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Abstract. This paper describes a vulnerability in Apple’s CoreCrypto
library, which affects 11 out of the 12 implemented hash functions: every
implemented hash function except MD2 (Message Digest 2), as well as
several higher-level operations such as the Hash-based Message Authen-
tication Code (HMAC) and the Ed25519 signature scheme. The vulnera-
bility is present in each of Apple’s CoreCrypto libraries that are currently
validated under FIPS 140-2 (Federal Information Processing Standard).
For inputs of about 232 bytes (4GiB) or more, the implementations do
not produce the correct output, but instead enter into an infinite loop.
The vulnerability shows a limitation in the Cryptographic Algorithm
Validation Program (CAVP) of the National Institute of Standards and
Technology (NIST), which currently does not perform tests on hash func-
tions for inputs larger than 65 535 bits. To overcome this limitation of
NIST’s CAVP, we introduce a new test type called the Large Data Test
(LDT). The LDT detects vulnerabilities similar to that in CoreCrypto
in implementations submitted for validation under FIPS 140-2.
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1 Introduction

The security of cryptography in practice relies not only on the resistance of
the algorithms against cryptanalytical attacks, but also on the correctness and
robustness of their implementations. Software implementations are vulnerable
to software faults, also known as bugs.

A (cryptographic) hash function turns a message of a variable length into
an output of a fixed length, often called a message digest, or digest. This fixed-
length output can then serve as a “fingerprint” for the message, in the sense that
it should be computationally infeasible to construct two messages that result in
the same digest. Hash functions are crucial to the security of many higher-level
cryptographic algorithms and protocols.

In the context of digital signature schemes, hash functions are used to ensure
that only the given message and the corresponding signature (along with the
public key) passes the signature verification process. Digital signatures provide
authentication in a similar manner to signatures in the real world. For example,
a web browser can verify a package that is downloaded comes from a specific



website by verifying the signature that was provided with the download using the
known, trusted public key of the website. As a part of this verification process,
the browser hashes the downloaded data so that the fixed-length digest can stand
in place of the large variable-length data in the digital signature scheme.

A recent study by Mouha et al. [12] of the National Institute of Standards
and Technology (NIST) SHA-3 (Secure Hash Algorithm) competition found that
about half of the implementations submitted to the SHA-3 competition con-
tained bugs, including two out of the five finalists. It appears that cryptographic
algorithms can be difficult to implement, given that even the designers of the
algorithm can have trouble to develop a correct implementation. Furthermore,
even for a secure and well-designed cryptographic algorithm, bugs can be par-
ticularly severe with respect to the cryptographic properties of the algorithm’s
implementation.

For example, in the case of all submitted implementations of the BLAKE [4]
algorithm to the SHA-3 competition, given one message and its corresponding
hash function output, it is easy to construct another message that produces the
same hash value. This “second preimage attack” is not due to a weakness in
the BLAKE algorithm specification, but due to an implementation bug that
remained undiscovered for seven years.

In [12], Mouha et al. did not find any bugs in the submission packages of
Keccak [6], the hash function algorithm that won the SHA-3 competition and
that is now standardized in Federal Information Processing Standard (FIPS)
202 [17]. In this paper, we explore whether implementations of hash functions
that are standardized by NIST and currently used in commercial products may
also contain bugs. Furthermore, we investigate how these bugs can impact more
complex cryptographic operations such as digital signature schemes.

2 Testing within NIST’s CAVP

NIST maintains the Cryptographic Algorithm Validation Program (CAVP),
which provides validation testing for the NIST-recommended cryptographic algo-
rithms. The CAVP is a prerequisite for validating cryptographic implementations
according to FIPS 140-2 under the Cryptographic Module Validation Program
(CMVP). Since the Federal Information Security Management Act (FISMA)
of 2002, U.S. Federal Agencies no longer have a statutory provision to waive
FIPS 140-2. This means that commercial vendors must validate their crypto-
graphic implementations, also known as modules, according to CAVP/CMVP
before they can be deployed by U.S. Federal Agencies.

The CAVP testing methodology is derived directly from the algorithm spec-
ification, independent of the actual code that a vendor’s implementation uses.
Therefore, it is realistic to expect three main limitations of the CAVP:

1. The CAVP does not require that the internals of an implementation are
known in order to generate tests, and is therefore restricted to black-box
testing. For many widely-used cryptographic libraries, however, the software
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is either open source or available on the vendor’s website, which may be
used to reveal additional bugs through static analysis (including checking
software coding standards), or white-box testing.

2. The CAVP tests only the capabilities of the implementation that are de-
clared by the vendor. For example, a hash function implementation may
declare that it can only process messages up to 65 535 bits, corresponding to
the largest test vectors currently in the CAVP, even though it may encounter
much larger inputs under typical use. When NIST introduces tests for larger
inputs, it is therefore the vendor’s responsibility to declare whether or not
their implementation supports such inputs. However, it is in the vendor’s
interest to avoid bugs and therefore declare the capabilities of the imple-
mentations as broadly as possible.

3. The CAVP focuses mostly on the correct processing of valid inputs (posi-
tive testing), rather than the rejection of invalid inputs (negative testing).
Because of the nature of black-box testing, the CAVP provides test vector
data to the implementation. A developer of the module must program a test
harness to submit this data to the interfaces of the cryptographic library
itself and collect the output to send back to the CAVP. As the test harness
is outside the bounds of the CAVP, it is difficult to know from a validation
perspective whether invalid inputs are handled by the module, or by the
test harness. There are a few notable exceptions to this, such as the CAVP
tests for digital signature schemes that test whether the implementation can
recognize valid versus invalid signatures.1

Furthermore, the focus of most cryptographic algorithm testing is on cor-
rectness towards common cases within the specification. This may leave crypto-
graphic algorithms vulnerable to malicious inputs that manifest themselves very
rarely under random testing. Notable examples exploit bugs in modular arith-
metic [7], incorrect group order validation [21], or improper primality testing [1]
to result in full or partial key recovery attacks on OpenSSL and other imple-
mentations. These examples show the importance to consider not just random
but also “rare” and “unusual” inputs for cryptographic implementations, as they
may lead to catastrophic security failures.

In spite of these limitations, the CAVP can be highly effective at detecting
many types of bugs. This is because the CAVP test design is aware of the inter-
nals of “typical” implementations of cryptographic algorithms. The focus of the
CAVP is not just conformance testing but also regression testing, as the CAVP
test design is also aware of how changes to the implementations may lead to
certain bugs. To see this, we now explain how the CAVP tests are generated.

The two test types in the CAVP are the Algorithm Functional Test (AFT),
and the Monte Carlo Test (MCT). They were introduced in 1977 by the Na-
tional Bureau of Standards (NBS), the former name of NIST, in the (now-
withdrawn) Special Publication (SP) 500-20 [13] to test the Data Encryption

1 For the signature verification operation, the CAVP also includes some invalid
padding tests.

3



Standard (DES). In this standard, static AFTs known as Known Answer Tests
(KATs) were provided in order to “fully exercise the non-linear substitution ta-
bles” (S-boxes), whereas MCTs contained “pseudorandom data to verify that
the device has not been designed just to pass the [fixed] test set.” Additionally,
the large amount of data of the MCT was intended to detect whether it can
“cause the device to hang or otherwise malfunction,” for example due to a mem-
ory leak [8] in present-day implementations. The spirit and design of these tests
was carried over to other algorithms such as the Advanced Encryption Standard
(AES) in FIPS 197 [14] and hash functions.

This paper focuses on testing for hash functions within the CAVP at NIST.
FIPS 180-4 [16] standardizes the hash functions SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, and SHA-512/256. As these hash functions
closely resemble each other, they are considered functionally equivalent for the
purpose of this document. Testing for SHA-3 was added after the publication
of FIPS 202 [16], and with the exception of the SHAKE extendable-output
functions (XOFs), mimics the testing done for the FIPS 180-4 hash functions.
As with the other CAVP tests, the Secure Hash Algorithm Validation System
(SHAVS) [5] specifies both AFTs and MCTs.

Testing by the CAVP was done for many years using the Cryptographic
Algorithm Validation System (CAVS) tool. An implementation under test (IUT)
is accompanied with a declaration to the CAVS tool of which digest sizes it
supports along with a couple of other properties such as whether or not it can
hash an empty message, whether or not it can hash incomplete bytes (i.e. a 7-bit
message), and the maximum message size. The maximum message size allowed
by the tool is 65 535 bits.

As of 2019, the CAVP is undergoing a transition to use the Automated Cryp-
tographic Validation Protocol (ACVP) to enable the generation and validation
of standardized algorithm test vectors. This involves a shift of generating and
validating tests at remote, approved laboratories, to performing these actions on
NIST-hosted servers. The concept of first-party testing is introduced to allow
vendors to test and validate their implementations without laboratories as inter-
mediaries. This combined with hosting a demo server (a sandbox environment
for algorithm testing), allows vendors to incorporate continuous testing of crypto
implementations in their development process. The ACVP thereby significantly
speeds up testing and validation.

The ACVP uses a JSON (JavaScript Object Notation) format to specify the
test cases. The client to the NIST ACVP servers would then correspond to the
test harness in the previous CAVS model, and is responsible for communicating
with the server and exercising the proper interfaces on the module. In the JSON
examples below, some of the original content has been trimmed for readability.
For more information on the protocol itself, as well as the complete examples,
we refer to the GitHub repository of the ACVP [11].
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2.1 Algorithm Functional Test (AFT)

AFTs take a single message as input, and verify the correctness of the corre-
sponding output. A JSON file is sent from the server to the client, which usually
provides inputs to a cryptographic algorithm, and is very simple for an individual
test case:

{

"msg": "BCE7",

"len": 16

}

where "msg" corresponds to the message represented as hexadecimal, and "len"

corresponds to the length in bits of the message. The messages have fixed values
that have been drawn uniformly at random from the space of messages of a
certain bit length, ranging from the client’s specified minimum to their specified
maximum or 65 535, whichever comes first. The expected response to this test
case is another simple JSON object:

{

"md": "1FA29E9B23060562F9370453EF817E18C56AE844E5B85F2ED34B4B38"

}

where "md" corresponds to the message digest. The hash function in this example
is SHA-224.

AFTs can vary in length from byte-oriented messages (i.e., "len" is a multiple
of 8) or bit-oriented messages (with any bit lengths). This allows implementations
to specify their properties to the CAVP to receive appropriate test cases.

These tests are intended to provide assurance that an implementation can
handle messages of various sizes. However, the assurance that the AFTs currently
offer may be limited, as they may not test more than one message of any specific
bit length.

2.2 Monte Carlo Test (MCT)

MCTs, on the other hand, construct a chain of hash outputs by combining the
previous three hash outputs into a single message, and use it to produce the next
hash output. Each chain consists of 1000 iterations, and returns the hash output
that is obtained at the end. This whole process is repeated 100 times with the
original message replaced by the latest hash output.

The initial condition for an MCT is as follows:

{

"msg": "B4FCB616B3A4A7C9E6AF1D836CF1576709A67F16141217B827E52611",

"len": 224

}
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where "msg" becomes the seed in the pseudocode of the MCT, which is given
in Alg. 1. The seed is not fixed, but is drawn uniformly at random for every
invocation of the test.

Algorithm 1 The Monte Carlo Test (MCT) for hash functions

Require: seed (random string of same length as hash output)
for i = 1 to 100 do

MD[0] = MD[1] = MD[2] = seed;
for j = 3 to 1002 do

Msg[j] = MD[j − 3]  MD[j − 2]  MD[j − 1];
MD[j] = Hash(Msg[j]);

end for

seed = MD[1002];
Output seed;

end for

The response is an array of 100 hash outputs as follows:

{

"resultsArray": [

{

"md": "7B893BC7322AA6578A2EC565593B86776FB8376AC16B0A354E6DA016"

},

{

"md": "4BCB655F36D976ADAAE620B485DA7FD8ED321E0BF060E0FE2B5F9AFE"

},

{

"md": "57AA388954B3D52645BFAC69E87F48B3D57A86CF385F38A2549FE957"

}

]

}

shortened to only three outputs for brevity, and again using the SHA-224 hash
function in the example. The CAVP makes an implicit assumption here that the
client’s implementation can handle a message that is three times the size of the
hash output.

These tests are intended to provide assurance that an implementation is
correct for valid inputs over thousands of iterations. However, the assurance
that the MCTs currently offer may be limited, as the bit lengths of the messages
do not vary between test cases. Furthermore, as this bit length is three times
the digest size, the MCTs only cover a negligibly small percentage of the total
input space of the given bit length.
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Hash( );

Update( );

Update( );

Init();

Update( );

Final();

Fig. 1. Hash functions are commonly implemented using a Hash interface that takes a
variable-length message, and returns a fixed-length output. It is common to also have
an Init-Update-Final interface, which can be convenient to process large messages
on the fly.

3 Common Hashing Interfaces

Although not mentioned in the NIST hash function standards [16, 17], many
cryptographic implementations have at least two distinct functional interfaces
for hash operations, as shown in Fig. 1. One of the two interfaces, or both
interfaces, may be available to a consumer of the module or to higher-level
algorithms within the module. The first is an Init-Update-Final interface.
This structure allows implementations to constantly stream smaller chunks of
data into Update() repeatedly, rather than keep the message as a single large
chunk. Perhaps the entire message is not available at once, or perhaps there is
a limit to the capacity of a single Update() call.

The other interface is a more intuitive Hash() call that expects the whole
message up front. This is different from the previous interface and the same
module could potentially behave differently under these two interfaces [12].

In practice, the Init-Update-Final interface can be convenient to hash the
concatenation of various elements. For example, the American National Stan-
dards Institute (ANSI) X9.63 Key Derivation Function (KDF) [2] computes the
hash of a secret value Z, a counter, and an optional SharedInfo string that
is shared between two entities. This hash can be computed using one Init()

call, followed by an Update() call to process Z, another Update() call for the
counter, and then an optional third Update() call for SharedInfo. The Final()
call can then be used to compute the hash function output.

To hash the contents of a file, there are two approaches that are commonly
encountered in practice. One approach is to loop through the contents of the file
(e.g., using fread() in C), and process each chunk using a call to Update().
Another common approach is to map the file to the virtual address space (e.g.,
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using mmap() in C), and then compute the hash by calling Hash(). This second
approach must be used when the interface requires the data to be located in
memory. For example, the interface of the Ed25519 signature scheme in Apple’s
CoreCrypto requires a pointer for the data to be hashed, therefore if an appli-
cation wants to compute (or verify) a digital signature on a file (e.g., containing
a large software update), it must first use mmap() to map this file into memory.

4 Vulnerability in Apple’s CoreCrypto Library

We show how adding test cases beyond the current coverage of the CAVP can
reveal previously undiscovered bugs in cryptographic implementations.

First, we look the SHAVS document [5], which states that:

“While the specification for SHA specifies that messages up to at least

2 64
− 1 bits are possible, these tests only test messages up to a limited

size of approximately 100,000 bits. This is adequate for detecting algo-

rithmic and implementation errors.”

In contrast, the SHA-3 Competition Test Suite [15] also contains an “Ex-
tremely Long Message Test,” which contains a message of 233 bits (1GiB), with
the intention of checking whether messages of more than 232 bits were processed
correctly. This test from the SHA-3 competition is not adopted by the CAVP
however. We now explain how adding a similar test for large messages reveals a
bug in the widely-used Apple CoreCrypto library.

Apple makes the source code of its CoreCrypto library publicly available [3]
to allow for “verification of its security characteristics and correct functioning.”2

The CoreCrypto library provides low-level cryptographic primitives that are fun-
damental to the security of Apple’s products, and is currently deployed in iPhone,
iPad, and Mac devices worldwide. The library has also undergone rigorous test-
ing, and is currently present in 20 FIPS 140-2-validated modules.

In the latest CoreCrypto library, the bug is present in the ccdigest update.c

file, which is located in the ccdigest/src subdirectory. This code is shared by
all implemented hash functions except for MD2. The full code of the function is
given in App. A. All the implemented hash functions are iterated hash functions,
which means that an underlying compression function processes the message in
multiples of a block size that is specific to the algorithm. Part of the code to
process message in multiples of the block size is as follows:

1 //low-end processors are slow on division

2 if (di->block_size == 1<<6 ){ //sha256

3 nblocks = len >> 6;

4 nbytes = len & 0xFFFFffC0;

5 } else if(di->block_size == 1<<7 ){ //sha512

2 We refer to the latest CoreCrypto that is available online at the time of writing
(November 25, 2019). It does not appear to have a version number, but can be
identified by the year 2018 in the copyright notice.
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6 nblocks = len >> 7;

7 nbytes = len & 0xFFFFff80;

8 } else {

9 nblocks = len / di->block_size;

10 nbytes = nblocks * di->block_size;

11 }

In this code, the variables len, nblocks, and nbytes are declared as size t,
which corresponds to a 64-bit unsigned integer on a 64-bit architecture. The len
variable is the length of the message in bytes. In case len is less than 232, the
value of nblocks is the number of complete blocks to be hashed: len divided
by the block size (in bytes), whereas nbytes is the number of bytes of these
complete blocks.

However, for block sizes of 64 or 128 bytes (i.e., when di->block size is
1<<6 or 1<<7), the calculation of nbytes contains a bug: the four highest bytes
of size t are incorrectly set to zero by the bitwise AND (&) operation. Conse-
quently, when len is at least 232 (corresponding to messages of at least 4GiB),
the value of nbytes does not contain the correct number of complete blocks.
Therefore, later in the code, the statement len -= nbytes does not decrement
len by the correct amount; instead len remains 232 or larger. Given that all these
statements are contained in a while-loop with condition len > 0, the program
enters into an infinite loop.

A list of affected hash function implementations is given in Table 1.

Table 1. Hash function implementations in Apple’s CoreCrypto library.

Algorithm Block size (in bytes) vulnerable

MD2 16 ✗

MD4 64 ✓

MD5 64 ✓

RIPEMD-128 64 ✓

RIPEMD-160 64 ✓

RIPEMD-256 64 ✓

RIPEMD-320 64 ✓

SHA-1 64 ✓

SHA-224 64 ✓

SHA-256 64 ✓

SHA-384 128 ✓

SHA-512 128 ✓

When this code was written, perhaps the assumption was made that size t

corresponds to a 32-bit value, in which case the code would have been correct.
When size t is 64 bits, however, the integer constant used to perform the AND
operation is incorrect.

One way to avoid this type of bug, could be to follow software coding stan-
dards, such as the Computer Emergency Response Team (CERT) C Coding
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Standard. This standard states in INT17-C: “Define integer constants in an
implementation-independent manner” [19], and gives an example that is very
similar to the bug in Apple’s CoreCrypto library. Note that it is possible to avoid
masks altogether, by using nbytes = nblocks << 6 or nbytes = nblocks <<

7 for 64-byte and 128-byte blocks respectively.

4.1 Experimental Verification

We downloaded the latest CoreCrypto library from Apple’s website [3], and
compiled it using the Xcode IDE (Integrated Development Environment) on
macOS 10.14 (Mojave) on a mid 2015 MacBook Pro, as well as using Clang 8
under Ubuntu 14.04 on an Intel Skylake processor. For Linux, the README.md
file warns that the Linux Makefile is not up-to-date, therefore we needed to make
some minor changes to the Makefile to allow compilation.

Because the bug is due to incorrect C code, we expect that the bug will
manifest itself on any 64-bit platform for which the code is compiled. To confirm
that the executable is stuck in an infinite loop, we added some source code
instrumentation.

In our proof of concept code, we generated an input with a length of 232

bytes. Because the actual value of the input is not relevant for the bug, we
arbitrarily set all bits to zero in our experiments. When this input is provided to
MD4, MD5, RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320, SHA-1,
SHA-224, SHA-256, SHA-384, or SHA-512, we verified that the implementation
enters into an infinite loop. We mentioned earlier that the MD2 implementation
does not share the code of ccdigest update.c, and we also confirmed that the
same input does not cause an infinite loop for MD2. This provides experimental
confirmation for the results of Table 1.

Then, we looked into higher-level cryptographic operations. We found that
the implementation of the ANSI X9.63 KDF is not vulnerable when provided
with a secret value Z of length 232 bytes. This is due to a range check in the
input length, which is documented by the following source code comment in
CoreCrypto: “ccdigest update only supports 32bit length.”

However, such a range check is not applied to every hash function calculation,
and most other cryptographic algorithms inside Apple’s CoreCrypto library that
use hash functions are vulnerable. We verified that HMAC enters into an infinite
loop for all the vulnerable algorithms in Table 1 when provided with a message
of 232 bytes.

For the Ed25519 signature scheme, we found that a message of at least 232+
64 bytes is needed to trigger the bug. To explain this, note that the Ed22519
algorithm always prepends some data to the message before computing the hash
value using SHA-512. This is implemented in Apple’s CoreCrypto using the
Init-Update-Final interface. When there are 64 bytes already in the buffer,
the first 64 bytes of the message are used to complete a 128-byte block, which
we recall is the block size for the SHA-512 algorithm. After processing the first
64 bytes of the message, if there are at least 232 bytes or more left, then the
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bug is triggered. For details, we refer to the full code of the ccdigest update()

function in App. A.
We verified that the Ed25519 implementation indeed enters into an infinite

loop when a message of 232 + 64 bytes is digitally signed or verified. Note that
in order to trigger the bug in the verification operation, it is not necessary to
provide a valid signature. Therefore, even if the private key is stored properly
and never used to sign long messages, the verification operation still enters into
an infinite loop for an incorrectly-signed message of 232+64 bytes or more. Note
that digitally signed messages typically come from untrusted sources, because
the concern that a message can be modified by an adversary is typically the
reason to apply a digital signature in the first place.

Another cryptographic operation in Apple’s CoreCrypto that uses hash func-
tions, is the Secure Remote Password (SRP) protocol. This protocol is run be-
tween a client and a server, which can create additional security concerns when
communication is done over a network and the adversary controls either the
client or the server, and may therefore send malicious inputs. In CoreCrypto’s
SRP implementation, the username is provided as a null-terminated string.

We verified that when this string contains 232 repetitions of the 'a' character
followed by a null character, then the SRP implementation of both the client
and the server enter into an infinite loop. Note that in contrast to the previous
examples, the length in this case is not provided by the adversary as a separate
parameter, but it is derived inside CoreCrypto using C’s strlen() function.
Therefore, range checking all input length values to CoreCrypto would not have
been effective to avoid this attack using a long null-terminated string.

In Sect. 2, we recalled that an input that would “cause the device to hang”
was already a concern when the MCT test was introduced for DES in 1977.
But an infinite loop is also a security vulnerability, categorized under Common
Weakness Enumeration (CWE) 835 [20], where it is also known as a “Loop with
Unreachable Exit Condition.” More specifically, an adversarially-crafted input
that causes an implementation to enter an infinite loop, can lead to a “denial of
service” (DoS) attack when it consumes excessive CPU resources.

5 Proposing the Large Data Test (LDT)

In the current CAVP tests, the length of the largest message is 65 535 bits. Such
small testing sizes are not realistic towards normal usage. We propose a new
Large Data Test (LDT) for the CAVP to provide a greater assurance for the
implementations that undergo validation.

The LDT would be a type of AFT, and could be specified similarly to the ex-
ample in Sect. 2.1. Implementations could specify the size of the largest message
size that they can handle, for example on the order of 2GiB to 8GiB. The ACVP
server can select one of many large supported arbitrary sizes to craft messages.
However, a test for such messages may be impractical to communicate natively
within the normal JSON structures. To work around this limitation, the LDT
employs a simple function to generate the test input, as defined in Alg. 2.
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Algorithm 2 The Large Data Test (LDT)

Require: Msg (a non-zero number of bytes), fullLength (in bits)
FullMsg = "";
for i = 0 to ceil( fullLength / bitlength(Msg) ) do

FullMsg = FullMsg  Msg;
end for

FullMsg = truncate(FullMsg, fullLength);
Output FullMsg;

Due to the truncation at the end, it is possible for the LDT to output mes-
sages of any number of bits, instead of only multiples of the size of the repeating
Msg pattern. The Msg pattern itself needs to be an integer number of bytes,
in order to greatly simplify implementations in C-like programming languages.
This is, however, not an actual restriction to the messages that can be output.
The reason is that any 7-bit repeating pattern (for example) can also be written
as a 56-bit (= 7-byte) repeating pattern, where 56 is the least common multiple
of 7 and 8 (the number of bits in one byte).

With a generator function defined to expand a short message of a few bytes,
into a large message of any arbitrary size, we can define the JSON structure for
the LDT as the following:

{

"largeMsg": {

"content": "D6F7",

"contentLength": 16,

"fullLength": 34359738368,

"expansionTechnique": "repeating"

}

}

We define an "expansionTechnique" to allow extensibility in the future
for other methods of producing a message of the proper size. In this example
"repeating" corresponds to the repeating nature of Alg. 2.

After the test generates a message of a specific number of bits, this message
would then be hashed on the server to produce a single hash output similar to the
AFTs. Once the test is sent to the client, this could flush out implementations for
faults from long messages that produce incorrect outputs. As hashing is a core
operation to many other cryptographic operations, it is important to consider
scenarios where an adversary may maliciously generate large inputs.

Note that to unearth the bug in the Apple CoreCrypto library, it is neces-
sary to use either the Hash() interface on a message of 4GiB or more, or the
Init-Update-Final interface where at least one of the Update() calls contains
4GiB or more. In the latter case, it may be necessary to make the message a
few bytes longer, as explained in Sect. 4.1.

Given that the LDT is designed to work with large data, we need to take into
consideration that the implementation may run out of memory. When allocating

12



dynamic memory (e.g., using malloc() in C) or mapping files to the virtual
address space (e.g., using mmap() in C) are unsuccessful on the target platform,
it may be an option to consider increasing the memory available to the platform
or even simulating the environment for the purposes of testing.

6 Discussion

As hash functions are a core primitive within many other cryptographic algo-
rithms, it is critically important to ensure correctness under all valid inputs. Yet
the methods with which these algorithms are tested are still based on techniques
from 1977. While the original tests are still valid, an automated system allows
the CAVP to continually add test types and boost the assurances gained from
the program. With a publicly standardized JSON protocol, and open-source test
harnesses such as libacvp [9], the CAVP is in a good position to move forward
with improved testing techniques. We suggest the LDT as a way to directly
improve the assurances gained from the CAVP. Of course, one needs to design,
specify, publicly review the tests, etc. before they can be used in a program
such as CAVP. Openness and transparency are important for acceptance in this
highly sensitive domain.

To test the limits of common variable types such as 32-bit unsigned integers,
the LDT would need to be on the order of 232 bytes or 4GiB. This would be
sufficient to detect the CoreCrypto bug, and potentially similar bugs in other
cryptographic implementations.

However, an inherent limitation of the CAVP and of software testing in gen-
eral, is that it is a selection process, where a very small subset is selected from
the total number of possible test cases. Therefore, testing is not a method to
prove the correctness over all types of inputs for an implementation. As stated
by Dijkstra, “Program testing can be used to show the presence of bugs, but
never to show their absence!” Indeed, the entire goal of software testing is to
determine how to perform this selection process, in order to try to quantify the
assurance that we get from testing.

Furthermore, the CAVP only tests the capabilities that are declared by the
vendor, and would therefore not detect the bug if it only declares support for
short messages.While this is reflected in the final validation certificate the vendor
receives, this shows the potential need for a wider amount of negative testing.
Negative tests are those that test not only well-defined inputs that may be
beyond the advertised capabilities, but also invalid inputs.

We note the potential hazards of exposing multiple entry points to a single
set of functionality. As mentioned, hash functions often provide at least two
interfaces: an Init-Update-Final interface and a Hash() interface. Often both
are exposed such as within CoreCrypto.

Lastly, it can be interesting to explore the parallels between different levels
at which vulnerabilities can be handled, as we now explain.

A security vulnerability report to the vendor can allow for a rapid response
to address a vulnerability. The FIPS 140-2 Implementation Guidance (IG) [18]
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encourages this process by providing the vendors with a “means to quickly fix,
test and revalidate a module that is subject to a security-relevant CVE.” A CVE
(Common Vulnerability and Exposure) is security-relevant if it affects how the
module meets the requirements of the FIPS 140-2 standard.

For FIPS 140-2 validated cryptographic modules, publishing a vulnerability
with a CVE can accelerate the time for end users to obtain crucial security
updates. Yet the very nature of the CVE system is an ad hoc procedure, and
there is no mechanism in place to ensure that a vendor has learned from such a
vulnerability. A vendor may implement test cases within their own development
process to detect similar issues in the future, but this holds a very limited scope.
The implementations of other vendors could be susceptible to similar issues, but
there may be no incentive to react.

If the CAVP implements tests based on CVEs (e.g., as done by Project
Wycheproof [10]), then lessons learned from a CVE are not restricted to a single
implementation. The requirement of FIPS validation would then also provide
stronger assurances to government and private entities that rely on the program.
If a CVE can be detected via existing test types, a static test could be seamlessly
included from the NIST server. By using an existing test type, no additional code
is needed from a test harness to understand how to process the test. In addition,
with the speed of testing under ACVP, it is mutually beneficial to constantly
test while developing cryptographic implementations.

7 Conclusion

Apple’s CoreCrypto library contains a bug due to the implementation-dependent
manner in which integer constants are specified. Due to this bug, the MD4, MD5,
and the RIPEMD and SHA family hash function implementations enter into an
infinite loop for messages of 4GiB or larger. The bug affects all implemented hash
functions (except MD2), and higher-level operations such as HMAC, Ed25519,
and SRP. To detect the bug in NIST’s CAVP, we proposed a new Large Data
Test (LDT) to calculate the hash value for large messages. We also pointed out
that stricter coding standards might be helpful to avoid this type of bug.

Responsible Disclosure. The Apple Product Security team was notified of
the vulnerability described in this paper on May 30, 2019, and has since taken
steps to address the issue. In a conference call on July 17, 2019, Apple Product
Security clarified that they do not object to the publication of the research results
presented in this paper. On July 23, 2019, Apple Product Security informed us
that they are planning to assign a CVE to this issue. On October 29, 2019, Apple
publicly announced CVE-2019-8741 to address the vulnerability described in this
paper for macOS Catalina 10.15, tvOS 13, watchOS 6, iOS 13, iTunes 12.10.1
for Windows, and iCloud for Windows 7.14.
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A The ccdigest update() function of Apple’s CoreCrypto

Here, we provide the implementation of the ccdigest update() in Apple Core-
Crypto, which is made available to the public on Apple’s website [3]. For read-
ability, we made minor changes to the indentation, corrected the spelling of the
word “division” and expanded the CC MEMCPY macro to memcpy.

1 void ccdigest_update(const struct ccdigest_info *di, ccdigest_ctx_t ctx,

2 size_t len, const void *data) {

3 const char * data_ptr = data;

4 size_t nblocks, nbytes;

5

6 while (len > 0) {

7 if (ccdigest_num(di, ctx) == 0 && len > di->block_size) {

8 //low-end processors are slow on division

9 if (di->block_size == 1<<6 ){ //sha256

10 nblocks = len >> 6;
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11 nbytes = len & 0xFFFFffC0;

12 } else if(di->block_size == 1<<7 ){ //sha512

13 nblocks = len >> 7;

14 nbytes = len & 0xFFFFff80;

15 } else {

16 nblocks = len / di->block_size;

17 nbytes = nblocks * di->block_size;

18 }

19

20 di->compress(ccdigest_state(di, ctx), nblocks, data_ptr);

21 len -= nbytes;

22 data_ptr += nbytes;

23 ccdigest_nbits(di, ctx) += nbytes * 8;

24 } else {

25 size_t n = di->block_size - ccdigest_num(di, ctx);

26 if (len < n)

27 n = len;

28 memcpy(ccdigest_data(di, ctx) + ccdigest_num(di, ctx), data_ptr, n);

29 /* typecast: less than block size, will always fit into an int */

30 ccdigest_num(di, ctx) += (unsigned int)n;

31 len -= n;

32 data_ptr += n;

33 if (ccdigest_num(di, ctx) == di->block_size) {

34 di->compress(ccdigest_state(di, ctx), 1, ccdigest_data(di, ctx));

35 ccdigest_nbits(di, ctx) += ccdigest_num(di, ctx) * 8;

36 ccdigest_num(di, ctx) = 0;

37 }

38 }

39 }

40 }
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