �n =�0.44� 10�6 Å�2 for 0 mol% DPPC-d62 to �n = 7.77 � 10�6 Å�2 for 100 mol% DPPC-d62; therefore the
nSLD of the hydrocarbon chains matches that of D2O (�n ’ 6.5 � 10�6 Å�2) at approximately 75 mol% DPPC-d62.



moderate amount of information as long as match points of

protein and bilayer material are avoided by at least ��n = 1�

10�6 Å�2.

4. Discussion and conclusion

A framework to quantify the information gain from surface-

sensitive scattering of neutrons or X-rays (Treece et al., 2019)

has been applied to assess the utility of contrast matching in

neutron reflectometry from biological model interfaces.

Neutron reflectometry is routinely harnessed to address

problems in structural biology that are difficult to resolve by

other techniques. While we focused our discussion on the

characterization of lipid bilayers and bilayer-associated

proteins, the results of this study are applicable to a large

number of related problems with impact in membrane biology,

the physics of self-organizing molecular systems, the design of

inert surfaces in biomedical engineering, or the optimization

of detergent systems in chemical engineering.

The characterization of interfacial molecular structures by

surface-sensitive neutron scattering has entirely been driven

by heuristic rules of thumb since its inception about three

decades ago (Johnson et al., 1991; Russell, 1990; Vaknin et al.,

1991). Our analysis confirms some of those while it rejects

others as misconceived. Specifically, matching a substrate

nSLD with the solvent (Johnson et al., 1991; Penfold et al.,

1997), probably derived from the practice of contrast matching

in small-angle neutron scattering, does not universally

contribute to information gain in NR experiments.

Condensing the results for the specific cases investigated in

this study leads to a rather simple proposition for a set of rules

for optimal experimental design with respect to the nSLD

contrast between molecular components. Similar rules will

apply to comparable soft-matter interfaces that concern, for

example, polymers or detergents, as from a technical stand-

point there is nothing peculiar to membrane-associated

proteins except a specific range of nSLD values that proteins

and membranes can attain depending on their isotopic

makeup.

(i) To resolve structural features in a surface architecture,

the local scattering contrast with neighboring structures is the

determining factor. According to the results described above

for current NR instrumentation, the difference in nSLD

between adjacent molecular species within the sample should

exceed ��n ’ 1 � 10�6 Å�2 in at least one of the sets of

measurements within an NR experiment, with better resolu-

tion achieved for larger differences. We have not investigated

how ��n depends on the thickness of the structural features

that create the nSLD contrast. All investigated features,

however, have sizes above the canonical resolution limit of the

measurement and are typically on the order of 15–30 Å.

(ii) For solvent-immersed surface architectures, NR

experiments comprising two measurements with different bulk

solvents are sufficient to gain most information. The nSLD

values of the two solvents should be maximally different,

which is typically achieved by using H2O- and D2O-based

solvents. The use of a third measurement with an intermediate

bulk solvent nSLD only incrementally increases information

gain, making it an effective strategy only for specific problems.

(iii) Matching the substrate nSLD in one of the NR

measurements that constitute the overall experimental design

is not beneficial, not even when it constitutes just an additional

third measurement.

Rules (ii) and (iii) can be regarded as derivatives from rule

(i), which reduces the main proposition of this work to a rule

of locality that states that the local nSLD environment mostly

determines the ability of a measurement to resolve a structural

feature. In addition, an overall high signal-to-noise ratio of the

measured reflectivity is favorable, and configurations with low

reflectivity such as those in which the difference between the

nSLDs of the substrate and the bulk solvent is small should be

avoided. Since the above set of rules has been deduced from a

systematic set of simulations, they lack the general applic-

ability of a purely theoretical approach and are ultimately tied

to the bounds of the simulated structures. Future work that

combines information theory and scattering theory might

achieve a more general insight into this problem.

5. Related literature

The following additional references are cited in the supporting

information: Chen et al. (2016), Kramer et al. (2010), Seabold

& Perktold (2010).
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