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Abstract 
Requirements for blends of drop-in petroleum/bio-derived fuels with specific 
thermophysical and thermochemical properties highlights the need for chemometric 
models that can predict these properties.  Multivariate calibration methods were 
evaluated using the measured thermograms (i.e., change in temperature with time) of 
11 diesel/biodiesel fuel blends (including four repeated runs for each fuel blend).  Two 
National Institute of Standards and Technology Standard Reference Material® (SRM®) 
pure fuels were blended by serial dilution to produce fuels having diesel/biodiesel  
volumetric fractions  between (0 to 100) %.  The fuels were evaluated for the prepared 
fuel-blend volume fraction and total specific energy release (heating value), using a 
laser-driven calorimetry technique, termed ‘laser-driven thermal reactor’.  The 
experimental apparatus consists of a copper sphere-shaped reactor (mounted at the 
center of a stainless-steel chamber) that is heated by a high-power continuous wave 
Nd:YAG laser.  Prior to heating by the laser, liquid sample is injected onto a copper pan 
substrate that rests near the center of the reactor and is in contact with a fine-wire 
thermocouple.  A second thermocouple is in contact with the sphere-reactor inner 
surface.  The thermograms are then used to evaluate for the thermochemical 
characteristic of interest. 
 
Partial least squares (PLS) and support vector machine (SVM) models were constructed 
and evaluated for SRM-fuel-blend quantification, and determination of prepared fuel-
blend volume fraction and heating value.  Quantification of the fuel-blend thermograms 
by the SVM method was found to better correlate with the experimental results than 
PLS.  The combination of laser-driven calorimetry and multivariate calibration methods 
has demonstrated the potential application of using thermograms for fuels 
quantification and analysis of fuel-blend properties. 
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1. Introduction 
 
The development and use of alternative bio-derived fuels for transportation and 
propulsion is of importance since these sources of energy are renewable, virtually 
unlimited, reduce the national dependency on foreign fossil supplies, and reduce 
hydrocarbon and carbon dioxide emissions into the atmosphere.  To ensure biofuel 
commercialization into the U.S. marketplace, and competitiveness with international 
competitors, biofuel standard materials (based on well-characterized reference biofuel 
compositions) must be available that are characterized not only for their physical and 
chemical properties, but also for their thermochemical behavior.  Knowledge of the 
thermochemical behavior defines how temperature effects fuel heat transfer and 
reactivity.  The fuel thermal character is especially important for blending of petroleum-
based with bio-derived fuels because petroleum-fuel industries must be assured that 
drop-in biofuel replacements will maintain current engine performance and reduce 
emission levels.  Thus, use of screening methodologies, based on both experimental and 
statistical evaluations, would assist industry in rationally reducing the number of biofuel 
candidates, so that resources could be directed toward testing in full-scale platforms.  
Experimental evaluations for fuel selection and combustion performance in engines 
have progressed such that merit functions are defined to better understand fuel and 
engine interactions [1].  Statistical evaluations have also been used to provide well-
controlled blend composition for meeting fuel-quality specifications prior to testing [2]. 
The requirement for specific fuel thermophysical and thermochemical properties 
emphasizes the need to build chemometric models for predicting these properties.  
 
The use of blending certified reference materials to make an in-lab standard of 
essentially arbitrary properties is a well-established practice [3].  A range of analytical 
techniques has been used along with chemometric methodologies to compare and 
quantify such fuel blends, and in particular for biodiesel fuels [4-13].  For example, Alves 
and Poppi [14] describes the use of near-infrared spectroscopy to develop multivariate 
calibration models for determining biodiesel content in diesel fuel blends while 
controlling physicochemical characteristics.  Support vector machine models were found 
to provide better results than partial least squares models in that they provided the 
required accuracy in reporting biodiesel content, required minimal data preprocessing, 
and were selective for biodiesel (being unaffected by other mixture components).   
Oliveira et al. [15] used near-infrared spectroscopy to monitor the quality of biodiesel 
and petrodiesel fuel blends.  Chemometric approaches were used to identify diesel fuel 
samples that were out of specification relative to the biodiesel content (i.e., due to 
biodiesel contamination with vegetable oil and diesel fuel contamination with naphtha).  
Other authors have studied petrodiesel fuels for quality-control purposes, based on 
chromatography [16, 17], infrared spectroscopy [18-24], Fourier transform infrared 
spectroscopy [25], 1H-nuclear-magnetic-resonance spectroscopy [26-28], Raman 
spectroscopy [29-32], and laser calorimetry [33, 34].  Although most of these 
chemometric investigations have focused on modeling blend quality, based on chemical 
composition and physicochemical characteristics, these models should also consider the 
effects of thermochemical characteristics on blend quality.  In this investigation, 
chemometric models were used to quantify the heating value for a range of 
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diesel/biodiesel blend compositions and determine if such models could be a useful tool 
to screen fuels for further testing. 
 
1.1 Laser-driven calorimetry 
 
In this investigation, we focus on applying chemometric approaches to determine the 
suitability of using a developing calorimetry technique, the laser-driven thermal reactor 
(LDTR) [35].  The experimental apparatus consists of a copper sphere-shaped reactor 
(mounted at the center of a stainless-steel chamber) that is heated by a high-power 
continuous wave Nd:YAG laser.  Prior to heating by the laser, liquid sample is injected 
onto a copper pan that rests near the center of the reactor and is in contact with a fine-
wire thermocouple.   The change in temperature with time (‘thermogram’) is measured 
by the thermocouple and evaluated for the thermochemical characteristic of interest.  
Derivative profiles are also defined from the thermograms to highlight the thermogram 
features. Due to preferential vaporization of the different fuel components, the 
thermogram should be unique for a given blend.  The advantage of this technique is that, 
unlike other commercial thermal analysis techniques (differential scanning calorimetry, 
thermogravimetric analysis, bomb calorimetry, etc.), the LDTR accounts for the total 
thermal response of a substance due to the heat exchanged with the surroundings by 
both thermal and chemical mechanisms (see [36]).  As a result, the system is designed 
to heat substances at heating rates appropriate for capturing the temporal thermal 
behavior (i.e., exothermic, endothermic response) during fuel chemical decomposition 
and reaction, and thereby allow calculation of the thermochemical characteristics (e.g., 
specific energy release rate and total specific energy release).  Other benefits are that 
the LDTR:  1) uses smaller sample sizes with higher heating rates than achievable with 
commercially available systems with sample heating over a period of minutes instead of 
hours, and 2) preserves the original sample physical characteristics prior to a 
measurement run.  Comparison of LDTR and thermogravimetric analysis measurements 
is available in Presser and Nazarian [36].  The LDTR has been applied to multicomponent 
and multiphase solid and liquid substances, such as with conventional and biodiesel 
fuels [36-38].   
 
1.2 Regression models: Partial least squares and support vector machines 
 
Partial least squares (PLS) is a multivariate calibration method for modeling the 
relationship between two data matrices X and Y. The matrix X has information 
contained in the dataset (independent variables), in this case, the LDTR thermogram 
parameters (i.e., time and sample temperature), and Y has the responses (dependent 
variables or ‘predictors’).  In this study, the predictors are the diesel/biodiesel fuel-blend 
heating value and prepared volume fraction.  This modeling is realized by extracting 
from the predictors a set of orthogonal factors called ‘latent variables’, which have the 
best predictive power [39].  A full description of the PLS regression is given by Wold et 
al. [40]. 
 
Support vector machines (SVMs) [41, 42] is a method that is based on statistical learning 
theory, trained through a supervised learning algorithm that can be applied to problems 
of classification or regression.  In general, SVM is recommended for situations in which 
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the dataset has non-linear behavior [43, 44].  There are many kernel functions that can 
be used to work with SVM.  These functions project the original dataset into a three-
dimensional feature space by adding an additional dimension and separating the linearly 
inseparable data.  A full description of the SVM method is given by Ivanciuc [45]. 
 
This study examined the performance of PLS and SVM, as applied to the LDTR 
thermograms, to quantify a range of diesel/biodiesel fuel blends and corresponding 
heating values.  This required measurement repeatability that enabled the chemometric 
approaches to provide successful correlation of the predicted values with the 
measurements.   
 

2. Fuel samples and experimental methods 
 
2.1 Fuel samples and preparation of the diesel/biodiesel fuel blends 
 
The National Institute of Standards and Technology (NIST) provides a variety of fuel-
related Standard Reference Material®s (SRM®s).  While typically certified for chemical 
composition rather than thermochemical properties, these SRMs are known sources of 
well-characterized, homogeneous, and stable materials.  Two SRMs were used in this 
investigation, namely, SRM 2770 ‘Sulfur in Diesel Fuel Oil’ (a commercial  
‘No. 2-D’ distillate fuel oil) [46] and SRM 2772 ‘B100 Biodiesel’ (a commercial 100 % 
biodiesel produced from soy) [47].  These referenced certificates of analysis provide the 
available information for the chemical analysis and physical properties of each fuel.  
Note that the fuel composition was assumed to be unchanged during these 
experiments; NIST issues new certificates of analysis when constituents are found to 
change significantly.  Nine binary mixtures were prepared from these two SRMs, varying 
in volume fraction (v/v) from 90 % diesel/10 % biodiesel to 10 % diesel/ 90 % biodiesel.  
A milliliter of liquid was prepared for each mixture sample using a syringe  
(0.5 mL maximum).  It is noted that due to preferential vaporization of the many diesel 
and biodiesel fuel components, the blend temperature-dependent, instantaneous 
volume fraction can vary during heating of the sample; these effects are captured 
features within the thermograms [37,38].  
 
2.2 Experimental arrangement 
 
The experimental arrangement is illustrated in Figs. 1 and 2.  A drop of liquid sample was 
placed (using a syringe) onto a copper pan (inner diameter: (4.95 ± 0.011) mm, height: 
(2.34 ± 0.01) mm, thickness: (0.125 ± 0.001) mm, mass: (50.2 ± 0.2) mg) located in the 
middle of a sphere-shaped copper reactor (diameter: (18.2 ± 0.1) mm, and thickness:   
≈ 0.03 mm, mass: (2.22 ± 0.07) g).  The reactor was centrally stationed within a stainless-
steel chamber with several glass-enclosed ports.  The reactor sphere was fabricated in-

 
1 Estimation of the measurement uncertainty for this study is determined from analysis of a series of 
replicated measurements (referred to as Type A evaluation of uncertainty), and from means other than 
statistical analysis (referred to as Type B evaluation of uncertainty) [48]. The Type A uncertainty is 
calculated as kcuc, where kc is the coverage factor and uc is the combined standard uncertainty. The value 
for uc is estimated as sn-1/2, where s is the sample standard deviation and n is the number of independent 
measurements.  For n = 2, 3, and 50, k = 4.30, 3.18, and 2.01, respectively, representing a level of 
confidence of 95 %. 
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house, by reworking two thin copper sheets into two hemispheres using a stainless-steel 
ball and hollowed-out copper form [36].  Excess copper from each newly formed 
hemisphere was cut away leaving a small tab with a tapped hole on each side.  The two 
hemispheres were attached together with supporting wires passing through each hole.  
Each wire then passed through ceramic tubes that insulated the wires and affixed the 
sphere to a copper frame surrounding the sphere, as shown in Fig. 2.  A customized 
Omega2 K-type, fine-wire thermocouple (0.25 mm bead diameter, unsheathed, 0.200 s 
± 0.002 s response time, see insert in Fig. 1) was bent into a cardioid shape to provide 
surface area for supporting the copper pan near the center of the reactor.  Three 
thermocouple wires were stretched across the pan bottom by attaching the ends of the 
wires to the pan wall.  Slipping the bent thermocouple wire between the three 
suspension wires and the bottom of the pan ensured that the outer surface of the pan 
bottom sat stably on, and remained in thermal contact with, the thermocouple bead.  A 
second thermocouple (same type) was bent and in contact with the reactor inner 
surface at a location near the center of the hemisphere and laser beam impingement 
site.   
 
The assembly procedure for the reactor sphere was first to slip the pan onto the 
cardioid-shaped thermocouple (set in the middle of the fabricated support frame), see 
Fig. 1.  The tab of one hemisphere was inserted through the post from one arm of the 
frame.  The post was bent with a right angle (horizontally) to support the hemisphere 
while maneuvering the other end of the hemisphere to the frame second side and 
slipping the other pin through the sphere tab.  After checking that the pan was centered 
within the hemisphere, the second hemisphere was slipped over the two outward facing 
pins.  The pins were then bent against the sphere edge with pliers to secure the sphere. 
 
The reactor assembly was heated from opposing sides by a 250 W, continuous-wave, 
near-infrared Nd:YAG laser beam (operating at a wavelength of 1.064 µm) with nearly 
uniform sample temperature near the center of the sphere [35].  The reactor sphere 
acts as a thermal lens to focus the radiative heat transfer to a small region at its center 
where the sample and pan are stationed.  The temperature at the center of the sphere  
was checked in the past to be uniform [35].  The sphere dimensions, wall thickness, and 
thermal conductivity were chosen to maximize the radiative (and minimize convective) 
heat transfer.   
 
Laser heating of the reactor sphere has several advantages over direct electrical-
resistance heating of the pan (see Ref. [36]).  First, use of an appropriate heating rate 
and sample mass ensures detection of fuel chemical reactions in the thermogram 
features.  Too small a sample mass can lead to issues regarding its equivalency to the 
bulk-material thermal characteristics.  Heating rates too slow or fast may lead to biased 
results - preferential vaporization of chemical constituents can influence results 
obtained with slower heating rates; capturing chemical reactions with ultrahigh heating 
rates can also be an issue.  Second, laser heating enables direct radiative heat transfer 

 
2 Certain commercial equipment or materials are identified in this publication to specify adequately the 
experimental procedure.  Such identification does not imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor does it imply that the materials or equipment are 
necessarily the best available for this purpose. 
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to the sample from the reactor, being the dominant mode of heat transfer at high 
temperature.  Radiation does not disturb the surrounding air as does convection.  With 
electrical heating, the main mode of heat transfer is conduction through the pan and 
then convection to the sample, leading to nonuniform heat transfer to the sample.  Note 
that the reaction sphere dimensions were designed to minimize the pan distance to the 
reactor walls in order to reduce convective heat transfer (corresponding to a small 
Nusselt number) to the surrounding gas.    The reactor was supported on a post to enable 
easy removal of the assembly from within the chamber, which was used to ensure 
control of the environment around the sample.  Measurements were carried out at 
laboratory ambient pressure.  The thermocouple temperature readings of the 
sample/pan and reactor surface were recorded with respect to time at a sampling rate 
of 100 Hz by the data acquisition system. The temperatures were reported every 0.25 s 
because of the limited thermocouple response time.   
 
Experiments were carried out without sample (providing a ‘baseline’ thermogram for 
both the sample and reactor thermocouples) and with sample ('sample’ thermogram 
and 'reactor’ thermogram).  For each fuel, four thermograms were obtained having a 
calculated standard uncertainty for all temperatures throughout the four thermograms 
of better than 2.5 K (Type A uncertainty; the Type B uncertainty was estimated by the 
manufacturer to be 1.1 K).  This required that the initial time and temperature for each 
run be approximately the same. 
 
2.3 Measurement protocol 
 
Preparation for an experimental run entailed preheating a new sphere and pan above  
773 K to form a black copper oxide layer on all exposed surfaces [37].  With a syringe, 
one 5 μL liquid droplet (mass of (4.0 ± 0.1) mg for SRM 2770 and (4.4 ± 0.1) mg for  
SRM 2772) was injected into the copper pan.  The chamber lid was then closed to isolate 
the liquid from the surrounding environment (with the chamber pressure remaining at 
that of the laboratory).  The syringe was set to provide an approximate 5 μL droplet, 
because it was determined beforehand to provide enough mass to express the sample 
exothermic behavior (i.e., formation of peaks above the baseline in the thermogram 
temperature-time derivative profile).  Injecting a droplet on the pan through the 
opening in the top of the sphere ensured that the pan position remained unchanged 
inside the reactor sphere.  This procedure reduced the uncertainty of realignment of the 
pan and laser beams for each run.  
  
An experimental run was initiated by starting the data acquisition program and pressing 
after about 5 s a remote switch to open the laser shutter.  The laser power output was 
set to provide 134 W and remained unchanged for all experiments.  The laser power was 
not connected directly to the data acquisition program, so the start time of each run 
(when the laser shutter was opened, causing the temperature to rise) did not always 
occur at the same time step.  With the laser shutter open, the sample was heated until 
the system reached near-steady-state temperature (i.e., complete consumption of the 
sample).  At this point, the laser shutter was closed, which allowed the temperature to 
return to the laboratory ambient and terminate the run.  While cooling (at about 573 K), 
the reactor sphere was momentarily reheated back to 773 K to re-establish the copper 
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oxide layer on the pan and sphere inner/outer surfaces.  An initial baseline run (i.e., 
without sample) was completed before carrying out measurements with fuel.  Four fuel 
runs were carried out to confirm measurement repeatability.  Afterwards, several 
additional baselines were obtained to monitor changes in the sphere condition.   
 
During a run, the two thermocouple temperatures were recorded by the data 
acquisition software.  The resulting thermograms from each experiment were used to 
evaluate the sample thermal exothermic behavior.  See Ref. [36] for a discussion 
regarding the possible formation and effect of a fuel vapor layer above the pan surface 
on the reported sample temperature.  Expressions for the specific energy release rate 
and total specific energy release (i.e., gross heating value; enthalpy of combustion) were 
derived from an equation for thermal energy conservation [35].  A computer-based 
spread sheet was developed to enable data processing and evaluation.  
 
2.4 Sphere/Pan lifetime   
 
The lifetime of a single reactor sphere (thickness of ≈ 0.02 mm) was about ten 
experimental runs before replacement (i.e., essentially one sphere to evaluate each fuel 
blend).  The sphere lifetime was limited by the repeated heating and re-oxidation of the 
sphere, which caused the surface to degrade in time.  The oxidized copper surface 
visually appears to become brittle (see Fig. 3A), ultimately resulting in penetration of the 
laser beam through the sphere surface - thus requiring replacement.  Note that the 
copper pan was also oxidized and subject to the same thermal degradation, but over a 
much longer period.  The sphere diameter also expanded (as well as increased in mass 
due to buildup of the oxide layer) with repeated heating (see Fig. 3B), which resulted in 
a decrease of the maximum achievable steady-state temperature after several runs.  The 
sphere was replaced when the maximum temperature was reduced by about 20 %, or 
when the sphere was observed to be significantly distorted and its diameter expanded, 
as shown in Fig. 3.  Sometimes the sphere was removed and reshaped with the stainless-
steel ball to extend its life.  This was done so long as the sphere diameter was not too 
large.  The installation procedure outlined above was repeated when replacing the 
sphere or pan.  Several experimental design changes (e.g., using thicker copper stock, 
making smaller diameter spheres requiring less laser power to achieve similar heating 
rates and temperatures as with the current arrangement) are currently underway to 
extend the sphere lifetime, however such changes will affect the heat transfer 
processes, and require detailed evaluation. 
 
2.5 Thermogram repeatability 
 
In addition to the reduced steady-state temperature with each successive run due to 
sphere degradation, care was also required to start each run at the same initial time and 
temperature to minimize the differences between thermograms.  For prior experiments, 
not considering these three factors, the repeatability had a computed standard 
uncertainty of 2.5 K, at best, for four replicate thermograms.  The standard uncertainty 
was computed by determining the arithmetic mean and variance of the thermogram 
temperatures at each time step.  The variance for all the time steps was pooled and used 
to obtain an overall standard uncertainty.  Experimentally, the above-mentioned 
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uncertainty would be considered relatively small, however, better thermogram 
repeatability was required for the chemometric computations.  This was achieved by 
starting each run at nearly the same initial (laboratory) temperature and using the data 
post-processing procedures discussed next to 1) optimize  alignment of each run start 
time and 2) match the thermogram steady-state temperatures.  The computed standard 
uncertainty was reduced to better than 2.0 K for four replicate thermograms  and 
enabled successful application of the chemometrics.   
 
2.6 Data post-processing  
 
As noted above, differences in run start times and the decrease in steady-state 
temperature with repeated heating of the sphere resulted in temperature differences 
between thermograms.  These temperature differences were associated with the initial 
and final steady-state portions of the thermograms.  They did not mask experimental 
uncertainties associated with measurement of the sample thermochemical response to 
laser heating (i.e., exothermic portion of the thermogram, which is affected by the initial 
sample mass, position of the pan on the thermocouple, alignment of the laser beams, 
variability in the input laser power, etc.).  Since these two issues could not be handled 
experimentally at this time, an alternative approach was developed to address them 
computationally.  Better matching of these nonreacting segments of the thermograms 
enabled the chemometric computations to be carried out successfully.   
 
To minimize the differences between sample start times and steady-state temperatures, 
as well as when compared with a baseline, a spread sheet was developed to translate 
the thermograms to best match their run start times and extrapolate to best match their 
steady-state temperatures.  This automated thermogram translation/extrapolation 
protocol ensured that the initial and final run temperatures matched while not affecting 
the portion of the thermogram displaying the sample thermochemistry.  The best 
matching among the four curves was determined by minimizing the pooled standard 
uncertainty of all the measurement points for the entire thermogram. 
 
To translate and match one curve with a second stationary curve (defined for the 
thermogram with the highest steady-state temperature at the end of the run), the 
objective was not just to match the initial start time but to minimize the uncertainty 
over the entire curve.  Since the matching was between repeated runs, ideally there 
should be no difference between the runs.  Thus, the translated-curve temperatures 
should be identically associated with the stationary-curve temperatures and run times.  
In fact, when shifted all temperatures for the translated curve do not overlap those of 
the stationary curve.  Thermograms can be aligned and compared after completion of a 
run, but only by the set time interval of the data acquisition system.   This may not result 
in the optimal matching of the curves, so it becomes necessary to translate the curves 
by fractional sampling intervals.  Shifting the translation curve in this manner optimizes 
the matching between curves, but the translated temperatures (being an array of 
points) will be associated with different run times than that of the stationary curve 
(being the data acquisition times).  One must therefore interpolate temperatures from 
the translated curve to align with the stationary-curve times, so that the temperatures 
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for both curves are associated with the same array of run times.  The translated-curve 
temperatures were thus modified according to:  
 

𝑇𝑚,𝑖(𝑡𝑠,𝑖) = 𝑇𝑚,𝑗 + [
𝑇𝑚,𝑗 − 𝑇𝑚,𝑗−1

𝑡𝑚,𝑗 − 𝑡𝑚,𝑗−1
] [𝑡𝑠,𝑖 − 𝑡𝑚,𝑗] 

 
for tm,j-1 < ts,i < tm,j.  Here, T is the temperature, t is the time, i and j are the indices for 
each sample array, and subscripts m and s refer to the translated and stationary 
thermograms, respectively. 
 
The procedure for extrapolating thermogram final steady-state temperatures follows a 
procedure described in an earlier article [36], which matched four sample runs with the 
baseline to enable quantitative evaluation of the sample thermochemical 
characteristics.  The procedure used in this investigation compared three thermograms 
to be extrapolated with the fourth stationary thermogram (i.e., having the highest 
steady-state temperature).  Since multiple inflection points may be present as a result 
of the sample thermal decomposition, the extrapolation was started at the inflection 
point where the temperature relaxed back to the baseline temperature.  The 
extrapolated thermograms were shifted (stretched) to the higher stationary-curve 
temperatures with the extrapolated-curve derivatives kept unchanged (i.e., peak values 
of the derivative profile, which correspond to the thermogram inflection points).  This 
procedure preserved the curvature of each thermogram and matched the steady-state 
temperature of all four thermograms.   
 
The procedure entails first updating the time of each extrapolated thermogram (with 
subscript m), while maintaining the same maximum slope of the extrapolated curve and 
using the unchanged stationary thermogram temperatures, according to: 
 

𝑡𝑚,𝑗 = 𝑡𝑠,𝑖 +
(𝑇𝑠 − 𝑇𝑚)𝑖

(
𝑑𝑇
𝑑𝑡

)
𝑚,𝑚𝑎𝑥

 

     
and defining the extrapolated-curve derivatives by: 
 

(
𝑑𝑇

𝑑𝑡
)
𝑚,𝑗

=
𝑇𝑠,𝑖 − 𝑇𝑠,𝑖−1
𝑡𝑚,𝑗 − 𝑡𝑚,𝑗−1

 

 
for ti > ti[(dT/dt)m,max].  After the updated values of time tm,j and the derivative (dT/dt)m,j 
are known, the new extrapolated temperatures, Tm,i (corresponding to the fixed 
stationary-curve times from the data acquisition system) are determined by:  
 

𝑇𝑚,𝑖 = 𝑇𝑠,𝑗−1 + (𝑡𝑠,𝑖 − 𝑡𝑚,𝑗−1) (
𝑑𝑇

𝑑𝑡
)
𝑚,𝑗

 

 
where  𝑡𝑚,𝑗 < 𝑡𝑠,𝑖 < 𝑡𝑚,𝑗+1. 

 

(1) 

 

(2) 

(3) 

(4) 
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The raw data for each fuel blend was manipulated in two stages:  
1) translation/extrapolation of the four thermograms for a specific fuel blend, and  
2) translation/extrapolation to the highest steady-state temperature among all fuel 
blends.  An example for SRM 2772 is provided in Fig. 4, which presents the raw 
experimental thermogram and derivatives (with respect to sample temperature) in  
Fig. 4A, the translated thermograms in Fig. 4B, and the extrapolated thermograms in  
Fig. 4C (i.e., three translated runs matched to the fourth stationary thermogram with 
the highest steady-state temperature).  The standard uncertainty reported for the four 
replicates decreased by about 59 % from the original measured thermograms to the final 
translated/extrapolated curves.   
 
Also presented in Fig. 4 is the corresponding variation in the temperature-time 
derivative with sample temperature.  The two peaks observed in the temperature-time 
derivatives of Figs. 4 are attributed to preferential vaporization and reaction of the fuel 
constituents:  the lower-temperature peak corresponding to vaporization of the lighter 
fractions, while the heavier fractions continue to vaporize and then react at higher 
temperature (second peak), see Refs. [37,38].  The constituents of the pure biodiesel 
fuel SRM 2772 are fatty acid methyl esters with boiling points somewhat higher than 
that of the hydrocarbon diesel fuel SRM 2770, which results in the lower-temperature 
peak trending to higher temperatures.  These derivative profiles in Fig. 4 remain 
unchanged except for the improved matching at the steady-state temperature, 
indicating that the fuels react similarly for each run and that the measurement is 
repeatable.  Figure 4 demonstrates the improved matching between thermograms 
(while not affecting the reactive portion of the profiles), which was necessary for the 
successful application of these experimental data to the chemometric models.    
 
2.7 Determination of the total specific energy release 
 
The details of the model used to estimate the thermochemical characteristics (i.e., 
specific energy release rate and total specific energy release) are described elsewhere 
(e.g., Refs. [36, 37]).  The calculations are based on an equation for the conservation of 
thermal energy, given by:   
 

𝑚(𝑡)𝑐𝑝(𝑇)
𝑑𝑇

𝑑𝑡
= 𝐼𝐴𝛽(𝑇, 𝜆) − 𝐹(𝑇, 𝑇𝑜) + ∆𝑚(𝑡)𝑞(𝑇) 

 
where the term on the left side is the internal energy of the sample (for mass m and 
specific heat capacity cp).  The first term on the right side is the energy input by the laser 
(of beam intensity I, cross-sectional area A, absorptivity β, and  wavelength λ), followed 
by the total energy release F (at a reference temperature To) due to heat transfer 
processes (conduction, convection, and radiation).  The last term is the energy gain/loss 
due to chemical decomposition, phase change, and reactions (for changing sample mass 
Δm and a specific energy release rate q).  Analysis of all terms in the above-mentioned 
energy balance equation enables estimation of q(T).  Integration (using the trapezoidal 
rule) of the positive exothermic values for q(T) leads to estimation of the total specific 
energy release, i.e., Q = ʃq(T)dT.  Estimation of Q was carried out by analyzing the heat 
transfer processes to the surrounding environment for the heated sample contained 

(5) 
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within the sphere volume (‘sphere’ analysis) [36].  The calculated heating values for the 
unblended SRMs were comparable to those in the literature [37].  Figure 5 presents the 
calculated values for Q with respect to prepared fuel-blend volume fraction (averaging 
all four sample replicates for each blend).  The error bars represent the expanded 
uncertainty (95 % confidence level). 
 

3. Chemometric results and discussion 
 
All calculations were performed using PLS toolbox version 3.5.1 (Eigenvector Research, 
Manson, WA) running in MATLAB R2014b. 
 
3.1 Quantification of fuel-blend characteristics by multivariate calibration methods  
 
Multivariate calibration methods were used to train algorithms to quantify the  
1) prepared fuel-blend volume fraction and 2) total specific energy release (heating 
value) of the diesel/biodiesel fuel blends, i.e., for one diesel fuel, one biodiesel fuel, and 
nine diesel/biodiesel blends (each fuel with four replicates), thus a total of  
44 thermograms. These methods were compared for accuracy using three types of error 
analyses, namely, the root mean square error of calibration (RMSEC), root mean square 
error of cross validation (RMSECV), and root mean square error of validation (RMSEP).   
The calibration methods chosen were the linear partial least squares (PLS) model and 
nonlinear support vector machine (SVM) model.  The PLS model attempts to fit data 
linearly by inferring a relationship between the fuel thermochemical characteristics and 
thermograms.  Performance is best if the relationship between the fuel characteristics 
and thermograms is known so that it can be used to interpolate and predict other cases.  
It can work well even with a limited training set [43].  The SVM model is a nonlinear 
modeling technique that has been applied to chemometrics problems since it can fit the 
data linearly or nonlinearly [49, 50].  While good performance by either the SVM model 
or PLS model would be an indicator of the utility of using multivariate calibration 
methods to quantify thermal calorimetry data, the SVM model will likely outperform 
PLS, unless the training data has a linear mathematical relationship [51]. 
 
3.2 Model evaluation 
 
Several preprocessing techniques were tested, including autoscaling, mean-centering, 
generalized-least-squares-weighting, and their combinations.  The three error analyses 
RMSEC, RMSECV, and RMSEP were used to compare each preprocessing technique.  The 
results indicated that the best estimation for both prepared fuel-blend volume fraction 
and heating value was the mean-centering technique.  
 
The number of thermograms used to build and validate each chemometric model was 
30 and 14 (total of 44 thermograms), respectively, resulting in the formation of the 
following matrices:  Xcalibrations (30 x 101) and Xvalidation (14 x 101), as well as vectors 
Ycalibration (30 x 1) and Yvalidation (14 x 1).  The Kenard-Stone algorithm [52] was used to 
populate these matrices.  Figure 6 presents the correlation of the predicted values with 
the measured values for the range of prepared fuel-blend volume fractions, using the 
PLS (Fig. 6A) and SVM (Figs. 6C) algorithms with mean-centering preprocessing.  The 
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corresponding residuals (i.e., percent difference between the estimated calibrated data 
points and the calibration line) are provided in Figs. 6B and 6D, respectively.  Similarly, 
Fig. 7 presents the predictions for the fuel-blend total specific energy release.  The 
figures indicate reasonable correlation between the model predictions and measured 
values for the nonlinear SVM model (Figs. 6C and 7C), while the linear PLS model  
(Figs. 6A and 7A) does not correlate as well.  The error is greater for the total specific 
energy release than for the fuel-blend volume fraction because of the uncertainty 
associated with calculating this quantity.  In addition, the corresponding residuals for 
the SVM model (Figs. 6D and 7D) are smaller than the PLS results (Figs. 6B and 7B), which 
also indicates better correlation. 
 
Table 1 presents a comparison of the different error-analysis results, as applied to both 
the PLS and SVM calibration models. The table lists results for the following error 
analyses:  RMSCE, RMSECV, RMSEP, as well as the Pearson’s correlation coefficient 
between the measured and predicted properties during the validation (RVal), and 
Pearson’s correlation coefficient between the real and predicted properties for the 
calibration (RCal).   For the PLS model, the number of latent variables (LVs) was chosen 
by leave-one-out cross validation [53-55], in which all calibration samples were validated 
one by one. The number of LVs chosen was based on the lowest obtained RMSECV value.  
A satisfactory prediction performance was based on obtaining values of the Pearson’s 
correlation coefficient close to 1.  As indicated in Table 1, the RMSEC and RMSEP values 
for the SVM model were lower than those for the PLS model.  The values of the Pearson’s 
correlation coefficient for the SVM model was higher than for the PLS model, and close 
to 1. 
 
A F-test [56] for a 95 % confidence level (i.e., for the fraction of the distribution p = 0.05) 
was also performed, considering the null hypothesis that there was no significant 
difference between the PLS and SVM models for the fuel-blend total specific energy 
release and fuel-blend volume fraction.  For the F-test [56], the following expression 
was used: 
 

𝐹 =
(𝑅𝑀𝑆𝐸𝑃𝑖)

2

(𝑅𝑀𝑆𝐸𝑃𝑗)
2 

 
where RMSEP is the root mean square error of prediction (that is, the model prediction 
of the validation set) and the subscripts i and j represent the models with the larger and 
smallest RMSEP values, respectively. The degrees of freedom in the F-test was 29 for 
both models.  The F value corresponding to a confidence level of 95 % was 1.86.  The  
F-test results were 1.6 and 3.30 for the total specific energy release and prepared 
volume fraction, respectively.  Thus, the PLS and SVM models are considered equivalent 
for the total specific energy release but nonequivalent for the prepared volume fraction; 
i.e., either the SVM or PLS model can be used to quantify the total specific energy 
release, while the SVM algorithm better represents the prepared volume fraction 
results.  
 
 
 

(6) 
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3.3 Challenges in modeling the experimental results 
 
The PLS and SVM models were also used to predict the boiling-point temperature for 
the diesel/biodiesel fuel mixtures.  It was thought that the lower-temperature peak in 
the thermogram derivative profiles (see Fig. 8) would be representative of the fuel 
boiling-point temperature because the peak temperatures for the pure fuels were 
similar to the values in the literature:  444 K - 633 K [46] for SRM 2770 diesel fuel and  
< 583 K [37] for SRM 2772 biodiesel fuel.  The dashed curve in Fig. 8 illustrates the 
estimated trend in boiling point for all the fuel mixtures.   
 
Both chemometric models were unable to predict the boiling-point temperature trend.  
Again, the SVM model prediction was better than the PLS model, but the error analysis 
results indicated relatively poor correlation (RMSEC = 3.33 K, RMSEP =26.36 K,  
Rcal = 0.99, and Rval = 0.59).  As seen in Fig. 8, the lower-temperature peak in the 
derivative profile for each fuel mixture is relatively broad since the boiling-point 
temperature is really a range of values, not a single value.   This fact is not simulated by 
either chemometric model, which are both static (single-point) algorithms.  
Consequently, it would be expected for the model output to have a substantial error 
when trying to reproduce a boiling-point range with only a single representative value.  
Efforts were also made to average the boiling-point range differently, but the result was 
the same.  Determining how to model the boiling point of complex mixtures such as 
fuels for use in chemometrics could be the subject of future research. 
 

4. Conclusions 
 
In this work, linear and nonlinear multivariate calibration methods were used to 
estimate physical and chemical properties of fuels using laser-driven calorimetry 
thermograms.  The successful application of multivariate calibration methods was based 
on providing highly repeatable calorimetry thermograms, which required careful 
understanding and remediation of issues affecting the calorimetry measurements.  The 
properties investigated included total specific energy release (heating value) and 
prepared volume fraction of eleven different diesel/biodiesel fuel blends.  
 

The results demonstrated that it is possible to predict the total specific energy release 
and prepared volume fraction of diesel/biodiesel fuel blends when employing either the 
PLS or SVM model for chemometric analysis of laser-driven calorimetry thermograms.  
The PLS and SVM models showed similar results for estimating the heating value. The 
SVM model was best suited for reproducing the prepared fuel-blend volume fraction.  
The next step is to extend this investigation to quantification of other thermophysical 
and thermochemical fuel-blend characteristics.   
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Nomenclature 

A cross-sectional area [m2] 
cp(T) specific heat capacity [J g-1 K-1] 
F(T,To) total energy loss due to heat transfer [W] 
I intensity [W m-2] 
k subgroup 
kc coverage factor 
m(t) mass [g] 
n, N sample size 
p fraction of the distribution 
q(T) specific energy release rate [kW g-1] 
Q total specific energy release [kJ g-1] 
R correlation coefficient 
R2 determination coefficient 
s standard deviation 
t time [s] 
T temperature [K] 
uc combined standard uncertainty 
v/v prepared volume fraction [%/%] 
W Levene’s test 
X matrix of independent variables 
Y matrix of dependent variables 
𝑍𝑖𝑗 mean of the subgroup 

�̅�𝑖. mean of the group 
�̅�𝑖.. overall mean of all groups 
 
Greek symbols 

β absorptivity 
Δm(t) change in mass [g] 
λ wavelength [m] 
 
Subscripts 

i, j index 
m translation 
s stationary 
o reference  
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Tables and Figures 

 
 
Table 1. Performance comparison results between the PLS and SVM calibration models. 

 

aroot mean square error of calibration. 
broot mean square error of cross-validation. 
croot mean square error of validation. 
dPearson’s correlation coefficient between real and predicted property (calibration).  
ePearson’s correlation coefficient between real and predicted property (validation). 
fnumber of latent variables. 
 
 
 
 
 
 
  

 Prepared fuel-blend volume 
fraction 

Total specific energy release 
(heating value) 

PLS SVM PLS SVM 

RMSECa 15.65 % 5.49 % 0.85 kJ g-1 0.47 kJ g-1 

RMSECVb 21.01 10.74 1.12 0.91 

RMSEPc 14.70 % 8.09 % 0.62 kJ g-1 0.49 kJ g-1 

Rcald 0.87 0.98 0.85 0.96 

Rvale 0.88 0.98 0.89 0.94 

LVsf 5 - 5 - 
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Figure 1.  Schematic and photograph of the reactor sphere.  Insert illustrates the shape of the 

sample thermocouple, which also supports the copper pan substrate. 

Figure 2.  Schematic of the experimental arrangement.  Insert is a photograph of the reactor 

sphere being heated by the laser beam. 

Thermocouples 
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Figure 3.  Photograph of a used and newly prepared copper hemisphere:  A) comparison of the  

used-sphere surface to that of the new sphere, and B) expansion of the used-sphere diameter 

compared to the original diameter. The steel ball shown in this image was used as a form to 

create the copper sphere. 

A 

B 
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Figure 4.  Translation and extrapolation of the data set for SRM 2772:  A) initial thermogram 

measurements, B) translated curves in time, and C) extrapolated curves to the highest steady-

state temperature. 
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Figure 5.  Variation of the total specific energy release (heating value) with prepared fuel-blend 

volume fraction (average of the four replicated thermograms) using the sphere analysis.  The 

volume fraction 0/100 % refers to SRM 2772 (biodiesel) and 100 %/0 refers to SRM 2770.  The 

error bars represent the expanded uncertainty (95 % confidence level).  The linear fit through 

the data is represented by:  y = a + bx where a = 39.49 ± 0.06 and b = 0.044 ± 0.001. 
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Figure 6.  Variation of the model prediction (A,C) and residual (B,D) with prepared fuel-blend 

volume fraction (v/v) of the diesel/biodiesel fuel blends, using the PLS and SVM models.  Closed 

symbols:  calibration samples, open symbols:  validation samples.  Dashed line: linear fit to 

calibration data, solid line: y = x calibration line. 
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Figure 7.  Variation of the model prediction (A,C) and residual (B,D) with measured total specific 

energy release (Q) of the diesel/biodiesel fuel blends, using the PLS and SVM models.   Symbols 

and lines are the same as in Fig. 6. 
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Figure 8.  Variation of the average temperature-time derivative (dT/dt) with sample 

temperature for all prepared fuel-blend volume fractions. 

 


