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Quantum random numbers distinguish themselves from others by their intrinsic unpredictabil-
ity arising from the principles of quantum mechanics. As such they are extremely useful in many
scientific and real-world applications with considerable efforts going into their realizations. Most
demonstrations focus on high asymptotic generation rates. For this goal, a large number of re-
peated trials are required to accumulate a significant store of certifiable randomness, resulting in
a high latency between the initial request and the delivery of the requested random bits. Here we
demonstrate low-latency real-time certifiable randomness generation from measurements on pho-
tonic time-bin states. For this, we develop methods to certify randomness taking into account
adversarial imperfections in the state preparation and measurement apparatus. Every 0.12 s we
generate a block of 8192 random bits which are certifiable against all quantum adversaries with an
error bounded by 2−64. Our quantum random number generator is thus well suited for realizing a
continuously-operating, high-security and high-speed quantum randomness beacon.

Quantum mechanics is well known to offer many op-
portunities for generating genuine randomness that is
unpredictable by any reference [1–3]. This unpredictabil-
ity can be proven based only on measurement observa-
tions and a few assumptions. Therefore, the randomness
generated according to quantum mechanics is certifiable.
The simplest example involves measuring a two-level
quantum system (a qubit) prepared in an equal superpo-
sition of its two levels. However, its proper working and
certifiability rely on the trust of both the quantum state
prepared and the measurement performed. This scheme
is thus device-dependent [2, 3]. On the other hand, there
are also device-independent schemes that do not require
any trust on the inner working of the employed quantum
devices [4, 5]. Unfortunately, it is difficult to realize such
a scheme for practical use with excellent performance as
it requires a loophole-free Bell test [6–11]. Consequently,
the randomness-generation rates achieved are extremely
low with a high latency from the beginning of the exper-
iment to the output of the certified random bits [12–15].
The natural question then is whether we can reduce the
trust required by the above simple scheme while avoid-
ing the difficulties inherent in the device-independent ap-
proach.

In this work we explore a simple practical scheme
for the realization of a low-latency real-time certifiable
quantum random number generator (QRNG). The sim-
ple scheme works ideally as follows: At each trial a hori-
zontally polarized single photon is emitted from a source,
and then measured randomly along either the X-basis
(diagonal/anti-diagonal polarization basis) to generate
a random bit or the Z-basis (horizontal/vertical polar-
ization basis) to verify the prepared state. This scheme
is motivated by that for entanglement-based quantum
key distribution (QKD) [16, 17], where one basis is used
to generate secret keys and other bases are used to es-
timate the prepared state. Random bits or secret keys

can be certified since measurement outcomes allow us to
bound the correlation between the prepared state and
the side information of an adversary known as Eve [18].

The above ideal scheme has been well studied in the
literature [19, 20]. However, in order to make the re-
sulting QRNG practical, we need to consider the imper-
fections in its implementations and show the robustness
of randomness generation against those imperfections.
First, single-photon sources are not easily accessible and
as for QKD [18], weak optical pulses can be are usually
employed. Even if a single-photon source is available, it
is still generally difficult to produce a particular quan-
tum state with high accuracy. Second, it is difficult in
an experiment to perform measurements precisely along
both the X- and Z-bases, as one basis tends to be more
precise than the other. Third, the basis choice at a trial
is usually made by a pseudo- or physical random number
generator. This means that the probabilities of select-
ing the X- and Z-bases, denoted as PX and PZ , can
only be bounded but not exactly known. Furthermore,
in the adversarial scenario Eve could manipulate these
imperfections. These adversarial imperfections must be
addressed together to reliably certify randomness which
currently has not been done.

Here we develop a method to guarantee the proper
working and security of our QRNG in the presence
of those above adversarial imperfections. For this,
we require a lower bound q1,lb on the single-photon
probability in a practical photon source (such as a
weak laser pulse in the absence of a phase reference),
an upper bound δ on the misalignment angle between
the X- and Z-bases, and both a lower and an upper
bounds on the imbalance between the probabilities PX
and PZ given by τ = (PX − PZ)/2. We emphasize
that except the above bounds which characterize the
adversarial imperfections, our method does not need
any other information about the state prepared or
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measurements performed. In this sense, our QRNG
works in a semi-device-independent way. The values
of the above imperfection bounds can be obtained
by calibrating the photon source and measurement
apparatuses in real time. We allow Eve to manipulate
the state prepared or measurements performed as long
as these manipulations satisfy the above imperfection
bounds. Further, we assume that before a trial Eve has
no knowledge of which specific basis to be selected at
the trial. This assumption is required for the security
analysis; otherwise, Eve can deterministically forecast
measurement outcomes, and it would be therefore
impossible to certify randomness [21]. Moreover,
Our method is of excellent finite-data efficiency, thus
enabling low-latency real-time randomness generation.
Specifically, we experimentally demonstrate that every
0.1 s a sufficient amount of entropy with respect to
the quantum (or classical) side information of Eve is
certified such that a block of 8192 (or 2× 8192) random
bits is generated with a certified error bounded by 2−64

and with an extraction time of 0.02 s (or 0.04 s).

Results
Outline. In what follows, we first introduce the
setup of the problem and the main idea of our method
for certifying randomness with the adversarial im-
perfections discussed above. Our method works in
the presence of both the classical and quantum side
information of Eve. We then illustrate the performance
of our method with simulations, showing the advantage
of Eve with an access to quantum side information.
Finally, we present our experimental realization of a sim-
ple low-latency real-time QRNG enabled by our method.

Setup of the problem. To generate random bits,
we consider an experiment with a sequence of n re-
peated trials. These trials are not necessarily indepen-
dent or identical. We denote the input (basis choice)
and the output (measurement outcome) at the k’th
trial by the random variables Ik and Ok, respectively.
The inputs and outputs of the experiment are then
In = (Ik)nk=1 and On = (Ok)nk=1. The amount of ran-
domness in the outputs relative to both the inputs and
Eve is quantified by the smooth conditional min-entropy
Hεs

min(On|In,Eve), where εs is the smoothness error [22].
We consider two alternative smooth conditional min-
entropies Hεs

min,c(On|In,Eve) and Hεs
min,q(On|In,Eve) in

the presence of the classical and quantum side in-
formation of Eve, respectively. The ability of Eve
to access quantum side information (which is stored
in a quantum system E) as compared with classical
side information (which is stored in a classical, ran-
dom variable E) allows attacks that can take advan-
tage of long-term quantum memories [23, 24] corre-
lated in a quantum manner with the quantum devices
used for the state preparation in the experiment. Our
goal is to bound the smooth conditional min-entropies

Hεs
min,c(On|In,Eve) and Hεs

min,q(On|In,Eve) from below.

For certifying the randomness in the outputs On

relative to the inputs In and Eve, we must assume that
the outputs On are kept private and not accessible to
Eve. We allow Eve to hold classical or quantum side
information about the state prepared at a trial. At the
same time, we allow Eve to manipulate the distribution
of the possible inputs and the specific forms of the
associated measurements at the trial, as long as these
manipulations satisfy the prespecified imperfection
bounds. We assume that by manipulations Eve can
access classical side information but not quantum side
information about the measurement performed. The
method to be presented allows classical correlations
between Eve’s side information about the state prepared
and Eve’s partial knowledge of the input and measure-
ment used at each trial. That is, the state prepared
can be classically correlated with the input selected or
the measurement performed. We emphasize that our
method cannot be applied in the case where at each trial
Eve’s side information about the state is correlated in
a quantum manner with Eve’s partial knowledge of the
input and measurement. Moreover, although we allow
Eve to manipulate the input distribution, we assume
that before a trial Eve has no perfect knowledge of which
specific input to be selected at the trial. This assump-
tion is required for security analysis; otherwise, Eve can
deterministically forecast the output of the trial, and it
would be therefore impossible to certify randomness [21].

Main idea of our method. For certifying ran-
domness with respect to classical and quantum side
information, we construct probability estimation fac-
tors (PEFs) [25, 26] and quantum estimation factors
(QEFs) [27, 28], respectively. Both a PEF and a QEF
are non-negative functions of the input I and output
O of a trial, denoted by Fc(I,O) and Fq(I,O). The
key observation is that the smooth conditional min-
entropies Hεs

min,c(On|In,Eve) and Hεs
min,q(On|In,Eve)

can be bounded from below, once we know the respective
products

∏n
k=1 Fc(ik, ok) and

∏n
k=1 Fq(ik, ok). Here, ik

and ok are the observed values of the input and output
at the k’th trial. This key observation can be formal-
ized by Thms. 1 and 2 in the Methods section. We em-
phasize that PEFs and QEFs can use the result of each
trial for both verifying and accumulating randomness.
Both PEFs and QEFs have been constructed for certify-
ing device-independent randomness [15, 25–28]. In this
work, we develop methods to construct PEFs and QEFs
for the scenario of our interest. In particular, the PEFs
and QEFs constructed are adapted to the adversarial
imperfections in both the state source and the measure-
ment apparatus. Both PEFs and QEFs have the advan-
tage that significantly less data is required in order to
certify a fixed amount of randomness. Details for con-
structing PEFs and QEFs are discussed in the Methods
section.

After certifying the amount of randomness, we
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run the randomness extractor developed in [29] with
extractor error εx = ε − εs in order to generate random
bits which are within distance of ε > εs from uniform.
The distance ε is termed the soundness error. For the
results presented in this work, we set the smoothness er-
ror and the extractor error to be εs = 0.8ε and εx = 0.2ε.
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FIG. 1: Asymptotic randomness-generation rates Rc and Rq

as functions of the depolarization noise d. For illustration
purpose, here we simulate the result at a trial according to
either the X- or Z-basis measurement on the depolarized
single-photon state (1− d/2)|0〉〈0|+ d/2|1〉〈1|, where |0〉 and
|1〉 are the two eigenstates (in the single-photon subspace)
of the Z-basis measurement and d quantifies the depolar-
ization noise. At each trial the X-basis measurement is se-
lected with probability PX = 0.9999, and so the imbalance
τ = (PX − PZ)/2 is exactly known. Our method can certify
randomness without assuming that the state and measure-
ments are fully characterized. Instead, our method requires
only an upper bound δ on the misalignment angle between
the two measurement bases and a lower bound q1,lb on the
probability of a single photon in a practical photon source.
For the ideal case, we set q1,lb = 1 and δ = 0, while for the
practical case, we set q1,lb = 0.95 and δ = 5◦.

Advantage of quantum adversaries over classi-
cal adversaries. We illustrate with simulations the
performance of our method in the asymptotic limit,
so that one can see the expected behaviour of our
QRNG scheme. When the trials are identical and n
approaches infinity, the amount of randomness certified
by our method increases linearly with n. The increasing
rate (per trial) is called the asymptotic randomness-
generation rate. The rates in the presence of classical
and quantum side information, Rc and Rq, certified
by our method are optimal (see [25, 27] for general
proofs). We can quantify Rc and Rq as functions of
the depolarization noise d (as defined in the caption
of Fig. 1). The results presented in Fig. 1 clearly
indicate that Eve’s access to quantum side information
as compared with classical side information results in
a reduction of the randomness-generation rate. Such a
reduction is an important yet unquantified advantage

to Eve.

FIG. 2: Schematic diagram of our experimental setup. First,
the time-bin state |1te〉⊗ |0tl〉, where there is a single photon
at te and no photon at tl, is prepared in the ideal case. Sec-
ond, after passing over an unbalanced Mach-Zehnder interfer-
ometer (MZI), the optical pulse is detected by two supercon-
ducting nanowire single-photon detectors (SSPDs). The MZI
is composed of two beam splitters, BS1 and BS2, and has two
output ports a and b. In the diagram the abbreviations have
the following meanings. EDFA: erbium-doped fiber amplifier,
BPF: band-pass filter, PC: polarization controller, IM: inten-
sity modulator, ATT: optical attenuator, PPG: pulse pattern
generator, TIA: time-interval analyzer. See the Methods sec-
tion for details.

Experimental realization of a simple low-latency
real-time QRNG. To realize a QRNG, we perform
measurements on photonic time-bin states, where the
quantum information is encoded into the superposition
of two different temporal positions (time bins) of an op-
tical pulse. The two time bins are usually called the
early and late time bins denoted by te and tl. Time-bin
encoding has been widely used especially in fiber-based
quantum communication systems [30]. The advantage of
time-bin encoding lies in that both the state source and
the measurement apparatus required are easily packaged
onto a chip, which is an important factor to consider for
practical QRNG use.

To produce randomness, at each trial we attempt to
prepare the time-bin qubit state |1te〉 ⊗ |0tl〉, where |jt〉
represents the j-photon state located at the time bin
t ∈ {te, tl}. After passing it through an unbalanced
Mach-Zehnder interferometer (MZI), we measure the
time-bin qubit, as depicted in Fig. 2. The difference in
photon transit time between the two unbalanced paths
of the MZI matches the separation between te and tl.
Therefore, a photon can come out from the MZI at the
early, middle and late time bins denoted by t′e, t

′
m and

t′l respectively. If the photon comes out at t′e or t′l, then
the Z-basis (time-bin basis) is passively selected. In this
case, the arrival time indicates the measurement out-
come. If the photon comes out at t′m, then the X-basis
(superposition basis) is passively selected. In this case,
the two output ports of the MZI indicate which measure-
ment outcomes are observed. Note that if the first beam
splitter in the MZI has the 50:50 splitting ratio, the two
measurement bases are uniformly randomly selected. In
this sense, the first beam splitter in the MZI acts ef-
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FIG. 3: Trade-off between the soundness error ε and the ex-
pected number of random bits certifiable from the measure-
ment outcomes observed every 0.1 s runtime.

fectively as a physical but uncertified random number
generator [31].

In practice, the source emits zero photon with a non-
zero probability at each trial, and threshold detectors
(which cannot resolve photon number) of finite efficiency
are employed. Moreover, a photon can be lost over the
transmission from the source to the detectors. Therefore,
not all trials have detector clicks. For security analysis,
we assume that the trials with detector clicks are a fair
sample of all trials. Accordingly, no-click events do not
affect the security analysis of randomness generation but
only the rate and latency achieved in practice.

Now for certifying randomness, we must take into ac-
count the adversarial imperfections in our setup. Nei-
ther of the two beam splitters, BS1 and BS2, in the MZI
has the ideal 50:50 splitting ratio. In addition, the two
detectors at the output ports a and b may have differ-
ent efficiencies ηa and ηb. These facts induce not only
an imbalance between the probabilities PX and PZ of
selecting the X- and Z-bases but also a misalignment
between the two bases. Based on a calibration of our
measurement apparatus, we found that the splitting ra-
tios of BS1 and BS2 are 53.8:46.2 and 46.9:53.1 respec-
tively, and that the ratio ηa:ηb is 1.024:1. Consequently,
the imbalance τ = (PX − PZ)/2 and misalignment δ
satisfy the conditions |τ | ≤ 0.041 and δ ≤ 3.565◦. More-
over, we estimated that the single-photon component of
the optical pulse contributes at least 99.3% of all click
events. More details behind the above characterizations
are available in the Supplementary Information. Accord-
ingly, in the security analysis we conservatively assume
that |τ | ≤ 0.06, δ ≤ 6◦ and q1,lb = 0.98 in our security
analysis, specifically, for constructing PEFs and QEFs
to guarantee certifiable randomness generation.

Based on a set of calibration data, we estimated the
expected number, kexp, of random bits certifiable every
0.1 s runtime at a soundness error ε varying from 10−5

to 10−30. The dependence of kexp on ε in the presence of
either quantum or classical side information is illustrated
in Fig. 3. As expected fewer number of random bits can
be certified with respect to quantum side information
than with respect to classical side information. However,
the number of certifiable bits in each situation is not
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FIG. 4: Histogram of the numbers of random bits certifi-
able with soundness error 2−64 from 4200 instances of our
QRNG: the left and right panels are for certifying random-
ness with respect to classical and quantum side information,
respectively. Each instance of our QRNG uses a data block
obtained in 0.1 s runtime.

significantly affected by the soundness error in the range
considered.

We finally consider a request for a block of 8192 (or
2 × 8192) random bits in the presence of quantum (or
classical) side information and with soundness error
bounded by 2−64 ≈ 5.42 × 10−20. The results in Fig. 3
strongly suggest that our QRNG can successfully fulfill
the request every 0.1 s runtime. Indeed, the success
probability is estimated to be at least 1 − 2−380 (or
1−2−478 ) in the presence of quantum (or classical) side
information (see the Supplementary Information for
details). We further demonstrate this repeated fulfill-
ment in experiment. For this, before the experiment we
fixed the PEF and QEF used, as well as several other
parameters and estimators used in our security analysis,
based on the above calibration data (see the Supple-
mentary Information). Then we ran the experiment for
420 s and processed the data block obtained every 0.1 s
runtime successively. For each data block, we certified a
lower bound on the number of random bits extractable
with soundness error 2−64 and with respect to either
quantum or classical side information. If the certified
lower bound exceeds the request threshold, the instance
of our QRNG succeeds. Conditional on success, we run
the randomness extractor developed in [29] to generate
the final random bits. The randomness extractor is
seed-efficient and requires an additional processing
time: for extracting 8192 (or 2 × 8192) random bits
it takes 0.02 s (or 0.04 s) respectively. Totally we
ran 4200 instances of our QRNG. The analysis results
summarized in Fig. 4 show the success of each instance.

Discussion
In conclusion, we demonstrate a simple low-latency
real-time certifiable quantum random number generator
(QRNG). The generator is based on the measurement of
a weak optical pulse with an unbalanced Mach-Zehnder
interferometer. By developing an efficient security-
analysis method, genuine randomness can be certified
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and then generated with a low latency from every short
block of experimental data even at an extremely high
security level and even considering imperfections in our
experimental setup. Further, the implementation of ran-
domness extraction allows real-time performance to be
achieved. Our QRNG is thus well suited for realizing
a continuously-operating, high-security and high-speed
quantum randomness beacon.

Our security analysis considers both quantum and
classical side information. Our security certificate is
resistant to the adversarial imperfections in both the
state source and the measurement apparatus, in contrast
to those certificates achieved in previous works [20, 32–
34] where either the adversarial imperfections in the
source or those in the measurement apparatus are
considered. Moreover, our method exhibits unsurpassed
finite-data efficiency. As certifying smooth conditional
min-entropies is also the central task for quantum key
distribution (QKD), we envision that our method can
be extended to improve the finite-data efficiency of
QKD. In the future work, we will address the details
required for this extension.

Methods
Outline. Here we provide details of our experimental
setup for realizing a simple low-latency real-time cer-
tifiable quantum random number generator. We also
introduce the general framework of probability estima-
tion (or quantum probability estimation) for certifiable
randomness generation in the presence of classical (or
quantum) side information. Further, we discuss the
details of implementing these general frameworks in
the presence of the adversarial imperfections considered
in both the state source and the measurement apparatus.

Experimental Implementation. Our experimental
setup is shown in Fig. 2. To generate time-bin states,
amplified spontaneous emission from an erbium-doped
fiber amplifier (EDFA), which has a broad spectrum
and thus can be regarded as inherently dephased, is
used as a light source. After reducing its bandwidth
by a band-pass filter (BPF1) of 1551.1 ± 1.2 nm, the
light from the EDFA is sent into an intensity modulator
(IM) to generate (in the ideal case) the time-bin qubit
state consisting of the single-photon pulse |1te〉 and
the vacuum pulse |0tl〉. A pulse pattern generator
(PPG) is used to modulate the IM at a repetition rate
of 500 MHz using a pulse of width approximately 100
ps. The same modulation signal is also sent to the
time-interval analyzer (TIA), to synchronize the IM
and TIA. A BPF2 of 1551.1 ± 0.44 nm is then used
to further surpress the noise outside of the bandwidth.
With the help of an optical attenuator (ATT), we
then adjust the average photon number per pulse to
a value of approximately 0.0035. Finally, we launch
the time-bin pulse into an unbalanced Mach-Zehnder
interferometer (MZI), which is fabricated using planar

lightwave circuit technologies [35]. The path difference
of the unbalanced MZI is 500 ps, the same as the time
separation between the early and late time bins. The
insertion loss of the MZI is approximately 2.0 dB. The
photons from the output ports of the MZI are detected
by two superconducting nanowire single-photon detec-
tors (SSPDs), where the detection events are recorded
by the TIA. The system detection efficiency of each
SSPD is about 59%, and the dark count rate of each
SSPD is less than 40 s−1. A few polarization controllers
(PCs) are inserted before the IM and SSPDs in order
to adjust the polarization of photons. We measure that
roughly 470000 trials with detector clicks are generated
per second.

Certifiable randomness generation in the
presence of classical side information Certi-
fiable randomness generation against classical
adversary. To certify randomness with respect to
the classical side information of Eve, we apply the
framework of probability estimation as developed in
Refs. [25, 26]. For this, we need to characterize each
trial of the experiment by a classical model. In the
scenario of our interest, the model is adapted to the
adversarial imperfections considered. Given the model,
we in order to construct probability estimation factors
(PEFs) which can certify randomness with respect to
classical side information. Below we first introduce
the concepts of classical models and PEFs, and then
present the main result of probability estimation for
randomness generation.

Let us focus on a generic trial in the experiment with
an input I and an output O. We omit the trial index for
generic trials. As is conventional, we denote a random
variable and its possible value by an upper-case letter in
regular math font and the corresponding lower-case let-
ter. The classical side information E of Eve can be cor-
related with the trial input I and trial output O. This
correlation is described by a joint probability distribu-
tion P(I,O,E). However, in practice we cannot access
the classical side information E held by Eve. There-
fore, we can characterize only the distribution of I and
O conditional on each possible value e of E, denoted
by P(I,O|E = e). The set of conditional distributions
P(I,O|E = e), for all possible e, achievable at a trial
is defined to be the classical model C for the trial. For
simplicity we make the condition on Eve’s classical side
information implicit in the rest of the paper, and so the
classical model C specifies the set of probability distribu-
tions P(I,O) achievable at a trial. To certify randomness
in the output O conditional on the input I as well as the
classical side information E, we consider a class of non-
negative functions Fc : (i, o) 7→ Fc(i, o), called PEFs for
the classical trial model C. A PEF with a positive power
βc is a non-negative function Fc : (i, o) 7→ Fc(i, o) which
satisfies the PEF inequality∑

i,o

P(I = i, O = o)Fc(i, o)P(O = o|I = i)βc ≤ 1 (1)
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at each probability distribution P(I,O) in the classical
trial model C. We have two remarks on the constructions
of the classical trial model and the corresponding PEFs
as follows: First, when Eve’s classical side information
about the state is classically correlated with Eve’s par-
tial knowledge of the input and measurement at a trial,
the classical trial model will become the convex closure
of the model C as introduced above. Second, accord-
ing to Lemma 14 of Ref. [26], a PEF with power βc for
the model C is also a PEF with the same power for the
convex closure of C. In view of the above two remarks,
probability estimation automatically handles the classi-
cal correlation between Eve’s classical side information
about the state and Eve’s partial knowledge of the input
and measurement at a trial. We remark that to satisfy
the above inequality at all distributions in C, it suffices
to satisfy this inequality at the extremal distributions
of the convex closure of C according to Lemma 14 of
Ref. [26].

The number of near-uniform random bits extractable
from the outputs On given the inputs In as well
as the classical side information E of Eve is quanti-
fied by the classical smooth conditional min-entropy
Hεs

min,c(On|In,Eve) [22]. Here, the smoothness error εs
measures the total-variation distance between the actual
distribution and an ideal distribution of In, On and E
(see Definition 9 of Ref. [26]). Suppose that each trial of
an experiment is characterized by the classical model C.
Denote the PEF with power βc at the k’th trial by Fc,k,
which is a function of Ik and Ok, and let the variable
Tc,n be the product of PEFs up to the n’th trial, that is,
Tc,n =

∏n
k=1 Fc,k. In practice, the input Ik at each trial

k is a free choice in the sense that Ik is independent of
other random variables involved in the experiment and
the classical side information E of Eve. the input at a
trial is independent of the outputs of the previous trials
conditionally on the classical side information E and the
inputs of the previous trials. Under this conditional-
independence condition, This free-choice condition is
sufficient for certifying probability estimation can certify
randomness with respect to classical side information ac-
cording to by the following theorem:

Theorem 1. (Theorem 1 of Ref. [26]) Let 1 ≥ κ, εs > 0
and 1 ≥ p ≥ 1/|Rng(On)|, where |Rng(On)| is the num-
ber of possible outputs after n trials. Define Φ to be
the event that Tc,n ≥ 1/(pβcεs). For each joint probabil-
ity distribution P(In,On, E), either the probability of the
event Φ is less than κ or the classical smooth conditional
min-entropy, when the event Φ happens, satisfies

Hεs
min,c(On|In,Eve,Φ) ≥ − log2(p)+

1 + βc
βc

log2(κ). (2)

The event Φ can be interpreted as the event that the
experiment succeeds. When the experiment succeeds, we
compose the classical smooth conditional min-entropy
bound in Eq. (2) with a classical-proof strong extractor
of error εx (in total-variation distance), in order to
obtain random bits which are within soundness error (in

total-variation distance) ε = εs + εx from uniform in the
presence of classical side information. See Sect. IV C of
Ref. [25] for the details of the end-to-end randomness
generation. Note that an extractor is strong if the joint
of its output and the seed is nearly uniform, while an
extractor is classical-proof if it works in the presence
of classical side information. In our experiment, we
used Trevisan’s extractor [36] as implemented by
Mauerer, Portmann and Scholz [29], which we refer to
as the TMPS extractor. The TMPS extractor is an
efficient classical-proof strong extractor that requires
few seed bits [29, 36]. The way of running the TMPS
extractor for our case is the same as for the case of
device-independent randomness generation with respect
to classical side information studied in Refs. [13, 25].

Certifiable randomness generation in the
presence of quantum side information Certi-
fiable randomness generation against quantum
adversary. To certify randomness with respect to the
quantum side information of Eve, we apply the frame-
work of quantum probability estimation as developed
in Refs. [27, 28]. For this, we need to characterize
each trial of the experiment by a quantum model. In
the scenario of our interest, the model is adapted to
the adversarial imperfections considered. Given the
model, we in order to construct quantum estimation
factors (QEFs) which can certify randomness with
respect to quantum side information. Below we first
introduce the concepts of quantum models and QEFs,
and then present the main result of quantum probability
estimation for randomness generation.

Consider a generic experimental trial which has a clas-
sical input I and a classical output O. Suppose that Eve
holds a quantum system E, which carries the quantum
side information about the experiment. So, the quan-
tum system E is correlated with the trial input I and
trial output O. The correlation between E and (I,O)
can be described by a classical-quantum state

ρIOE =
∑
i,o

|i, o〉〈i, o| ⊗ ρE(i, o), (3)

where ρE(i, o) is the sub-normalized state of E condi-
tional on I = i and O = o. The trace Tr

(
ρE(i, o)

)
is the

probability of observing that I = i and O = o at a trial.
Since the system E is inaccessible by us, we consider the
set of all the possible classical-quantum states that can
occur at the end of the trial. This set is defined to be the
quantum model Q for the trial. We characterize the un-
predictability of an output c given both an input i and
the quantum side information in E by the sandwiched
Rényi power Rαq

(
ρE(i, o)

∣∣ρE(i)
)

expressed as

Tr
((
ρE(i)−βq/2αqρE(i, o)ρE(i)−βq/2αq

)αq
)
, (4)

where βq > 0 is a free parameter, αq = 1 + βq, and
ρE(i) =

∑
o ρE(i, o). To certify randomness in the out-

put O conditional on the input I as well as the quantum
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side information in E, we consider a class of non-negative
functions Fq : (i, o) 7→ Fq(i, o), called QEFs for the quan-
tum trial model Q. A QEF with a positive power βq is
a non-negative function Fq : (i, o) 7→ Fq(i, o) which sat-
isfies the QEF inequality∑

i,o

Fq(i, o)Rαq

(
ρE(i, o)

∣∣ρE(i)
)
≤ 1 (5)

at all states ρIOE in the quantum trial modelQ. We have
two remarks on the constructions of the quantum trial
model and the corresponding QEFs as follows: First,
when Eve’s quantum side information about the state
is classically correlated with Eve’s partial knowledge of
the input and measurement at a trial, the quantum trial
model will become the convex closure of the model Q as
introduced above. Second, according to Property 2 of
Ref. [28], a QEF with power βq for the model Q is also
a QEF with the same power for the convex closure of Q.
In view of the above two remarks, quantum probability
estimation automatically handles the classical correla-
tion between Eve’s quantum side information about the
state and Eve’s partial knowledge of the input and mea-
surement at a trial. We remark that to satisfy the above
inequality at all states in Q, it suffices to satisfy this
inequality at the extremal states of the convex closure of
Q according to Property 2 of Ref. [28].

The number of near-uniform random bits extractable
from the outputs On given the inputs In as well as the
quantum side information carried by the system E of
Eve is quantified by the quantum smooth conditional
min-entropy Hεs

min,q(On|In,Eve) [22]. Here, the smooth-
ness error εs measures the purified distance between the
actual state and an ideal state of In, On and E (see
Sect. IV of Ref. [28]). Suppose that each trial of an
experiment is characterized by the quantum model Q.
Denote the QEF with power βq at the k’th trial by Fq,k,
which is a function of Ik and Ok, and let the variable
Tq,n be the product of QEFs up to the n’th trial, that
is, Tq,n =

∏n
k=1 Fq,k. In practice, the input Ik at each

trial k is a free choice in the sense that Ik is independent
of other random variables involved in the experiment
and the quantum side information in E. the input at a
trial is independent of the outputs of the previous tri-
als given the quantum side information in E and the
inputs of the previous trials. Under this conditional-
independence condition, This free-choice condition is
sufficient for certifying quantum probability estimation
can certify randomness with respect to quantum side in-
formation by according to the following theorem:

Theorem 2. (Theorem 3 of Ref. [28]) Let 1 ≥ κ, εs, p >
0. Define Φ to be the event that Tq,n ≥ 1/

(
pβq(ε2s/2)

)
.

For each classical-quantum state ρInOnE, either the prob-
ability of the event Φ is less than κ or the quantum
smooth conditional min-entropy, when the event Φ hap-
pens, satisfies

Hεs
min,q(On|In,Eve,Φ) ≥ − log2(p)+

1 + βq
βq

log2(κ). (6)

The event Φ can be interpreted as the event that
the experiment succeeds. When the experiment suc-
ceeds, we compose the quantum smooth conditional
min-entropy bound in Eq. (6) with a quantum-proof
strong extractor of error εx (in trace distance), in order
to obtain random bits which are within soundness error
(in trace distance) ε = εs + εx from uniform in the
presence of quantum side information. See Sect. V of
Ref. [28] for the details of the end-to-end randomness
generation. Note that an extractor is quantum-proof if
it works in the presence of quantum side information.
As the TMPS extractor [29, 36] is a quantum-proof
strong extractor [37], we use this extractor for ran-
domness extraction. The way of running the TMPS
extractor for our case is the same as for the case of
device-independent randomness generation with respect
to quantum side information studied in Refs. [15, 27, 28].

Constructions of PEFs and QEFs with adversar-
ial imperfections. Both probability estimation and
quantum probability estimation are general frameworks
for certifying randomness; however, their implementa-
tions are case-dependent as both the classical and quan-
tum models for a trial depend on the case of inter-
est. For the case of device-independent randomness gen-
eration, both frameworks have been implemented, see
Refs. [15, 25–28]. In this work we would like to apply
probability estimation and quantum probability estima-
tion for randomness generation with partially character-
ized quantum devices. For this, we need to characterize
the classical model C and the quantum model Q for an
experimental trial in the scenario of our interest, and
then construct the corresponding PEFs and QEFs. Be-
low we provide an overview of our constructions. Details
are presented in the Supplementary Information.

To construct the models C and Q for the scenario of
our interest, we observe that although the measurements
along the X- and Z-bases are difficult to be precisely
characterized, both of them are block-diagonal with re-
spect to various photon-number subspaces. Therefore,
the model C (or Q) can be expressed as a convex combi-
nation (or a direct sum) of sub-models Cj (or Qj), where
the sub-models Cj and Qj are the classical and quantum
models conditional on the number of photons j emitted
from the source. So, we need only to construct the sub-
models Cj and Qj individually, which is discussed in the
next paragraph two paragraphs.

To construct the sub-models C1 and Q1 when a single
photon is emitted (i.e., j = 1), we take into account of
the bounds on the adversarial misalignment and on the
adversarial imbalance between the X- and Z-bases, and
consider all the possible single-photon states which may
be correlated with the side information of Eve. When
Eve can manipulate the misalignment or imbalance de-
pending on the auxiliary degrees of freedom of the sin-
gle photon such as spatial mode, frequency or polariza-
tion, we need to represent the single-photon state and
the associated measurement operators in a Hilbert space
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describing not only the time-bin degree of freedom for
information encoding but also the auxiliary degrees of
freedom manipulable by Eve. In this case, we take ad-
vantage of the observation that in the practical setup
for time-bin measurements, the coherent superposition
of states for an auxiliary degree of freedom manipulable
by Eve does not play a role throughout the measurement
process as that would otherwise require an associated,
controlled interference effect in the measurement device
itself. (Such observation has been exploited for verifying
entanglement [38] and proving the security of quantum
key distribution [39] in the presence of side channels that
can induce detection-efficiency mismatch.) Therefore,
each measurement operator on a single photon is block-
diagonal with respect to various states for the auxiliary
degrees of freedom, where each block is described by a
qubit measurement. As a consequence, for constructing
the sub-models C1 and Q1 the single-photon state as well
as the associated measurement operators can be treated
without loss of generality as living in a two-dimensional
Hilbert space, even in the general case where Eve’s ma-
nipulation can depend on the auxiliary degrees of free-
dom of the single photon. We note that for security
analysis in the above general case, the bounds on the
misalignment and on the imbalance between the X- and
Z-bases should be satisfied by the measurement opera-
tors in each two-dimensional Hilbert space obtained by
projecting onto each particular state for the auxiliary
degrees of freedom manipulable by Eve.

On the other hand, when multiple photons are emitted
(i.e., j > 1) we construct the sub-models Cj and Qj in a
device-independent way (i.e., without using any informa-
tion about the multiphoton state prepared or measure-
ments performed). By the device-independent construc-
tions of sub-models Cj and Qj with j > 1, we pessimisti-
cally allow Eve’s classical or quantum side information
to be perfectly correlated with the trial output O given
the trial input I and j > 1. Consequently, we choose
to not certify the randomness contributed by the mul-
tiphoton events, and so our security analysis is robust
against photon-number splitting attacks. We emphasize
that even with the device-independent constructions of
sub-models Cj and Qj with j > 1, the resulting mod-
els C and Q still behave well for certifying randomness
as we assume that the probability of emitting a single
photon at each trial is assumed to be bounded from be-
low no matter how Eve manipulates the photon-number
distribution.

Once the classical model C and the quantum model
Q are constructed, we can construct the correspond-
ing PEFs and QEFs. Since the classical model (or the
quantum model) for each trial is the identical C (or
Q), we can use the same PEF Fc(I,O) (or the same
QEF Fq(I,O)) for each trial. According to Thm. 1
(or Thm. 2), the amount of classical (or quantum) εs-
smooth min-entropy in the outputs On certifiable condi-
tionally on the inputs In as well as the side information
E (or E) is determined by the product

∏n
k=1 Fc(Ik, Ok)

(or
∏n
k=1 Fq(Ik, Ok)). Before the experiment we need

to choose a PEF (or a QEF) such that the expected
amount of certifiable classical (or quantum) εs-smooth
min-entropy is as large as possible. At the same time, a
PEF (or a QEF) satisfies a set of linear constraints im-
posed by each member of the model C (or Q). Therefore,
we can formulate the constructions of both PEFs and
QEFs as constrained optimization problems. To solve
these optimization problems, we also provide effective
outer-approximations of the models C and Q. We note
that the outer-approximations of C and Q provided by
us include the convex closures of C and Q, respectively.
Therefore, in view of the remarks below Eqs. (1) and (5),
the constructed PEFs and QEFs can certify randomness
even when Eve’s side information about the state is clas-
sically correlated with Eve’s partial knowledge of the in-
put and measurement at a trial.
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[1] A. Aćın and L. Masanes. Certified randomness in quan-
tum physics. Nature, 540:213–219, 2016.

[2] Xiongfeng Ma, Xiao Yuan, Zhu Cao, Bing Qi, and Zhen
Zhang. Quantum random number generation. npj Quan-
tum Inf., 2:16021, 2016.

[3] Miguel Herrero-Collantes and Juan Carlos Garcia-
Escartin. Quantum random number generators. Rev.
Mod. Phys., 89:015004, 2017.

[4] R. Colbeck. Quantum and Relativistic Protocols for Se-
cure Multi-Party Computation. PhD thesis, University
of Cambridge, 2007.

[5] R. Colbeck and A. Kent. Private randomness expan-
sion with untrusted devices. J. Phys. A: Math. Theor.,
44(9):095305, 2011.

[6] J. Bell. On the Einstein Podolsky Rosen paradox.
Physics, 1:195–200, 1964.

[7] B. Hensen et al. Loophole-free Bell inequality viola-
tion using electron spins separated by 1.3 km. Nature,
526:682, 2015.

[8] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bier-
horst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy,
D. R. Hamel, M. S. Allman, K. J. Coakley, S. D.
Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lam-
brocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R.
Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A.
Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein,
M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin,
E. Knill, and S. W. Nam. Strong loophole-free test of
local realism. Phys. Rev. Lett., 115:250402, 2015.

[9] M. Giustina, Marijn A. M. Versteegh, Sören
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