
PHYSICAL REVIEW A 101, 062303 (2020)

Generating Greenberger-Horne-Zeilinger states with squeezing and postselection
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Many quantum state preparation methods rely on a combination of dissipative quantum state initialization
followed by unitary evolution to a desired target state. Here we demonstrate the usefulness of quantum
measurement as an additional tool for quantum state preparation. Starting from a pure separable multipartite
state, a control sequence, which includes rotation, spin squeezing via one-axis twisting, quantum measurement,
and postselection, generates highly entangled multipartite states, which we refer to as projected squeezed (PS)
states. Through an optimization method, we then identify parameters required to maximize the overlap fidelity
of the PS states with the maximally entangled Greenberger-Horne-Zeilinger (GHZ) states. The method leads to
an appreciable decrease in the state preparation time of GHZ states for successfully postselected outcomes when
compared to preparation through unitary evolution with one-axis twisting only.
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I. INTRODUCTION

The emerging technologies of quantum computing, quan-
tum communication, and quantum sensing rely principally
on quantum phenomena such as superposition and entan-
glement for their unique capabilities. These phenomena al-
low quantum computational devices to overcome limits set
by their classical counterparts in the computational speed
of complex algorithms. Furthermore, quantum sensors [1],
i.e., devices which utilize quantum correlations to improve
measurement sensitivity by suppressing phase noise in mul-
tiparticle interferometry [2–4], demonstrate the potential of
quantum-enhanced technology. Examples include enhanced
performance in atomic clocks [5,6], magnetic field detection
[7], and precision of frequency measurements [8,9].

To this end, it becomes paramount to develop well-defined
and efficient protocols to produce and further exercise control
over states of quantum bits that exhibit desired quantum
mechanical traits. Our investigation focuses on establishing a
protocol that uses quantum control operations combined with
measurement and postselection to produce highly entangled
metrologically relevant states. We will refer to these states as
projected squeezed (PS) states. We further study optimization
of the control parameters that produce maximal overlap of the
projected squeezed state with the well-known Greenberger-
Horne-Zeilinger (GHZ) state (commonly referred to as the
maximally entangled state or GHZ state; see [10–14]). For
a multipartite system consisting of N qubits, the GHZ state
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reads as follows:

|GHZ〉 := |0〉⊗N + |1〉⊗N

√
2

. (1)

Due to their high level of entanglement, the GHZ states are
of importance in various applications such as metrology [11],
quantum teleportation [15], quantum computing [16], and
quantum secret sharing [17]. There are numerous proposed
schemes for producing GHZ states, particularly in the context
of cavity quantum electrodynamics [18–23]. Some of the most
successful implementations have been in trapped-ion systems,
where 14-ion GHZ states [24] and more complex entangled
states of up to 20 ions [25] have been observed. Recently,
20-qubit GHZ states have been generated through unitary
evolution with Rydberg atom qubits [26] and superconducting
circuit qubits [27]. Using postselection in a linear optical sys-
tem, GHZ states of 10 photons have been reported [28]. More
recently, 12-photon entanglement [29] and 18-qubit hyper-
entanglement [30] have been demonstrated. Closely related to
the photon GHZ states are the so-called NOON states, which
also exhibit an improvement on the standard quantum limit
with regard to phase-error measurements [31]. A number of
proposed schemes for producing NOON states exist [32–35].

Our approach expands the typical suite of quantum state
preparation tools, which relies on dissipative state initial-
ization followed by unitary evolution, to include quantum
measurement. Examples of measurement-based state prepa-
ration include spin-squeezed states [36,37] and other highly
entangled states [38–43]. The particular example discussed
here illustrates that nontrivial speed-up can be achieved as
compared to state preparation with unitary evolution only.
This speed-up occurs for all successfully postselected mea-
surements, even though it might come at the cost of increased
overall preparation time due to the statistical nature of the
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postselection process. Nonetheless, this aspect may be of in-
terest to beat decoherence timescales in appropriate scenarios.

The setup we have in mind is an ensemble of two-level
systems, with eigenstates represented in the collective pseu-
dospin basis (also known as the Dicke state basis [44]).
The projected squeezed state is produced through a sequence
of control operations including initialization, rotation, spin
squeezing [45], quantum measurement, and postselection.
Experimentally, the main technical challenge is carrying out
a projective measurement of the collective spin projection
quantum number (as opposed to a measurement in the single-
particle basis), as all other aspects are well established.

The one-axis twisting spin-squeezing operator (also known
as the Kitagawa shearing gate), which was introduced in
a seminal paper [45], is described by the following unitary
transformation:

ÛSq(t ) = exp
( − iχt Ĵ2

z

)
. (2)

One-axis twisting has been realized with trapped ions [46],
neutral atoms [47,48], and superconducting circuits [27].
Here, χ quantifies the strength of the squeezing interaction,
and

Ĵk :=
N∑
i

1

2
σ k

i , (3)

where k = x, y, z and σ k
i is the k component of the usual Pauli

spin operator for the ith two-level system in an ensemble of
N systems. This definition preserves the spin commutation
relation [Ĵx, Ĵy] = 2iεxyzĴz for the pseudospin Ĵ2 = Ĵ2

x + Ĵ2
y +

Ĵ2
z . In what follows, we will restrict ourselves to a subspace of

the full pseudospin Hilbert space, namely, the fully symmetric
(Dicke) eigenstates for which
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A method for constructing the Dicke states from the single
spin basis is discussed in [46].

II. METHOD

We now describe the steps in the state preparation protocol.
As an initial state, we choose the pure, separable state

|ψ (0)〉 =
∣∣∣∣N

2
,

N

2

〉
. (4)

The protocol, in sequence, consists of the following
operations:

Step 1. An initial rotation by π
2 about the x axis to form

what is known as the coherent spin (CS) state,

|CS〉 = 1

2N/2

N
2∑

M=− N
2

(
N

N
2 + M

)1/2∣∣∣∣N

2
, M

〉
. (5)

We can visually represent any state |ψ〉 on the Bloch
sphere by considering the modulus squared of the projec-
tion of that state onto a rotated coherent spin state, H =
|〈ψ |exp(−iφĴz )exp(−iθ Ĵx )|CS〉|2, where θ and φ are, respec-
tively, the polar and azimuthal angles. These are commonly
referred to as Husimi plots [49]. This projection, when |ψ〉 =
|CS〉, is shown on a unit sphere in Fig. 1(a). It shows that the
rms width of H is uniform in all directions for this case.

Step 2. The coherent spin state then undergoes squeezing
by the unitary transformation given by Eq. (2), where the
magnitude of squeezing is controlled by choices of the squeez-
ing parameter χt [46]. This is shown in Figs. 1(b) and 1(c)
for different values of χt . As we can see, when acting on a
coherent spin state, the squeezing operator reduces the spin
uncertainty along one spin axis at the expense of increasing
the uncertainty along an orthogonal spin axis. The uncertainty
is stretched symmetrically about an axis tilted slightly with
respect to the x axis, as opposed to the x axis itself [see
Figs. 1(b) and 1(c)]. This is known as the antisqueezing axis.
To maximize the overlap fidelity with the GHZ state, it is
necessary, for low squeezing values (χt � 0.25), to rotate
about the y axis such that the antisqueezed axis is aligned
with the x axis (the magnitude of rotation can be determined
empirically, by maximizing the probability distribution on the
equatorial plane, or analytically; see Eq. (3) of [45]). Note
that no rotation is required for larger squeezing values of
χt = 0.4 (or π/4), since for these values the antisqueezed axis
is already aligned with the x axis.

A choice of the squeezing parameter of approximately
χt = 0.25 starts producing a projection sufficiently flat so as
to create a probability ring that wraps around the sphere [as
shown in Fig. 1(c)].

Step 3. Following the squeezing, we rotate about the x axis
until the ring is aligned with the z axis, as shown in Fig. 2.

Step 4. The appropriate quantum measurement is carried
out and the desired state is postselected based on the measure-
ment outcome. The Kraus operators that describe our quantum
measurement are chosen as follows:

AC :=
∑

M

√
Pr(M|C)

∣∣∣∣N

2
, M

〉〈
N

2
, M

∣∣∣∣, (6)

with Gaussian probability distribution

Pr(M|C) := 1√
2πσ 2

exp

[
− (M − C)2

2σ 2

]
. (7)

As required, the operators AC obey the normalization
condition

∫
ACA†

CdC = I . Physically, a measurement of AC′ ,
with outcome C′, will project an initial wave function onto
a superposition of states |N

2 , M〉 with amplitudes following a
Gaussian distribution and centered on C′, with width σ .

Since the set of allowed measurement outcomes {C}C∈R is
continuous, the resultant quantum state after measurement is
thus given by

ρ �→ ρ̃final = ACρA†
CdC

Tr[ACρA†
CdC]

, (8)

where ρ denotes the density matrix that describes the state
of our system, and Tr[ACρA†

CdC] is the probability density to
observe a measurement outcome in the interval [C,C + dC]
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FIG. 1. Husimi plot of the CS state after varied squeezing (N = 50).

(see [50]). For computational purposes, we have to discretize
the distribution Pr(M|C) by binning the C axis and integrating
over each bin to obtain probabilities instead of probability
densities, thus allowing us to model the measurement statistics
numerically.

To generate the desired state, the quantum measurement
defined by Eq. (6) is executed, and only outcomes with
C ≈ 0 are postselected. This produces what we refer to as a
projected squeezed state, henceforth denoted |PS〉. The re-
sultant state after measurement, as shown in Fig. 3, consists
of two probability lobes concentrated on opposing sides of
the Bloch sphere. Here we used N = 50, χt = 0.4 and mea-
surement operator variance σ 2 = 22 for optimization reasons
which will be discussed shortly.

Step 5. Finally, we generate a state which closely resembles
the GHZ state by executing a rotation by π

2 about the y
axis. Then, the resemblance to the GHZ state is quantified
by computing the measure of the “closeness” of two pure

FIG. 2. Husimi plot of the spin state at step 3 of the protocol.

quantum states: F = |〈PS|GHZ〉|2, where |GHZ〉 is defined
by Eq. (1). F is known as the overlap fidelity.

For completeness, we plot in Fig. 4 the modulus squared of
the probability distribution of the PS state in the Dicke basis
as generated in step 4 of the protocol, and after the rotation
about the y axis in step 5. It shows that any imperfect overlap
is due to the unintended occupation of close-lying states other
than |N

2 ,±N
2 〉 with small probability amplitudes.

FIG. 3. Husimi plot of projected spin state (step 4).
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FIG. 4. Probability coefficients of the PS state in a Dicke state
basis.

III. OPTIMIZATION

A numerical optimization method (random walk–Markov
chain Monte Carlo (MCMC)-type regime; see [51,52]) is now
employed to find parameters of σ 2 and χt that maximize the
overlap fidelity with the GHZ state.

Given initial values of σ 2 (the variance used in defining
the measurement operators) and χt (the squeezing param-
eter), we define an initial vector (σ 2

0 , χt0). The numerical
algorithm stochastically traverses the parameter space in steps
(dσ 2, dχt ) by evaluating the vector

(
σ 2

1
, χt1

)
:= (

σ 2
0 , χt0

) + (dσ 2, dχt )

for each iteration. The increments dσ 2 and dχt are random
variables in that they are respectively chosen from Gaussian
probability distributions centered at zero (with the variance
of these Gaussian distributions appropriately chosen to min-
imize the time of computation). For iteration n, the overlap
fidelity is computed for parameter values (σ 2

n , χtn). If the
fidelity is increased, the new vector is retained; otherwise, we

FIG. 5. Maximal GHZ overlap fidelity for varied squeezing times.

FIG. 6. Overlap fidelity of PS and GHZ states as a function of
σ 2, for varied N (χt = 0.40).

reject the step and retain the previous vector (σ 2
n−1, χtn−1).

Subsequently, we compute a new vector and again compare
this to the previous one. This process is continued until we
identify parameters which produce an overlap fidelity value
that is greater than or equal to a fixed threshold value. With
N = 50, this optimization leads to a maximum of F ≈ 0.97
for the parameters χt ≈ 0.40 and σ 2 = 22.

IV. ANALYSIS AND EFFICIENCY

To map out cross sections of the optimization landscape,
we fixed individual parameters (after they have been opti-
mized) while allowing the others to vary. This first shows that
the maximum fidelity monotonically increases with increasing
particle number N , as illustrated in Fig. 5, for different values
of χt .

In Fig. 6, χt is fixed at 0.40 and the fidelity is plotted as
a function of σ 2 for different particle numbers. It confirms
that the maximum fidelity increases with N and shows that
at larger particle number, the protocol is much less sensitive
to variations in σ , producing high fidelity over wider regions
of the variance. Figure 7 shows the fidelity as a function
of variance for fixed N = 50 and for different values of
the squeezing χt . There is no clear monotonic relationship
between F and χt , but rather we attain local maxima in F
values for χt ∈ {0.10, 0.15, 0.20, 0.25, 0.40, π/4}.

It is important to note that an exact GHZ state can be
produced (with F = 1) by using only the squeezing interac-
tion with χt = π

2 and a rotation.1 We emphasize that given
χt ≈ 0.25 (or 0.40), our measurement-based protocol pro-
duces highly entangled GHZ-type states about a factor 6 (or,
respectively, a factor 4) faster than the coherent protocol with

1In principle, the PS state protocol could be employed to produce
a state with F → 1 as σ 2 → ∞ (for χt = π

2 ). This is clear since as
the variance σ 2 → ∞, the Gaussian distribution (7), which defines
our Kraus measurement operators, tends to a uniform probability
distribution and therefore the measurement operator, for C′ = 0,
approaches the identity.
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FIG. 7. Overlap fidelity of PS and GHZ states as a function of
σ 2, for varied squeezing times (N = 50). For clarity, we show two
perspectives of the data. Top: F is plotted for various χt on the same
axes as indicated by the legend. Bottom: The same data as in the top
panel in a 3D plot shows that the increase in maximum fidelity is
not a monotonic function of χt . Curves outlined in red have local
maxima in fidelity as a function of χt .

χt = π
2 . As such, this measurement-based protocol may be

preferable when the relevant decoherence timescale is close

FIG. 8. Probability density distribution of measurement out-
comes, C, for varied squeezing times (N = 50).

FIG. 9. Husimi plot of premeasurement squeezed state (χt ≈
0.40) rotated back about the x axis.

to χt = π
2 and as long as the increase in total time (including

state preparation time and multiple attempts to guarantee a
successful postselection) can be tolerated.

Over and above high overlap fidelity, an important consid-
eration is the efficiency with which the PS state is produced.
We will characterize a state preparation protocol as efficient
if it requires low squeezing parameter χt (hence, less time
required for squeezing), produces high overlap fidelity GHZ,
and, given the inherent stochastic nature of the process, has a
high measurement outcome probability.

Using the MCMC optimization protocol, we find that
maxima in the overlap fidelity between the PS and GHZ
states (varying N and σ 2) occur for low squeezing values
χt ∈ [0.10, 0.25] and for specific higher squeezing values

FIG. 10. Husimi plot of premeasurement squeezed state
(χt ≈ π/4) rotated back about the x axis.
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FIG. 11. Selected plots of F as a function of the measured outcome C. The vertical green lines indicate the range of outcomes C that yield
F values falling in the range [·, ·] indicated in the text box in each subfigure. The total likelihood Pr[·] of observing one of those outcomes is
also indicated.

χt ∈ {0.40, π
4 } (χt = π

2 , as stated above, requires no mea-
surement). We plot in Fig. 8 the probability density for
obtaining measurement outcomes {C}C∈[−50,50] for the afore-
mentioned squeezing times. For comparison, the full pre-
measurement Husimi plots are shown in Figs. 2, 9, and 10
(χt ∈ {0.25, 0.40, π

4 }).

There are distinct probability peaks in each of the proba-
bility distributions represented in Fig. 8. These peaks are due
to the probability lobes seen in the Husimi plots of the rotated
squeezed state. The maxima of the central peaks correspond
to our desired postselected outcome C′ = 0. Figure 11 plots
the overlap fidelity F for select local maxima squeezing

TABLE I. The range (co-domain) R(·) of the overlap fidelity F taken over some chosen interval C ∈ [·, ·] of measurement outcomes and
the respective probability Pr[·] of obtaining outcomes in this interval. For χt = π/4, we show results for [−10, 10], [−5, 5], and [−2, 2]
measurement outcome intervals as the range of GHZ overlap fidelity for the [−2, 2] interval is already of the order of 10−3.
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parameters and highlights the resultant fidelity (for specific
measurement outcome intervals). It shows that for χt ≈ 0.40,
measurement outcomes in the range [−5, 5] have overlap fi-
delities in the range [0.80, 0.97]. The probability of obtaining
a measurement result in this range is 0.16 (approximately
one success for every six trials). There is therefore a very
reasonable success ratio for projecting on states with at least
moderately high overlap with the GHZ state.

Squeezing parameters χt ≈ 0.25, 0.40 and π/4, respec-
tively, yield maximal PS and GHZ state fidelity values (given
a measurement outcome C′ = 0) of 0.97, 0.97, and 0.99.
A salient feature of squeezing χt ≈ π/4, as compared to
χt ≈ 0.25 or 0.40, is that the desired postselected measure-
ment outcome C′ = 0 is the most probable outcome (see
Fig. 8).

Efficiency results

In Table I, we summarize the efficiency of the protocol
by showing the range (codomain) of F for particular mea-
surement outcome intervals. The analysis presents results for
the optimized set of squeezing parameters (with σ 2 chosen
accordingly).

V. DISCUSSION

Using the method presented, one can create GHZ states
with high fidelity in quantum spin systems. In trapped ion
and neutral atom systems, state detection conventionally relies
on fluorescence scattering from a dipole-allowed closed-cycle
transition. This, however, projects the spins in the single-

particle basis rather than the Dicke basis, which makes it
an unsuitable quantum measurement for our purposes. In
trapped-ion systems, one potential method for executing the
collective measurement is to do state-dependent excitation of
the ion motion using the optical dipole force [3]. The image
current induced in the ion trap electrodes is expected to be
proportional to the projection quantum number M and not to
the individual ion state. This can be used to implement the
measurement operator in Eq. (6).

Starting with the pure separable state |ψ〉 = |N
2 , N

2 〉, we
showed that by using a combination of spin squeezing, quan-
tum measurement, and postselection, it is possible to generate
many-particle GHZ states with high fidelity (F > 0.99). It is
a comparatively efficient method in the sense that despite its
stochastic nature, we produce these highly entangled PS states
for squeezing parameter χt that are significantly lower than
that required when doing coherent squeezing [Eq. (2)] only.
This may be beneficial for beating decoherence limitations in
some experiments.
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