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Abstract — The popularity of smart mobile devices has led to a tremendous increase in mobile 

traffic, which has put a considerable strain on the fifth generation of mobile communication 

networks (5G). Among the three application scenarios covered by 5G, ultra-high reliability and 

ultra-low latency (uRLLC) communication can best be realized with the assistance of artificial 

intelligence. For a combined 5G, edge computing and IoT-Cloud (a platform that integrates the 

Internet of Things and cloud) in particular, there remains many challenges to meet the uRLLC 

latency and reliability requirements despite a tremendous effort to develop smart data-driven 

methods. Therefore, this paper mainly focuses on artificial intelligence for controlling mobile-traffic 

flow. In our approach, we first develop a traffic-flow prediction algorithm that is based on long 

short-term memory (LSTM) with an attention mechanism to train mobile-traffic data in single-site 

mode. The algorithm is capable of effectively predicting the peak value of the traffic flow. For a 

multi-site case, we present an intelligent IoT-based mobile traffic prediction-and-control 

architecture capable of dynamically dispatching communication and computing resources. In our 

experiments, we demonstrate the effectiveness of the proposed scheme in reducing communication 

latency and its impact on lowering packet-loss ratio. Finally, we present future work and discuss 

some of the open issues. 

Index Terms — 5G, artificial intelligence, LSTM, mobile traffic, uRLLC 

 

1. Introduction 

The fifth generation of mobile communication networks (5G) with leveraging real-time 

artificial intelligence (AI) is a promising prospect towards fulfilling the high-level requirements of 

the heterogeneous Internet of Things (IoT). The 3rd Generation Partnership Project (3GPP) defines 

three emerging application scenarios: enhance mobile broadband (eMBB), massive machine-type 

communication (mMTC), and uRLLC [1]. While eMBB focuses on high spectral efficiency, uRLLC, 

has been recognized as a key trend of 5G, but faces tough challenges in order to meet the stringent 

requirements, such as high reliability and low latency. As uRLLC is becoming increasingly 

prevalent, exploiting new technologies such as AI, would be essential to tackle more complex tasks 

in the presence of high traffic flow. This trend is driven by the ever increasing popularity of smart 

devices, which are having a huge impact on the trade-offs between the services of 

telecommunications suppliers and users' demands [2]. For instance, user's quality of experience 

(QoE) is an essential prerequisite for providing intelligence and personalized services for real-time 

interactions. Within the integrated framework of the IoT and the cloud (IoT-Cloud), the anticipated 



increase in mobile-traffic flow can also have a profound effect on computation intensity, as well as 

dispatching pressure on the edge cloud (base-station) and remote cloud (data center) [3-4]. 

In addition, the intensified mobile-traffic flow can cause a shortage of computing and 

networking resources in which case applications might not be able to respond to users' requests in a 

timely manner. Another important issue is the allocation of bandwidth resources for heterogeneous 

(cloud) services [5]. For instance, the proliferation of resources to support intelligent services and 

the gradual transition from traditional to heterogeneous IoT, creates conflicting demands for 

network operators and service providers. For the IoT-cloud in particular, existing data-driven 

methods directly unload computing tasks without being analyzed, processed, and controlled by 

base-stations. These can greatly undermine transmission reliability, as well as impact 

communication latency for delay sensitive applications [6]. Since such a high latency cannot be 

tolerated by uRLLC users, the main challenge is how to efficiently analyze and control the mobile-

traffic-flow data in order to achieve communications with ultra-low latency and ultra-high reliability. 

With the anticipated integration of 5G networks, edge computing and the IoT-Cloud, AI 

assisted mobile-traffic-flow, prediction, and management can offer a viable solution for future 

mobile-network planning and dynamic resource allocation. In view of recent advances in smart 

mobile devices, base-stations, and remote clouds, together with the latest development of computing 

and storage techniques, AI can play a significant role in supporting uRLLC scenarios in order to 

meet its strict requirements in terms of latency and reliability. Depending on advanced machine-

learning (ML) methods, AI is transforming from traditional pattern recognition to the management 

of complex systems. In the past few decades, ML rose and fell several times as the main branch of 

AI. It has now reached sufficient maturity that it can be permeated into the design of many complex 

systems, including wireless communications [7]. If algorithms, such as LSTM [8-9], are deployed 

at different positions in mobile networks, mobile-traffic flow can be predicted intelligently. This is 

because LSTM is suitable for processing and predicting important events with relatively long 

intervals in the time series [10]. 

Therefore, in our proposed frame work, an LSTM-based deep-learning algorithm is considered 

to predict the uRLLC mobile-traffic flow received by a single edge cloud. The predicted peak value, 

representing the traffic of the entire network at each time instant, is sent to a remote cloud. At the 

remote cloud, resources are dispatched and allocated dynamically based on traffic adaptation using 

a cognitive engine and an intelligent mobile traffic module to balance the network load. This 

contributes towards achieving high reliability and low latency of communications, hence enhancing 

the users' QoE. 

This paper is organized as follows. In Section 2, after a brief description of the three application 

scenarios of 5G, we present an IoT-Cloud architecture focusing on the uRLLC application scenario. 

Then, a description of the mobile-traffic flow is given to disclose the interactions between user 

devices, edge clouds, and remote clouds. Section 3 proposes a uRLLC mobile-traffic flow prediction 

algorithm that exploits an LSTM-base algorithm operating in a single-site mode. In Section 4, we 

present a novel intelligent mobile-traffic control architecture for a large-scale multi-site IoT-Cloud. 

Experiments and performance evaluations of the proposed mobile-traffic prediction and control 

framework are given in Section 5. Section 6 discusses some open issues about users' mobility 

prediction, strategy sharing and risk perception. Finally, Section 7 summarizes the study. 



2. A heterogeneous Internet of Things based on uRLLC 

2.1 The three application scenarios of 5G 

As mentioned before, the three core services of 5G, which have been defined by 3GPP are: 

eMBB, mMTC and uRLLC [1]. The applications covered by these scenarios are shown in Fig. 1. 

The aim of eMBB is to enhance users' QoE based on existing mobile broadband business scenarios. 

It mainly attempts to achieve an ideal short distance and personal communication. The main use 

case scenarios of eMBB are smart homes, VR/AR, smart devices, smart buildings, etc. Mobile 

broadband businesses with large traffic flows, such as 3D/UHD video, need the support of 

broadband resources to guarantee smooth transmission of the mobile-data [11]. 

 
Fig. 1 Application scenarios of eMMB, mMTC and uRLLC 

The mMTC is intended to support IoT on a large scale radio coverage among humans and 

objects. Its main features are low cost, low energy consumption, short packets with small quantity 

of data, and a large number of connections. The mMTC supports applications such as the agricultural 

environment, smart metering, smart cities, logistics, tracking, massive information interaction, etc. 

Finally, uRLLC aims to improve users' QoE [12] by establishing a highly reliable and stable 

communications. At the same time, uRLLC has to meet tough requirements with respect to network 

latency. The main application scenarios of uRLLC are smart factories, autonomous automobiles, 

remote surgery, affective interaction, etc. These application scenarios require reliable 

communications among terminal equipment, base-stations, and the cloud server, as well as 

intelligent computing and dynamic resource allocation. 

In this paper, we mainly concern the prediction and control of mobile-traffic flow to support 

uRLLC services in terms of high reliability, low latency, and extremely high usability. Bear in mind 

that except for some regulated daily log data transmissions, uRLLC users' service requests on 



information transmissions are generally unpredictable and would require an advanced knowledge 

of traffic flow in order to efficiently execute resource-allocations and task computations. Due to the 

advantages of time-series prediction, LSTM is a natural approach to solving the problem of mobile-

traffic-flow prediction in uRLLC scenarios. The algorithm can be deployed in edge clouds and 

remote clouds. 

2.2 IoT-Cloud architecture based on uRLLC 

Our proposed IoT-cloud architecture for uRLLC scenario is shown in Fig. 2. Further details of 

the architecture are described as follows: 

 The user-device layer mainly covers common IoT scenarios aimed at uRLLC (details in 

Section 2.1) where each smart device requests a uRLLC-based service with an uncertain 

type and volume of data which would be uploaded to the edge cloud via a wireless network. 

 The edge-cloud layer contains wireless connectors such as base-stations, access points, 

and routers. The edge cloud, which provides wireless access to each IoT device, performs 

lightweight caching and computing as well as unloading complex computing tasks to the 

remote cloud. 

 The remote-cloud layer usually contains SDN [13-14] controllers and a central node with 

the deployment of cognitive intelligence engine [15]. The available resources, with the 

help of data-cognitive engine on the cloud server, are utilized to perform mobile-traffic-

flow prediction and dynamic resource allocation. The internal modules and functionality 

of the cognitive engine will be introduced in Section 4. 

Traditional traffic prediction algorithms, such as short-term correlation prediction methods 

(Markov model, autoregressive model (AR) and its variants (ARMA, ARIMA)), mainly focus on 

modeling of stationary flow characteristics. However, these algorithms require high self-similarity 

of traffic time series. For example，AR algorithm adopts linear mapping method which uses p-order 

autoregressive model AR(𝑝): 𝑉௧ = 𝑐 + ∑ ∅௜𝑉௧ି௜ + 𝜀௧
௣
௜ୀଵ . Thereinto, the current flow value of 𝑉௧ 

is expressed as the sum of a linear combination of one or more historical flow values of 𝑉௧ି௜, a 

constant term of 𝑐  and a random error of 𝜀௧ . Although AR algorithm needs little data, the 

dependence on its own variable series easily leads to inaccurate prediction results. Therefore, the 

extended ARIMA algorithm adds a sliding average coefficient of 𝑞, a difference number of times 

of 𝑑, and a lag operator of 𝐿. ARIMA(𝑝, 𝑑, 𝑞): ൫1 − ∑ ∅௜
௣
௜ୀଵ 𝐿௜൯(1 − 𝐿)ௗ𝑉௧ = ൫1 + ∑ 𝜃௜

௤
௜ୀଵ 𝐿௜൯𝜀௧. 

However, ARIMA algorithm does not consider other relevant variables in the process of modeling 

which is vulnerable to the impact of network dynamic changes. 

In other words, existing traffic prediction and network optimization methods mainly face the 

following three difficulties: 1) Human intervention, traditional network optimization modelling is 

constructed by experts with domain knowledge. Such knowledge-driven model is costly and 

inefficient in implementation, 2) invalid model. More users, more access methods, more complex 

functions and network entities make the mathematical model and relationship functions constructed 

in advance unable to match the reality, 3) high complexity. From the history of prediction algorithms, 

we can see that researchers often add more variables to the relationship function to improve the 

effect of dynamic prediction, but at expense of multidimensional computing complexity. 

In fact, the above problems can be solved by balancing the mobile traffic data and reducing 

bandwidth occupancy in the same period. Such a reduction can be achieved by efficiently predicting 

mobile-traffic flow and assessing the priority of the users' requests in transmission queues with 



dynamically allocating the resources for communication and computing. Therefore, under the 

proposed IoT-cloud architecture, our main objective is to develop an efficient machine-learning-

based prediction and control algorithm that can ensure high reliability and low latency as required 

for uRLLC communications. 

 

 
Fig. 2 IoT-Cloud architecture based on uRLLC 

 

 

3. Mobile-traffic-flow prediction based on LSTM 

In the uRLLC scenario, information (in terms of service requests and data communications) is 

produced in large quantities. This information is transmitted to the edge cloud via wireless channels 

in the form of packets. Bear in mind that the network's bandwidth are generally limited and if the 

data from users is too excessive at certain time intervals, the network will block any transmissions 

without any alternative. This could consequently undermine the communication integrity due to 

packet loss. A viable approach to improve the communication performance would to develop an 

efficient prediction scheme that can dynamically manage the mobile-traffic flow. 



 
Fig. 3 uRLLC mobile-traffic-flow prediction of single-site based on LSTM 

We use LSTM algorithm to build a uRLLC mobile-traffic-flow prediction model of a single 

edge cloud [8-9], as shown in Fig. 3. Furthermore, our proposed prediction module is made up of 

several stacks of attention-based LSTM layers. Each layer operates as the corresponding part of the 

basic LSTM cell with a attention mechanism. 

3.1 LSTM cell 

First, within each time interval, we extract the peak value from the actual traffic-flow wave 

serial data, i.e., the input data set, V = {𝑉ଵ, 𝑉ଶ, … , 𝑉௧}, where 𝑉௧ is the peak mobile-traffic flow at 

the current time slot 𝑡௖ . We seek to predict the peak mobile-traffic flow 𝑉௧ାଵ  at the next time 

instant 𝑡௖ାଵ. The solution process of a single LSTM cell is presented in the following formula (1) 

[10]. 

𝑓௧ = 𝜎(𝑊௙ ∙ [ℎ௧ିଵ, 𝑉௧] + 𝑏௙) 

𝑖௧ = 𝜎(𝑊௜ ∙ [ℎ௧ିଵ, 𝑉௧] + 𝑏௜) 

𝐶௧
෩ = 𝑡𝑎𝑛ℎ(𝑊஼ ∙ [ℎ௧ିଵ, 𝑉௧] + 𝑏஼)           (1) 

𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶௧
෩  

𝑜௧ = 𝜎(𝑊௢ ∙ [ℎ௧ିଵ, 𝑉௧] + 𝑏௢) 

ℎ௧ = 𝑜௧ ∗ 𝑡𝑎𝑛ℎ(𝐶௧) 

where, 𝑓௧ , 𝐶௧, ℎ௧  signify the forgetting gate, the input gate, and the output gate, respectively. 

𝑊௙, 𝑊஼ 𝑏௙ and 𝑏஼ represent the weights and the bias factors of the forgetting gate and the input 



gate, respectively. Furthermore, σ  and 𝑡𝑎𝑛ℎ  are activation functions. The flow feature ℎ௧  is 

extracted from a single LSTM model. 

3.2 Attention model 

An attention model is widely used in natural language processing (NLP) area [16]. It is used to 

improve the neural network machine translation (NMT) as a sequence to sequence (encoder to 

decoder) model as in the case of the human brain, which pays different attentions to different events. 

In this section, we introduce the attention mechanism to improve the weight of the peak value in 

mobile traffic flow prediction. Such a mechanism aims to exploit any correlation between some key 

input features and output values. 

Assume the output set of 𝑖௧௛   LSTM layer is ℎ௜ = ൛ℎଵ
௜ , ℎଶ

௜ , … , ℎ௧
௜  ൟ , where i ∈ {1,2, … , 𝐿} . 

Therefore, the intermediate code κ = ℎ௜ିଵ represents the output state of a series LSTM cells in 

(𝑖 − 1)௧௛ layer, where ℎ௧
௜ିଵ = 𝐹൫𝐶௧ିଵ

௜ିଵ, ℎ௧
௜ିଶ, ℎ௧ିଵ

௜ିଵ൯. 𝐹(∙) indicates the LSTM process calculated 

by formula (1). When ℎ௧ିଵ
௜  is fed into the attention model, the intermediate code κ is used to 

conduct a 𝑡𝑎𝑛ℎ process to obtain the aggregation state 𝑚௧
௜ , as shown below: 

𝑚௧
௜ =  𝑡𝑎𝑛ℎ൫𝑊ச୫κ + 𝑊୦୫ℎ௧ିଵ

௜ ൯                        (2) 

where, 𝑊ச୫ and 𝑊୦୫ are the weights of the above two inputs. In order to get the highest value 

for 𝑚௧
௜ , we compute weights by a softmax function as: 

softmax൫𝑚௧
௜ ൯

௡
=

ୣ୶୮ (௠೙
೔ )

∑ ୣ୶୮ (௠ೕ
೔ )ೕ

                          (3) 

As 𝑚௧
௜   becomes larger, softmax൫𝑚௧

௜ ൯  converges more towards argmax൫𝑚௧
௜ ൯ . Then, we 

define 𝛼௧
௜ as the mapping of softmax൫𝑚௧

௜ ൯ in learning direction as shown below: 

𝛼௧
௜ =

ୣ୶୮ (ఠ೘
೅ ௠೟

೔)

∑ ୣ୶୮ (ఠ೘
೅ ௠೟

೔ )೅
೟సభ

                              (4) 

where, 𝜔௠
்  represents the transfer of matrix set [𝑊ச୫, 𝑊୦୫]. It should be noted that the value of 

𝛼௧
௜ tends to increase at high peak time, while dropping at a lower peak time. Thus, the output 𝑧௧

௜ of 

the attention model can be defined as: 

𝑧௧
௜ = ∑ 𝛼௧

௜ℎ௧
௜

௧                                 (5) 

Finally, we use the combination of the attention model output 𝑧௧
௜  and the LSTM cell output 

ℎ௧ିଵ
௜  from the previous time as the input data for the current time slot, i.e., 𝑉௧

௜ = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ௧ିଵ
௜ , 𝑧௧

௜), 

where such a process will be loop execution until i = L. 

3.3 Output layer 

A fully connected layer synthesizes the above-extracted features {ℎଵ
௅ , ℎଶ

௅ , … , ℎ௧
௅} in 𝐿௧௛  layer 

to obtain the output sequence P = {𝑃ଶ, 𝑃ଷ, … , 𝑃௧ାଵ} , where 𝑃௧ାଵ  corresponds to the predicted 

value of the mobile-traffic flow at the next time slot, 𝑡 + 1. By using a combination of the peak 

flow values from the previous time slots, we can then predict the value for every moment of mobile-

traffic flow in a time span (i.e., the predicted traffic-flow wave). 

To maximize the accuracy rate of the prediction (i.e., minimizing the root-mean-square error, 

which is used to measure the deviation between the observed value and the true value), the network 

should be able to accurately allocate the communication resources in order to prevent congestion 

according to the following formula (6). 

RMSE(𝑃, 𝑉) = ට
ଵ

்
∑ (𝑃௜ − 𝑉௜)ଶ்

௜ୀ௧ାଵ ∝ 0                       (6) 



Algorithm 1 shows the detailed training process of our intelligent mobile-traffic prediction 

using the proposed attention-based LSTM algorithm. The storage and computing capacity of edge 

clouds (i.e., base-stations or wireless access points) are usually insufficient, so a smaller and more 

accurate learning model is more suitable for high-reliability and low-latency services. Compared 

with the existing works, [8] uses a single LSTM cell to conduct prediction and [9] doesn’t include 

multi-layer mechanism. 

 

Thereinto, L can be dynamically adjusted according to the processing capacity of the edge 

nodes, whch makes our solution more versatile. In particular, as will be described in Section 4, our 

solution includes dynamic traffic control mechanism based on the prediction result which is not 

fully incorporated in [8] and [9]. Thus, our attention-based LSTM algorithm and IoT-Cloud 

architecture is more suitable for intelligent mobile traffic prediction and control. 

4. Intelligent mobile-traffic-flow control for IoT-cloud architecture 

A single edge cloud can only serve a limited number of users (i.e., a cell of a mobile network). 

In large cities where thousands of users or equipment are involved in many mission critical tasks, 

cooperation and interaction among multi-cells, multi-edge clouds, and the remote cloud can be 

crucially important. For instance, a rapid increase in the number of users and equipment accessing 

the internet can cause an unprecedented rise in mobile-traffic volume. This can easily affect the 

load-balancing, hence severely undermining the integrity of the entire network. More importantly, 

it goes against the goal of achieving high reliability and low latency as required by the uRLLC. 



Consequently, this has prompted us to further extend our intelligent resource allocation with mobile-

traffic-flow prediction and control that goes beyond a single-site structure. Therefore, we propose a 

multi-site IoT-cloud extension for an intelligent mobile-traffic control as described below. 

 

Fig. 4 Intelligent mobile-traffic-flow control for IoT-cloud architecture 

4.1 Multi-Site IoT-Cloud architecture 

Fig. 4 shows our proposed multi-site cloud structure where an IoT-Cloud module uses the same 

concept presented earlier in Section 2.2 (i.e., an IoT-Cloud architecture based on uRLLC). In a large-

scale network supporting uRLLC, each cell contains intelligent equipment of an uncertain quantity. 

While each equipment can communicate with the edge cloud at the edge of a cell, it can also 

communicate with other edge clouds. Normally, each equipment tends to select the edge-cloud 

offering the best communication link (usually, the nearest one) within a given time frame unless the 

remote cloud dispatches it in advance, based on the network congestion. In this case users will lose 

the accuracy rate due to packet loss when communicating with others. Often, it is called network 

switching. 

In the proposed multi-site scheme, each edge cloud predicts the mobile-traffic flow as 

described in Section 3 and reports the network status to the remote cloud. The remote cloud then 

invokes the mobile-traffic-flow control process by intelligently dispatching and allocating the 

communication and computing resources across the whole network. This enables more efficient 

interactions between users. 

4.2 Cognitive engine 

We introduce a cognitive engine to implement a high-performance artificial intelligence 

algorithm (including the mobile-traffic-flow prediction algorithm based on our attention-based 

LSTM scheme as described in Section 3) with the ability to store users' data in large quantities. With 

the help of Internet of Things traffic data in the edge clouds and remote clouds and our dynamic 

traffic-flow prediction, computing and data analysis can be offered with high precision. The 

cognitive engine can be divided into two types: resource cognitive engine and data cognitive engine. 

The detailed functions of the cognitive engine can be found in our previous study [20]. 

4.3 Intelligent mobile-traffic control 

There are three functional elements needed to meet the uRLLC requirements. These are: 

mobile-traffic prediction, communication resource scheduling, and computational resource 

allocation. To accurately execute these functional elements of the remote cloud, the edge cloud and 



user devices must be well synchronized. More specifically, a user device can reduce the flow of the 

backbone network when operating with simple local computing and offline caching. Furthermore, 

by participating in multi-site communications (with the help of network switching) mobile 

equipment can avoid local congestion. Edge clouds can cache and forward data in a lightweight 

manner. They can communicate with surrounding nodes, predict the mobile-traffic flow of a single 

cell, and notify the remote cloud in advance as an early warning in case of high-peak traffic flow. 

After completing complex cognitive computing, the remote cloud predicts the mobile-traffic flow 

on a large scale and dynamically dispatches the resources. With the help of a cognitive engine, 

balancing loads and stable communications of the whole network can be accomplished and the 

computing results returned as a feedback. 

(1) Edge-cloud selection 

In order to realize an intelligent mobile-traffic control based on the traffic-prediction algorithm 

of Section 3, we define a simple edge-cloud selection algorithm. First, we assume that the predicted 

traffic value for every edge cloud in the next time slot is 𝑇𝑟𝑎𝑓௜ = {𝑇𝑟𝑎𝑓ଵ, 𝑇𝑟𝑎𝑓ଶ, … , 𝑇𝑟𝑎𝑓ா}, where 

𝐸 represents the total number of edge clouds. This means that the predicted traffic flow of the whole 

network received by the cloud is 𝑇𝑟𝑎𝑓஼ = ∑ 𝑇𝑟𝑎𝑓௜
ா
௜ୀଵ  . Next, we assume 𝑠𝑔𝑛௜  represents the 

current signal strength of a user accessing the 𝑖௧௛ edge cloud. The choice of a user to access to the 

𝑖௧௛ edge cloud can be shown as: 

𝐸𝑑𝑔𝑒௔௖ = 𝑚𝑎𝑥 ቆቀ1 −
்௥௔௙೔

்௥௔௙಴
ቁ + 𝑠𝑔𝑛௜ቇ                      (7) 

This means that users will choose to send requests or offload computational tasks to the edge 

cloud with a lower traffic flow or a better signal strength and this would be beneficial for the load 

balancing of the network. 

(2) Traffic-adaptive resource allocation 

In order to reduce the average delay of a single edge cloud and ensure data-transmission 

efficiency, we define a traffic-adaptive resource-allocation mechanism within an edge cell. Thus, all 

the cells can carry out parallel computing and the entire network can use the above edge-cloud 

selection mechanism to achieve a better optimization. 

In our traffic-adaptive resource-allocation algorithm, we dynamically allocate a sub-carrier 

power to every device based on the predicted peak traffic flow [17], as shown below: 

argmax ∑ ∑
௖ೖ,೙

ே
𝑙𝑜𝑔ଶ ൤1 +

௣ೖ,೙ห௛ೖ,೙ห
మ

ேబ஻/ே
൨ே

௡ୀଵ
௄
௞ୀଵ                    (8) 

To ensure fairness amongst users, we also introduce the following proportional fairness 

constraints: 

𝐶ଵ: ∀ 𝑘, 𝑛, 𝑝௞,௡ ≥ 0 

𝐶ଶ: ∀ 𝑘, 𝑛, 𝑐௞,௡ ∈ {0.1} 

𝐶ଷ: ∀ 𝑛, ∑  𝑐௞,௡
௄
௞ୀଵ = 1                            (9) 

𝐶ସ: 𝑅ଵ: 𝑅ଶ: …: 𝑅௄ = 𝑟ଵ: 𝑟ଶ: …: 𝑟௞  

where 𝐾 is the total number of devices, 𝑁 represents the total number of available sub-carriers, 

and 𝐵 represents the total system bandwidth. Let’s assume the channel response of sub-carrier 𝑛 

for device 𝑘 is ℎ௞,௡. Then, the amplitude of the channel response is หℎ௞,௡ห and the channel-gain 

matrix isH = ቄหℎ௞,௡ห
ଶ

, 𝑘 = 1,2, … , 𝐾, 𝑛 = 1,2, … , 𝑁ቅ. 𝑁଴𝐵/𝑁 represents the noise power of each 

sub-carrier, 𝑐௞,௡  is the indicative factor. Constraint 𝐶ଶ  represents a range of sub-carrier power 



allocation, i.e., 𝑐௞,௡ = 1 means that the sub-carrier 𝑛 is allocated to the device 𝑘, while 𝑐௞,௡ = 0 

indicates otherwise. 𝑝௞,௡ is the allocated power of the sub-carrier 𝑛 for the device 𝑘, which is 

also the power resource we need to optimize. 𝐶ସ  represents the time-slot proportional fairness 

constraint where the data rate 𝑅௄ of device 𝑘 can be expressed as: 

𝑅௞ = ∑ 𝑐௞,௡𝑙𝑜𝑔ଶ ൤1 +
௣ೖ,೙ห௛ೖ,೙ห

మ

ேబ஻/ே
൨ே

௡ୀଵ                    (10) 

When the network loss is 𝑙 in time slot 𝑡, we can easily obtain the real data rate 𝑃௞ of device 

𝑘, according to the following formula: 

𝑃௞ = 𝑅௞(1 − 𝑙)                          (11) 

The objective function of the above optimization model is the system and rate capacity, i.e., 

the predicted traffic flow 𝑃௧ of the edge cloud in time slot 𝑡, as shown in formula (12). 

𝑃௧ = ∑ 𝑃௞
௄
௞ୀଵ =

∑ ோೖ௧(ଵି௟)಼
ೖసభ

௧
= ∑ ∑ 𝑐௞,௡𝑙𝑜𝑔ଶ ൤1 +

௣ೖ,೙ห௛ೖ,೙ห
మ

ேబ஻/ே
൨ (1 − 𝑙)ே

௡ୀଵ
௄
௞ୀଵ        (12) 

Then, we can obtain the average delay 𝐷௧௢௧௔௟
തതതതതതതത of the cell. 𝐷௧௢௧௔௟

തതതതതതതത can be divided into two parts, 

including the transmission delay 𝐷௧௥௔௡
തതതതതതത and propagation delay 𝐷௣௥௢௣

തതതതതതത, as shown in formula (13) 

below: 

𝐷௧௢௧௔௟
തതതതതതതത = 𝐷௧௥௔௡

തതതതതതത + 𝐷௣௥௢௣
തതതതതതത =
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5. Experimental results 

We trained and tested our model based on the historical mobile-traffic-flow data set cached 

at our local server (edge cloud), in turn based on the attention-LSTM algorithm. Then, the trained 

prediction model was deployed at an edge-cloud to predict the traffic flow dynamically. Our 

experimental set up was based on a closed room containing: a cloud server, 3 local servers, and 15 

smart devices. A total of 5000 pieces of data were collected from the historical mobile traffic-flow 

data set, involving time, packet quantity, packet size, device log, etc. The 5000 pieces of data were 

divided into a training set (3350 pieces) and a testing set for the prediction (1650 pieces). 

Fig. 5(a) shows the root-mean-square error (RMSE) and loss results of the training and 

prediction data sets, which have been referred to as training RMSE and prediction RMSE in this 

figure. For both cases, the RMSE and data losses after initially falling considerably with increasing 

memory time slot, continue to drop at a slower pace up to 300 s. While the training RMSE continues 

to drop, the prediction RMSE begins to increase. This indicates that after a memory time slot 

exceeds 300 s, the prediction results become out-fitted (i.e., less accurate). Thus, we use 300 s as 

the best input memory time slot in order to build our attention-based LSTM model to predict traffic 

flow in our subsequent experiments. The comparison results consisting of the real, training, and 

prediction traffic flows are shown in Fig. 5(b). Although there is insufficient historical training data, 

it is clear that the trend of the peaks and valleys of the predicted mobile-traffic flow is almost 

identical to the actual one. Fig. 5(c) compares different traffic-flow prediction algorithms, including 

backpropagation (BP) [18], autoregressive integrated moving average (ARIMA) [19] and attention-

based LSTM (with a memory time slot of 300 s for our approach). The experimental results show 

that our algorithm is capable of producing a far better traffic-prediction accuracy. This can 

consequently contribute to the effectiveness of the traffic-flow control, which will be examined next. 



Subsequently, we deployed our mobile-traffic-flow prediction algorithm on a cloud server, 

and scheduled the wireless access resources based on the predicted traffic peak [20]. In these 

experiments, we evaluate the packet-loss rates and average transmission latency of service requests 

from specific equipment received by the cloud. The results are shown in Figs. 6(a) and Fig. 6(b), 

respectively. Due to the small packets sent by each device and the medium size processing capacity 

of our server, we can only compare the results based on a single user's requests under the following 

two modes of operation: 1) Intelligent Prediction and Control and 2) Traditional Transmission 

(without prediction and control). It is clear that the packet-loss rate in the traditional mode rises 

significantly as the mobile-traffic flow increases, which will reduce accuracy of computation and 

negatively influence QoE. We should point out that in our experiments, we obtain our packet-loss 

rates and average latency results using the least-squares method with two iterations. As indicated in 

Fig. 6, the proposed architecture can effectively improve both the packet-loss rate and the latency 

as compared with the traditional mode. 

Under the proposed intelligent mobile-traffic-flow control strategy, the cloud will initiate 

multi-site cooperation as soon as it receives notification of a peak mobile-traffic flow, which is sent 

by certain edge clouds. A specific user device will be notified to access another idle edge cloud to 

compute the tasks-transmit service. This greatly balances network load and guarantees stable 

transmission of the users' requests as well as effectively control the latency. However, when there is 

low mobile-traffic flow, the latencies of both schemes are almost identical. This is mainly because 

users tend to select the best edge cloud (e.g., nearest) for communication when the channel is idle. 

As the mobile-traffic flow increases, the network transmission becomes saturated. Under these 

conditions, the latency of both schemes increases exponentially, but the proposed approach would 

be able to control transmission latency more effectively. 

 
(a) The tradeoff of memory time slot 

 
(b) Traffic prediction using attention-based LSTM 



 

(c) Traffic prediction comparison 

Fig. 5 Comparison of the predicted traffic flow and the real traffic flow 

 

(a) Packet-loss comparison 

 

(b) Average delay comparison 

Fig. 6 Performance evolution 



6. Open Issues 

Although we have discussed the prediction algorithm and the control architecture of mobile-

traffic flow targeting the uRLLC service, there are still many open issues that will need to be 

explored in the future, e.g., 

(1) Interactive map and prediction of the users' mobility 

Radio maps are an important component of 5G. They can provide useful information in the 

service area about radio signal strength, channel conflict, channel interference, etc.  Nodes 

representing edge clouds are fixed, but the mobile-network environment changes easily. This 

requires a continuous update of the radio maps so that users can dynamically choose the best edge 

cloud. Obviously, users' mobility is an important factor for predicting mobile-traffic flow, which 

helps the remote cloud to ascertain the peak of the group in a certain place in advance [21]. In this 

case, the mobile-traffic flow received by an edge cloud in densely populated areas can possibly be 

transferred to another edge cloud for processing. This helps to balance the network load. 

(2) Edge-cloud sharing strategy 

Due to the mobility of users, the popularity of content, and the high reliability of uRLLC 

requests, latency can be reduced to an acceptable level. Therefore, the mobile-traffic-flow prediction 

and control strategy realized in a single-site cell can be used repetitively and shared with other edge 

clouds. Learning algorithms must be deployed in each edge-cloud in order to provide a more 

intelligent interactions among different base-stations and to learn an appropriate resource-dispatch 

mode. The same edge cloud will predict the contents requested in advance or predict the mobile-

traffic flow of other edge clouds. 

(3) Risk perception of the Remote cloud 

Users' requests or data transmissions have priority. The events with small probability, such as 

alarms and notices, might involve safety concerns. Therefore, the system must anticipate risks in 

the process of predicting and controlling mobile-traffic flow by predicting the priority of the users' 

requests [22]. Limited communication and computing resources will be allocated to each  task. We 

can use an online learning algorithm (such as Q-Learning) in machine learning for remote clouds 

on the basis of predicting mobile-traffic flow. By training and learning historical risk data sets, 

shared wireless resources in networks can be dispatched in the future. 

7. Conclusion 

This paper summarizes the three application scenarios of 5G, namely eMBB, mMTC and 

uRLLC. We have proposed an IoT-Cloud-based architecture in support of the uRLLC application 

scenario. In particular, we have described the issue of mobile-traffic flows and their effect on the 

interaction between user devices, edge clouds and remote clouds. To achieve high reliability and 

low latency of communications, we first use an attention-based LSTM algorithm to predict the 

mobile-traffic flow in a single-site mode. Then, the remote cloud collects the traffic-flow predictions 

of multiple sites. With support of the cognitive engine and mobile-traffic control modules, the 

mobile-traffic flow for the entire network is predicted and controlled intelligently. Based on an IoT-

Cloud, the performance of the proposed traffic-adaptive resource allocation algorithm is then 



evaluated. The experimental results verify that our mobile-traffic-flow prediction algorithm can 

indeed accurately predict mobile-traffic flow and is therefore capable of effectively reducing both 

the latency and the packet-loss rate. Finally, we discuss some open issues, including: interactive 

maps and prediction of the users' mobility, edge-cloud sharing strategies, and the risk perception of 

remote clouds. This offers deeper research orientations in mobile-traffic prediction. 

In the future, we will further verify our intelligent mobile-traffic-flow control architecture, 

based on an IoT-Cloud. Furthermore, the prediction of users' mobility, which can play a major role 

in mobile-traffic-flow prediction, will also be investigated. The algorithm for dispatching 

communication resources and computing resources, together with the corresponding allocation 

scheme, will be further detailed. 
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