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Optical evidence of the chiral magnetic anomaly in the Weyl semimetal TaAs

A. L. Levy,1,2 A. B. Sushkov,1 Fengguang Liu,1,3 Bing Shen,4 Ni Ni,4 H. D. Drew,1 and G. S. Jenkins5

1Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
2National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA

3Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, China
4Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA

5Laboratory for the Physical Sciences, College Park, Maryland 20740, USA

(Received 19 October 2018; revised manuscript received 19 November 2019; accepted 15 January 2020;
published 4 March 2020)

Chiral pumping from optical electric fields oscillating at terahertz frequencies is observed in the Weyl material
TaAs with electric and magnetic fields aligned along both the a and c axes. Free-carrier spectral weight
enhancement is measured directly, confirming theoretical expectations of chiral pumping. A departure from
linear field dependence of the Drude weight is observed at the highest fields in the quantum limit, providing
evidence of field-dependent Fermi velocity of the chiral Landau level. Implications for the chiral magnetic effect
in Weyl semimetals from the optical f -sum rule are discussed.
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I. INTRODUCTION

Weyl fermions are massless, chiral particles that play an
important role in electroweak interactions but have yet to
be observed. Recent theoretical developments in topological
condensed matter systems predict emergent Weyl excitations
described by the same underlying physics [1–5]. These excita-
tions in Weyl semimetals display unique physical phenomena
including the existence of pairs of 3D Dirac cones with in-
dicative spin textures near nodes, Fermi arc surface states [4],
enhanced longitudinal magnetoconductivity [6], and novel
plasmonic [7] and photovoltaic properties [8,9].

Despite various experimental observations consistent with
the predicted properties of the emergent Weyl states [10–13],
evidence of one of its key characteristics, the chiral pumping
effects arising from the Adler-Bell-Jackiw chiral anomaly, is
not certain. The chiral pumping effect is predicted to result
in an enhanced free-carrier Drude spectral weight when the
electric and magnetic fields are applied in parallel (e ‖ B)
[1,7]. Bulk transport experiments report a negative longi-
tudinal magnetoresistance [10–13], qualitatively consistent
with chiral pumping. However, effects from current jetting
and off-diagonal components of the magnetoresistivity tensor
are known to cause negative longitudinal magnetoresistance
for systems with highly mobile charge carriers, leaving the
observation of chiral pumping under intensive debate [13–16].
Furthermore, the Weyl scattering rate is expected to depend on
magnetic field, obfuscating direct comparison between elec-
tronic transport data and predicted free-carrier Drude weight
enhancements. This is particularly problematic in the quantum
limit (QL), where the enhancement of the longitudinal magne-
toresistance observed in electronic transport [11,13] has been
attributed to nontrivial changes in both the Drude weight and
scattering rate under magnetic field [17].

All of these issues are addressed by performing broadband
magnetoreflectance measurements that detect chiral pumping

effects at terahertz (THz) frequencies. Current jetting effects
are circumvented because optical measurements do not re-
quire contacts, opening the possibility of measurements along
multiple crystal axes on the same crystal. Weyl Drude weight
enhancement and scattering rate are independently character-
ized by extending transport measurements into the frequency
domain. Direct observation of a Drude weight enhancement
using light whose polarization is parallel to an applied field
is especially significant since no optical signature is expected
from trivial (non-Weyl) carriers [18].

Magneto-optical results are presented in the Weyl system
TaAs in the e ‖ B ‖ a and e ‖ B ‖ c geometries, where e is
the polarization direction, B is the statically applied magnetic
field, and a and c are the crystal axes. A magnetic-field-
induced Drude weight enhancement, a hallmark signature
of the chiral magnetic anomaly, is observed in both geome-
tries. Section II discusses optical selection rules and expected
changes in reflectance for an ideal Weyl semimetal in the
e ‖ B geometry. In Sec. III, the optical response at zero field
is extracted from reflectance spectra for both e ‖ a and e ‖ c.
Sections IV and V present data and analysis of reflectance
spectra for e ‖ B ‖ a and e ‖ B ‖ c, respectively. The observed
enhanced Drude spectral weight is discussed. Evidence of
field dependence of the Fermi velocity is also observed in both
crystal orientations and naturally explained using the optical
f -sum rule.

II. EXPECTED OPTICAL RESPONSE
FROM AN IDEAL WEYL SEMIMETAL

Reflectance in the e ‖ B Voigt geometry is rarely used
to study material properties because expected signals are
typically very weak compared to other geometries. Since this
geometry is not typical, a review of the expected optical
signals is presented for an idealized Weyl system.

This section consists of two parts. The first explains the
selection rules in the e ‖ B Voigt geometry. In addition to
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showing expected changes in the optical conductivity of
interband transitions under magnetic field, these selection
rules show why a cyclotron mode is not expected in this
geometry. The change to the Drude weight due to Weyl
pockets is then discussed in the context of the f -sum rule.

The second part discusses the reflectance resulting from
changes in the Weyl interband and Drude contributions to the
optical response. Section II B discusses the expected changes
in conductance and reflectance with magnetic field.

A. Selection rules for e ‖ B

The e ‖ B Voigt geometry is rarely used since no change
in reflectance or transmission is expected from the free-carrier
response if oriented along the principal axis of a Fermi surface
[18]. For normal-incident light polarized along the principal
axis of a crystal in the e ‖ B geometry, the reflectance is given
by

R =
∣∣∣∣
√

εzz(ω) − 1√
εzz(ω) + 1

∣∣∣∣
2

, (1)

where R is the reflectance, ε(ω) is the dielectric response, and
z is the direction of the electric field polarization.

The selection rules for a Weyl semimetal in the e ‖ B
Voigt geometry with a magnetic field applied along the z

direction are discussed following the derivation reported in
Refs. [19,20]. When the ideal Weyl semimetal [described in
Eq. (A1) in Appendix A] is subjected to magnetic fields along
the z direction, the wave functions close to the Weyl point
k = (0, 0, k0) take the following form:

|ψn,b〉 = |n〉 ⊗
∣∣∣∣ 0
C↑nb

〉
+ b|n − 1〉 ⊗
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0

〉
, (2)

where n � 0 is the Landau level (LL) index, b = +(−)1
denotes states in the conduction (valence) band, and the spin
s along the magnetic field is denoted by ↑ or ↓. Coefficients
Csnb are given by [20]
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(3)

� is the energy gap at the saddle point between the Weyl
points that are separated in k space by k0. The field is taken
along the line node separating the two Weyl points for sim-
plicity. The wave function of the chiral n = 0 LL is given
by |ψ0〉 = |0〉 ⊗ |01〉. The magneto-optical conductivity can be
approximated through the Kubo formula:

σαβ (h̄ω) = − ih̄

2π l2
B

∑
n,n′,b,b′

∫
dkz

2π

f (Enb) − f (En′b′ )

Enb − En′b′

〈ψnb| jα|ψn′b′ 〉〈ψn′b′ | jβ |ψnb〉
h̄ω − (En′b′ − Enb) + ih̄�

, (4)

where f (E ) is the Fermi-Dirac distribution function, � is the scattering rate, and jα are the current density operators given by

jα = e
∂H

∂
α

(5)

with 
α = pα − eAα/c. For the ideal case, this gives

jx = evxσx,

jy = evyσy,

jz = e
h̄kz

m∗ σ0 + e�

h̄k2
0

kzσz. (6)

For e ‖ B, the current density matrix elements take the form
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These selection rules differ significantly from those for
Weyl pockets in the e ⊥ B geometry [20]. The first term in
the last line corresponds to interband transitions (IBTs), while
the second is the Drude response. All terms are proportional
to δn,n′ , so all IBTs must conserve LL index and there are

no cyclotron (gapped δb,b′ ) modes for e ‖ B ‖ z. This is also
the case for ellipsoidal pockets with quadratic dispersion, as
the strength of the cyclotron mode is proportional to �j × �B in
the pocket. While the curvature of the Fermi surface of the
hole pockets could lead to a small nonzero contribution, it is
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expected to be negligible for e ‖ B ‖ a and e ‖ B ‖ c owing to
the small angle of curvature and small proportion of spectral
weight involved in the off-diagonal response [18]. This point
is discussed further in Sec. IV(B).

Changes in the optical response from trivial carriers are
also expected to be negligible [18]. This is especially true of
the trivial hole carriers in TaAs, whose large Fermi surface
area perpendicular to the direction of the applied fields ensures
that they remain in the classical limit over our experimentally
accessible range [21]. Changes in both the IBT and Drude
contributions to the reflectance are therefore expected to be
dominated by Weyl carriers.

B. Changes in reflection spectra with magnetic field for e ‖ B

The expected change in the optical conductivity from inter-
band transitions of the Weyl pockets is illustrated in Fig. 1(a),
which shows the optical conductivity at zero field (red) and
finite field (black). A finite Fermi level Pauli-blocks optical
transitions in a Weyl pocket around ω = 2EF /h̄. Fermi’s
golden rule applied to a 3D Dirac band results in a linearly
increasing real conductivity σ1(ω) with frequency. Landau
levels form with the application of a magnetic field, and the
spacing increases with field. The lowest Landau level tran-
sition in the e ‖ B Voigt geometry is the −1 → 1 transition;
no IBTs involve the chiral n = 0 Landau level. The lost σ1

spectral weight from the interband transitions as magnetic
field increases is compensated by an equal increase in the
Drude weight, thereby satisfying the f -sum rule. At small
fields, the Weyl Drude weight is theoretically predicted to
increase quadratically with field, and rolls over to a linear
behavior at higher fields [1,6,22].

Changes in the Drude weight are measurable through σ1

or ε1. If the optical probe measures frequencies compara-
ble to the scattering rate, then the Drude conductivity can
be spectrally resolved in σ1. However, if this is not the
case and the lowest probed frequency is much greater than
the scattering rate, the strength (spectral weight) of the Drude
response is measurable by ε1. This approach has typically
been used to optically characterize the free-carrier (Drude)
condensate weight at zero frequency in superconductors.

In simple metallic systems with only a Drude conductiv-
ity contribution, the dielectric function ε near the screened
plasma frequency, where ε crosses zero, shown for both zero
and finite field in Fig. 1(b), results in a local minimum in the
reflectivity preceded by a sharp rise in reflectivity that must
approach 100% at low frequency. Any hypothetical increase in
Drude weight will shift this zero crossing to higher frequency.

The Weyl reflectance derived from the expected Drude
and IBT optical response with and without applied field is
shown in Fig. 1(c). The overall behavior is metallic. The
screened plasma frequency blueshifts with increasing field
[Fig. 1(b)], thereby shifting the reflectance edge [Fig. 1(c)].
The small deviation between the screened plasma frequency
and the minima in reflectance is due to the presence of IBT
contributions to σ1 at the screened plasma frequency.

Figure 1(d) shows the change in reflectance with applied
field, �R/R = R(B)−R0

R0
. The peak corresponds to the steepest

part of the reflectance edge that blueshifts with the screened
plasma frequency as shown in Fig. 1(c).
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FIG. 1. Drude weight changes in Weyl semimetals subjected
to parallel e and B fields are measurable even if the free-carrier
scattering rate is much smaller than the lowest measured frequency.
(a) The real part of the optical conductivity (σ1) as a function of
frequency (ω) is shown for an ideal Weyl semimetal at zero magnetic
field (red) and finite magnetic field (black). The optical conductivity
at finite field was obtained using Eqs. (4) and (7). The oscillations
in σ1 at finite field are due to interband transitions from the nth
Landau level of the valence band to the nth Landau level of the
conduction band. (b) The real part of the dielectric response ε1(ω) for
the ideal Weyl semimetal at zero magnetic field and finite magnetic
field are shown in red and black, respectively. A horizontal, dashed
orange line demarcates ε1 = 0. The frequency at which ε1 = 0 is
the screened plasma frequency, which is visually represented by the
dashed red and black vertical lines for B = 0 and B > 0, respectively.
This is obtained using a Kramers-Kronig transformation of �σ1.
(c) Reflectance is calculated from the contributions to the optical
response shown in (a) and (b) arising from Weyl interband transitions
and free-carrier response for zero and finite field (red and black,
respectively). The characteristic shift in the reflectance (screened)
plasma edge gives a measure of the Drude weight enhancement.
(d) The real part of the optical conductivity (σ1) as a function of
frequency (ω) is shown for an ideal Weyl semimetal at zero magnetic
field (red) and finite magnetic field (black) e ‖ B.

The oscillations in reflectance above the plasma edge arise
from local maxima in the joint density of states associ-
ated with interband transitions. They are broadened by finite
scattering and transition rates, decreasing their already small
signature.
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FIG. 2. (a) The top panel reports reflectivity spectra R performed on a TaAs single crystal in the ab plane at zero field in the e ‖ a geometry.
Multiple temperatures are reported that range from 300 K (red) to 10 K (black) with a superimposed fit (blue). The resulting low-temperature
optical response functions are shown in the lower two panels. The inset shows the reflection taken over a broader spectral range. (b) Similarly,
the zero-field reflectivity data and optical response functions are reported for the e ‖ c geometry in the ac plane. (c) Magnetic-field-induced
changes in reflectivity �R, normalized by the zero-field value R0, are measured in the Voigt geometry on the as-grown ab facet with e ‖ B ‖ a
in the ab plane at 10 K (blue) and fit (red). A dominant peak appearing near the screened plasma frequency is indicative of the chiral pumping
effect. Spurious noise in a 2 meV band centered at 21 meV and replaced with a linear interpolation (thin blue dashed line). (d) �R/R0 data are
reported with e ‖ B ‖ c on a polished ac plane. (e) The enhanced Drude weight, reported as the change in the bare plasma frequency �(ω2

p), is
derived from the fits in (c) and (d) and plotted as a function of magnetic field.

III. MEASURED OPTICAL RESPONSE IN ZERO FIELD

Magneto-optical measurements are performed using
Fourier transform infrared (FTIR) spectroscopy. TaAs is a
low-doped Weyl semimetal [2]. It is noncentrosymmetric with
two types of Weyl chiral-conjugate pairs: four pairs of one
type (W1) and eight pairs of another type (W2) [2,3,23]. The
W1 nodes are 13 meV lower in energy than W2 nodes, leading
to smaller relative chemical potentials above the node in the
W2 pockets [2,11,21,24–26]. The total free-carrier response is
a combination of these 24 Weyl pockets and 8 identical trivial
hole pockets.

Single crystals of TaAs are grown by the chemical vapor
transport method as described in Ref. [10]. Optical measure-
ments on a thick single crystal are reported on the as-grown
ab facet and a mechanically polished ac plane, which accom-
modates a 5 mm and 1.8 mm diameter aperture, respectively.
FTIR spectroscopy measurements are performed at normal
incidence in fields up to 8 T in the e ‖ B Voigt geometry,
results that will be presented in Secs. IV and V.

In the semimetal TaAs, field-induced enhancements aris-
ing from the chiral pumping effect contribute to ε1 and
shift the zero crossing to higher frequencies, thereby shifting
the reflectivity edge through the mechanism discussed in
the previous section. In our work, this change in reflectivity
in the vicinity of the plasma edge is used to sensitively detect
chiral pumping effects as reported in Fig. 2(c). The total
complex dielectric function in zero field is required to quanti-
tatively extract the field-induced Drude weight enhancements
from the shifting plasma edge. Zero-field reflectance mea-
surements are performed to characterize the complex spectral
dielectric function along the a and c axes. Zero-field and
Faraday (e ⊥ B) geometry optical measurements also provide
supplemental characterization of average band velocities, en-
ergy of the chemical potential above the Weyl nodes, and
the crossover field range separating the classical and quantum
limits.

Reflectance spectra on the ab plane are reported in the top
panel of Fig. 2(a). The data are similar to previously published
data [5]. The measured reflectivity spectra are fit using a
sum of dielectric functions, typically Lorentzian oscillators,
that each obey Kramers-Kronig relations [27]. This method
is a standard technique used to extract the optical response
functions from optical data, but not all the fitting parameters
may correspond to a single identifying physical effect.

A. Optical response for e ‖ a and B = 0

The model reflectance of a semi-infinite slab is R =
| 1−√

ε(ω)
1+√

ε(ω)
|2, where the complex dielectric function is given by

ε(ω) = ε∞ +
∑

j

ω2
s j

ω2
0 j − ω2 − iωγ j

+ εG(ω). (8)

The complex optical conductivity is related to the dielec-
tric function by σ = ωε/4π i. The first term ε∞ is a con-
stant arising from cumulative interband contributions at fre-
quencies greater than 500 meV. The second term includes
a zero-frequency (Drude term) oscillator, a phonon oscil-
lator centered 15.9 meV, and a very broad additional os-
cillator used to fit the background of interband transitions.
An interband transition (IBT) feature in the reflectivity
data near 25 meV requires a third term εG(ω) that has
a sharp absorptive onset followed by a ∼1/ω3 frequency
roll-off. A model of εG(ω) with the requisite behavior is
given by ε1G(ω) = 1 + 8

∫ ∞
0

σ1(ω′ )dω′
ω′2−ω2 , σ1(ω) = �(ω)σ1D(ω),

�(ω) = 0.5[1 + tanh( ω−2�
2δ�

)], and σ1D(ω) = ω2
pγ

4π (ω2+γ 2 ) . All
terms are proper response functions that are Kramers-Kronig
constrained, so the resulting fitted (total) ε(ω) is directly de-
rived from the reflection data independently of the underlying
model.

The fitted response functions, σ1(ω) and ε1(ω) (parameters
reported in Appendix C), are shown in the middle and bottom

125102-4



OPTICAL EVIDENCE OF THE CHIRAL MAGNETIC … PHYSICAL REVIEW B 101, 125102 (2020)

panels of Fig. 2(a), respectively. A linearly increasing σ1(ω)
is expected from the IBTs of an ideal 3D-Dirac cone above
the transition onset frequency. Linear behavior is observed
between 6 and 25 meV, suggesting the existence of an IBT
onset energy below 6 meV. In an ideal Dirac cone, the ωonset

of an IBT is ωideal
onset = 2|EF |/h̄, where EF is the difference

in energy between the chemical potential and the node. In
asymmetric systems such as ours, if EF > 0, ωonset is shifted
below (above) 2EF /h̄ if the Fermi velocity of the conduction
band is larger (smaller) than that of the valence band, though
it must always be greater than EF /h̄. Since no onset frequency
is observed in the data down to 6 meV, the Fermi level is nec-
essarily below this energy. Considering that the W2 pocket va-
lence band–conduction band asymmetry is not severe [21,26],
the estimated Fermi level is less than ∼3 meV above the
node. This is consistent with reported Fermi levels in W2,
whereas those of W1 are much larger [21,26]. A change in
slope of σ1(ω) is observed near 25 meV, which arises from the
onset of IBTs in W1. Incorporating estimates of the degree of
anisotropy in W1 from band structure calculations [21,26], an
onset frequency of 25 meV translates into a W1 Weyl node
position that is ∼15 meV below the Fermi level.

Therefore, considering that W1 is about 13 meV lower in
energy than W2, the W1 and W2 nodes of our sample are
15 meV and ∼2 meV below the Fermi level, respectively,
agreeing with other experimental results [2,24–26]. Above
25 meV, σ1 remains unchanged with increasing frequency,
suggesting a strong frequency roll-off of the σ1 contributions
from the Weyl states. This is attributed to the band curvature
effects since intersecting pairs of Weyl states merge and form
a (Lifshitz) gap, which is predicted to be ∼50 meV for W1
and ∼80 meV for W2. IBTs near the saddle point between the
Weyl points are expected to have reduced optical transition
matrix elements, causing the observed frequency roll-off of
the conductivity [28].

B. Optical response for e ‖ c and B = 0

Reflectance spectra on a polished ac plane are reported
in the top panel of Fig. 2(b). The e ‖ c spectra are fitted
with a dielectric function similar to Eq. (8): ε(ω) = ε∞ +∑

j
ωs j2

ω0 j2−ω2−iωγ j
, which includes a Drude term, a broad oscil-

lator centered at 42.5 meV, and two phonon terms at 31.6 meV
and 23.3 meV [29]. The fitted response functions σ1 and ε1

(parameters in Appendix C) are reported in the middle and
bottom panels of Fig. 2(b), respectively.

Figure 2(b) reports an e ‖ c optical response that exhibits
a weaker metallic behavior than for e ‖ a. The reduced free-
carrier Drude weight lowers the screened plasma frequency
and the associated reflectivity plasma edge inflection point
from 20 meV (a axis) to 10 meV (c axis), and no W1 IBT
feature is observed at 25 meV. These differences in optical
response are attributed to hole and W1 pocket anisotropy
and a higher scattering rate from surface preparation. The
c-axis Fermi velocity of the trivial holes and W1 carriers are
both expected to be an order of magnitude smaller than that
along the a axis [2,21,24–26]. Since the semiclassical Dirac
Drude spectral weight is proportional to nvF /kF , the small
c-axis Fermi velocity markedly reduces the spectral weight,
suppressing the W1 IBT peak. In contrast, W2 pockets are
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FIG. 3. �σ1 and �ε1 are derived from a KK transformation
of the �R/R0 data for e ‖ B ‖ a. Changes in �σ1 are small but
negative consistent with the loss of W2 IBT spectral weight. A dark
yellow dashed line demarcates zero. The larger changes displayed
by �ε1 dominate changes observed in the optical reflectance, and
are indicative of a Drude weight enhancement.

much more isotropic, leading to a larger relative contribution
to the total optical response for e ‖ c [2,21,24–26]. Also, the
Drude scattering rate for measurements on the same polished
ac plane, but with e ‖ a, is much larger than in the as-grown
ab plane, which is characteristic of blemished surface layers.

IV. e ‖ B ‖ a VOIGT GEOMETRY

Normal-incident magnetoreflectance spectra reported in
Figs. 2(c) and 2(d) are in the e ‖ B ‖ a and e ‖ B ‖ c geome-
tries, respectively. The B-field-dependent reflectance spectra
R(B) are normalized to the zero-field data R0 and reported
as �R(B)/R0 = R(B)/R0 − 1. Note that these results show
qualitative agreement with the simulations for an ideal Weyl
semimetal shown in Fig. 1(b). The dominant feature is an
increasing positive peak with magnetic field, near the R0

reflectance edge, indicative of a blueshifting plasma frequency
caused by an enhanced free-carrier Drude weight.

A. Results for e ‖ B ‖ a

Figure 3 shows the change in optical response in the
measured spectral range obtained from the relative reflectance
spectra and their Kramers-Kronig transformations for e ‖ B ‖
a in Fig. 2(c) [30]. More information about this method and
its justification is available in Appendix D and in Ref. [30].

The uncertainty in the change in optical response generated
by the Kramers-Kronig method is negligible as the change
in relative reflectance �R/R0 is extremely small outside the
measured spectral range. The changes in R at low frequency
are necessarily small since, for a metallic response, R is nearly
1 as shown in Fig. 2(a) as the response is dominated by
the Drude contribution. Changes in the optical response at
low frequencies will therefore have a negligible effect on
R; R will remain very close to 1 as long as TaAs remains
metallic. Figure 1 illustrates that, in the ideal case, changes
in the interband transition due to the application of magnetic
field and the formation of Landau levels have a negligible
effect on the optical response at high frequency leading to
negligible changes to the reflectance. Therefore, at low and
high frequencies outside the measure spectral range, �R tends
toward 0.
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The frequency dependence of the large negative �ε1 and
the small negative �σ1 support the interpretation that the
change in optical response is dominated by Drude weight
enhancement. The increasingly negative ε1 at low frequency
with field is indicative of a growing Drude weight. An increas-
ingly negative σ1 at high frequency indicates loss of interband
spectral weight. Therefore, these two graphs show a transfer
of spectral weight from high to low frequency. The increase of
the Drude spectral weight at very low frequency is not directly
observable since the scattering rate is small compared to the
lowest measured frequency, as depicted in the ideal case in
Fig. 1(a). This interpretation is consistent with the fact that
�R(B)/R0 for e ‖ B ‖ a is fitted well by increasing the Drude
weight of the zero-field optical response.

The a-axis data (red) in Fig. 2(c) are fitted (blue) using a
single free parameter, an enhanced Drude weight �(ω2

p)/4π

added to the zero-field Drude weight. The other zero-field
model dielectric terms (whose parameters remain static) are
also included in the �R(B)/R0 fit model. The monotonically
increasing Drude weight with field is reported in Fig. 2(e).
The increasing Drude weight is accompanied by increasing
loss of IBT with field expected by the f -sum rule. At higher
fields, the Drude weight increases more slowly with field,
as shown in Figs. 2(e) and 3(b). Drude weight enhancement
for e ‖ B ‖ a is observed through �ε1 and not �σ1 in the
measured spectral range due to the small scattering rate.

B. Discussion

Before discussing the implications of these results on the
Weyl pockets in TaAs, it is helpful to understand why this sig-
nal arises from effects related to the chiral magnetic anomaly
and not from trivial hole pockets or cyclotron modes.

Selection rules in this geometry differ significantly from
those of the Faraday and e ⊥ B Voigt geometries, as discussed
in Sec. II. Because the principal axes of the Fermi surfaces are
oriented along the crystalline axes, cyclotron modes are not
expected in these geometries.

The trivial hole pockets in TaAs are very anisotropic with
curved Fermi surfaces that deviate from an ellipsoidal approx-
imation whose principal axes are aligned along the crystal
axes. Near the end points of the pockets where the deviations
are largest, the curvature could, in principle, create current
that is not parallel to the driving electric field. However,
estimates show that the number of carriers associated with
these small areas compared with the volume of the pocket
is negligible. The small curvatures of the Fermi surface,
combined with the small spectral weight involved in such a
process, do not produce a significant effect. Experimentally,
the observation of the blueshift in plasma edge frequency with
field along multiple crystal axes provides further evidence that
Fermi surface curvature effects from trivial carriers are not
responsible.

Magnetic field dependence of the reflectance in the e ‖ B ‖
a and e ‖ B ‖ c Voigt geometries is expected from Weyl state
carriers. The Drude weight and interband transitions have
expected effects as discussed in Sec. II, Appendix A, and
prior theoretical work [1,7,31]. These effects are expected to
be observable in the measured spectral range. Trivial (hole)

carriers remain in the semiclassical limit at all fields applied,
and interband transitions are not observed in zero-field mea-
surements below 500 meV. Any measurable changes in the
free-carrier or interband transition spectral weight cannot be
attributable to the trivial hole pockets in either Voigt geometry,
especially increases in spectral weight.

The W2 carriers are responsible for the peak feature in
Fig. 2(c). The W1 carriers remain in the classical limit below
8 T, a result derived from the relatively large chemical poten-
tial (as measured in zero field) combined with Fermi velocity
estimates from ARPES data and band structure. The QL for
W2 carriers is expected to occur at ∼2 T for our sample based
on the small difference between the chemical potential and
the W2 Weyl node. Changes in the optical response for the
spectral range ω � γ from Weyl carriers in the semiclassical
regime are minor compared to the quantum limit [6] where the
Drude enhancement is independent of Fermi energy. There-
fore, changes in the optical response are expected to be much
stronger in W2 than W1 pockets [1,7,31,32].

In the frequency range ω � γ , changes in the scattering
rate have a negligible effect on the optical response. Changes
to the optical response in the measured spectral range are
dominated by changes in the Drude weight. IBT effects are
also present, but these are minor and discussed in Sec. II.

Figure 2(e) summarizes the magnetic field dependence in
the e ‖ B ‖ a geometry of the Drude weight enhancement,
equal to ω2

P/4π , where ωp is the bare plasma frequency. The
Drude weight shows a linear field dependence between 1 and
5 T, consistent with theoretical predictions of chiral pumping
from a Weyl pocket in the QL [1,7,31]:

ω2
p = vF e2/h̄π l2

B, (9)

where lB =
√

h̄c
eB . The results reported in Fig. 2(e) are consis-

tent with Chiral pumping arising entirely from the W2 pockets
in the QL at 2 T. The fitted slope (4000 meV2/T) gives an
a-axis velocity of 0.58 ± 0.15c. This velocity is close to the
expected Fermi velocity based on band structure.

Above 5 T, the Drude weight increases more slowly with
magnetic field, becoming sublinear. The Drude weight in the
quantum limit involves only the chiral n = 0 Landau level.
The slowing of the Drude enhancement, which indicates field
dependence in the n = 0 Landau level Fermi velocity, is
quantitatively related by the f -sum rule to the decreased rate
of optical spectral weight lost from the interband transitions
that do not involve the n = 0 Landau level. Realization of
this relationship between the chiral free-carrier response and
the interband Landau level transitions provides new insight to
both.

The optical f -sum rule states that the spectral weight
integrated over all frequencies remains constant provided the
number of carriers does not change. In an ideal Weyl pocket
in the e ‖ B geometry, IBTs preserve the Landau level index
and do not involve the n = 0 Landau level [19,20]. As derived
in Appendix A, the resulting loss in IBT spectral weight
is equal to the Drude weight enhancement that is exactly
equivalent to the quantity in Eq. (9) found by other theoretical
methods.
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In theoretical work that considers ideal Weyl states, the
Weyl bands disperse linearly with frequency. In real material
systems like TaAs, the intersection of the Weyl cones must
give rise to a nonlinear band dispersion, resulting in deviations
from the idealized behavior. For instance, the linear Weyl
conductivity with frequency in the zero-field data presented
in Figs. 2(a) and 2(b) is shown to roll over at high frequencies
[28]. As the IBT onset frequency (the n = −1 to n = +1
Landau level transition) increases with field and approaches
the spectral range where this roll over occurs, the loss of
IBT spectral weight slows. By the f -sum rule, this decreased
rate of IBT spectral weight loss translates into a slowed
increase in Drude weight with magnetic field. From Eq. (9),
this decreased rate of Drude weight enhancement indicates a
diminished n = 0 Landau level Fermi velocity parallel to the
field.

The monotonic departure of the W1 and W2 contributions
to σ1 from linear dispersion in zero-field measurements [most
easily seen in Fig. 2(a)] indicates a deviation from linear band
dispersion. As the lowest allowed IBT transition energy ap-
proaches the frequency range in which σ1 no longer increases
linearly with frequency, a lower Fermi velocity is expected.
This mechanism explains the increased longitudinal magne-
toresistance observed at high fields in transport [10–13].

While models that incorporate the Lifshitz saddle point be-
tween Weyl nodes predict a decrease in the Fermi velocity of
the lowest Landau level at high fields [17], our measurements
are the first to observe evidence of field-dependent Fermi
velocity in the chiral n = 0 Landau level.

V. e ‖ B ‖ c VOIGT GEOMETRY

A. Sensitivity of e ‖ c optical response

Chiral pumping effects are optically observed in TaAs for
e ‖ B ‖ c on a polished ac facet. Spectral evidence of an in-
creasing transfer of spectral weight with field from Weyl inter-
band transitions to the Drude contribution is reported. Results
will be compared with the e ‖ B ‖ a taking into account the
highly anisotropic Fermi pockets. The polished ac facet shows
a much larger free-carrier scattering rate than the as-grown ab
facet allowing spectral resolution of the Drude response. The
overall larger relative changes in optical response of the Drude
as well as the IBT contributions allow models to separate the
two contributions with minimal assumptions.

This larger relative change in the reflectance for e ‖ c with
magnetic field is due to Fermi surface anisotropies. The trivial
hole and W1 pockets are highly anisotropic, while W2 is much
more isotropic. Both the hole and W1 pockets have greatly
reduced Fermi velocities for e ‖ c compared with e ‖ a. Both
the Drude and IBT contributions to the total optical response
are diminished. The relative contributions arising from the W2
pockets are therefore much larger.

Measurements of �R/R0 are therefore more sensitive to
changes in W2. Since the QL of the W2 pocket occurs for
B ∼ 2 T independently of geometry, chiral pumping effects
are expected to be dominated by W2. The e ‖ B ‖ c spectra
not only confirm the presence of the Drude enhancement from
chiral pumping observed for e ‖ B ‖ a; they provide insights
unavailable in the e ‖ B ‖ a geometry.
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FIG. 4. Panels (a) and (b) report the changes in the optical
response functions for e ‖ B ‖ c derived from the �R/R0 data in
Fig. 2(d) using a Kramers-Kronig transformation.

B. Results

The enhanced �R/R0 signal for e ‖ B ‖ c in Fig. 2(d) is
much larger than for e ‖ B ‖ a in Fig. 2(c) and the frequency
and sign of the peak are consistent with a blueshifting re-
flectance edge with field caused by a Drude weight enhance-
ment of W2. Figure 4 shows the change in optical response in
the measured spectral range obtained using a direct Kramers-
Kronig analysis of the �R/R0 data. As Fig. 4(a) shows, �σ1

is larger in this geometry than in e ‖ B ‖ a in the measured
spectral range.

Figure 4 shows that increasing spectral weight is trans-
ferred from high to low frequency with increasing field. The
large negative increase in ε1 is indicative of a growing Drude
weight, and the broad suppression of σ1 at high frequency is
indicative of lost IBT spectral weight at high frequency. The
very low frequency downturn of �σ1 and the positively grow-
ing �ε1 are indicative of scattering rate changes in the Drude
as discussed in the next section. The larger signal-to-noise
ratio of the �R/R0 c-axis data, reduced conductivity contribu-
tion from the trivial hole and W1 carriers, and serendipitously
larger scattering rate all increase the reflectivity signals arising
from magnetic field-induced changes in the W2 pocket.

Fitting with a physical model

Since the reflectivity is much more sensitive to changes in
W2 interband transitions in the e ‖ B ‖ c geometry, the lost
spectral weight from these IBTs must be taken into account.
The change in optical response cannot be accurately modeled
by a change in the Drude response alone.

The change in optical response is fitted using a phys-
ical model with minimal degrees of freedom [the red fits
in Fig. 2(d)], incorporating the zero-field dielectric function
with two modifications: the Drude term is replaced with a
new Drude term with two free fit parameters (ω2

p, γ0), and
two negative Lorentzians each with three free parameters
(ω0 j, ω

2
s j, γ j). The sum of these two negative Lorentzians

physically represents the loss of W2 IBT spectral weight.
Such loss is expected as discussed in the ideal Weyl case.

The negative �σ1 contributions at ω � 6 meV from the
Drude term shown in Fig. 5(b) are due to the low-frequency
negative tails with steep slopes in the �R/R0 spectra shown
in Fig. 2(d). The small negative �R at low frequencies is
an indication that the Drude scattering rate increases with
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FIG. 5. Shown are the magnetic-field induced conductivity
changes �σ1 associated with W2 Weyl pockets for the �R/R0 data
in the e ‖ B ‖ c geometry using a physical model consisting of a
Drude term and two negative Lorentzians that represent the loss of
spectral weight of the W2 Weyl IBTs. This model separates the Weyl
Drude enhancement from contributions arising from the IBTs of W2
pockets (b). The sum of Drude and IBT terms (a) gives similar results
to the Kramers-Kronig analysis. (c) The magnetic field dependent
inverse transport lifetime 1/τ is reported.

spectral weight. The negative �σ1 contributions arising from
the increasing scattering rate of the Drude term are not only
necessary to fit the distinctive low-frequency �R/R0 spectra
but are required to balance the net change in spectral weight to
satisfy the f -sum rule, thereby validating the physical model.

The increase in scattering rate with field, reported in
Fig. 5(c) as the inverse transport lifetime 1/τ , is due to two
effects. Blemishes from the mechanical polish extend over
a characteristic depth. As the Drude conductivity increases
with field, the penetration depth decreases, emphasizing the
higher scattered region closer to the surface. The polished
layer introduces scattering centers that break translational
invariance, resulting in strong intervalley and interpocket
scattering. These impurity-like scatterers can induce large
wave vector changes, and therefore reach all parts of the
Brillouin zone. The density of states at the Fermi level of
W2 pockets in the QL scales as 1/l2

B ∼ B, so scattering also
tends to increase with field [17]. This scattering rate field
dependence is consistent with observations in transport that
the longitudinal magnetoresistance increases with field in the
quantum limit [10–13].

C. Discussion

The fact that the blueshift of the plasma edge is also
observed for e ‖ B ‖ c provides further evidence that the
blueshift in the e ‖ B ‖ a geometry arises from enhancement
of the Drude weight as predicted for Weyl semimetals.

Figure 2(e) summarizes the enhancement of ω2
p with field

obtained from the physical model for e ‖ B ‖ c in blue. These

results are consistent with the chiral pumping arising entirely
from the W2 pockets that are in the QL at 2 T. The fitted slope
for the c-axis data, 8400 meV2/T, gives an average Fermi
velocity of 1.2 ± 0.15 × 10−3c. As with the a-axis results,
the Fermi velocity is close to the expected value from band
structure calculations [21]. The Fermi velocity along the c axis
is found to be significantly larger than the average velocity in
the ab plane. This is consistent with the fact that there appears
to be a larger change in �σ1 due to changes in interband
transitions for e ‖ B ‖ c than for e ‖ B ‖ a.

As with e ‖ B ‖ a, the Drude weight increases more slowly
at high fields, becoming sublinear above 5 T. The oscillator
strength associated with IBTs in W2 for e ‖ c decreases
at higher frequency, as shown by the decreasing slope in
Fig. 2(b). This decreasing slope is an indication of the ap-
proach to the Lifshitz saddle point [28]. Consequently, less
IBT spectral weight is lost at higher fields, resulting in smaller
increases to the Drude weight.

VI. SUMMARY

Chiral pumping is observed at THz frequencies in TaAs
bulk single crystals for fields oriented along both the a and
c axes. Magnetoreflectance spectra of a TaAs bulk single
crystal measured in the e ‖ B ‖ a and e ‖ B ‖ c Voigt ge-
ometries show blueshifts of the screened plasma frequency
with increasing magnetic field. These blueshifts originate
from Drude weight enhancements that are spectrally resolved
from scattering rate effects. The enhancements agree with
theoretical predictions of chiral pumping for TaAs. The Drude
weight enhancement is accompanied by a reduction of the IBT
spectral weight in accordance with the f -sum rule, providing
further confirmation of Drude enhancement. The equivalence
of this transfer by the f -sum rule was theoretically used to de-
rive the same chiral pumping effect predicted by other theoret-
ical methods. The spectral observation of this transfer there-
fore strongly validates the interpretation that chiral pumping
is responsible for the field dependence of the reflectance
spectra.

At higher fields, the Drude weight increases more slowly
with field, which is interpreted as a decreasing Fermi velocity
along the field. These results are shown to follow naturally
from the f -sum rule, and offer an explanation for the observed
increase in longitudinal magnetoresistance at high fields in
transport experiments.
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FIG. 6. Shown is the dispersion of the lowest four LLs predicted
for a W2 Weyl pocket with magnetic field B = 6 T pointing along
the line connecting the nodes. Equation (A1) is used with pa-
rameters � = 80 meV, k0 = 3.36 × 106 cm−1, vx = 1.9 × 107 cm/s,
vz = 1.5 × 107 cm/s, and m∗ = −0.3me extracted from Ref. [21].
The Weyl point is located at kz = k0. The n = 0 LL is depicted as
either the dashed or solid black plots. The dipole-like orientation of
the chirality associated with the nodal pair determines which n = 0
LL is a solution.

APPENDIX A: DOUBLE DIRAC LANDAU LEVEL
SPECTRUM AND SELECTION RULES

A double Weyl cone system is represented in the vicinity
of the node by the following Hamiltonian (see Fig. 6):

Ĥ = h̄2k2
z

2m∗ σ̂0 +
(

−�

2
+ �

2k2
0

k2
z

)
σ̂z

+ [2�(kz ) − 1](h̄vxkxσ̂x + h̄vykyσ̂y), (A1)

where � is the Lifshitz gap, the Weyl points are located at
k = (0, 0, k0), vx and vy are the Fermi velocities in the x
and y directions, respectively, �(x) is a Heaviside function,
and the operators σ̂i are the Pauli spin matrices, with σ̂0 =
I2×2. Asymmetry between valence and conduction bands is
introduced through the massive term.

The optical f -sum rule for ideal Weyl nodes

As discussed in the main part of the paper, the f -sum rule
demands that the total integrated spectral weight of our system
remain constant with magnetic field. Losses in IBT spectral
weight are offset by increases in the Drude weight.

For simplicity, the discussion will be limited to a Weyl
node with perfectly linear dispersion in the x, y, and z direc-
tions in the quantum limit. Combining Eqs. (4) and (7), the
IBT spectral weight is

∫ �cut

0
σ1(ω)dω =

∫ �cut

0

�2
cut l2B

8vxvy∑
n=1

∫ ∞

−∞

h̄2�

2π l2
B

n 2h̄vxvy

l2
B

2
(
n 2h̄vxvy

l2
B

+ h̄2v2
z k2

z

) 3
2

e2v2
z(

h̄ω − 2
√

n 2h̄vxvy

l2
B

+ h̄2v2
z k2

z

)2 + h̄2�2

dkz

2π
dω

= e2vz

48h̄πvxvy
�2

cut − e2vz

8h̄π l2
B

+ e2vzvxvy

8h̄π l4
B�2

cut

+ O

(
1

�4
cut

)
. (A2)

�cut is a cutoff frequency much higher than the characteristic
cyclotron energies of the Weyl bands. �cut is large enough
that terms of order 1/�2

cut are negligible. Since the Weyl node
is assumed to be in the quantum limit, no IBTs are Pauli
blocked.

The first term of the last line in Eq. (A2), e2vz

48h̄πvxvy
�2

cut,
is equal to the integrated spectral weight of IBTs of this
ideal Weyl node under zero magnetic field. The f -sum rule
predicts the integrated spectral weight of the Drude to be

e2vz

8h̄π l2
B
, equivalent to Eq. (2) in the main text.

The third term in Eq. (A2), e2vzvxvy

8h̄π l4
B�2

cut
, relates to the IBT

loss associated with the Drude enhancement expected in the
semiclassical limit (μl2

B/8vxvy � 1) in ideal Weyl pockets
[6,22]. This can be obtained by subtracting the spectral weight
of IBTs at frequencies ω � 2μ/h̄ from Eq. (A2).

Lastly, note that applying this derivation to the x or y
directions yields analogous results. The fields do not need
to be oriented along the z axis in order to observe Drude
enhancement associated with chiral pumping.

APPENDIX B: FARADAY GEOMETRY

Reflectance spectra measured in the Faraday geometry
with B ‖ c are presented in Fig. 7. The scope of this section is
confined to experimental results related to the quantum limit
of W1 and W2. Uncertainty in the band parameters, asym-
metry, and isotropy of all carrier pockets limits a complete
analysis. Theoretical calculations of the optical selection rules
(and values of the matrix elements to gauge expected strength
of the transitions) involve these uncertainties in the bands. The
anisotropy of identical Fermi pockets with multiple orienta-
tions in the Brillouin zone with respect to the applied magnetic
field (parallel and perpendicular to the line connecting the
nodes) presents further challenges in deciphering the LL
transitions appearing in the data set. In short, the size, shape,
polarization response, and number of the spectral resonances
expected from multiple LL transitions in multiple pockets in
diverse orientations are not well known and make a complete
analysis difficult.

Many of these complications are avoided by limiting the
scope of the analysis. The goal is to track the lowest-energy
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FIG. 7. The optical conductivity, reported in the left (blue) and
right (red) circular polarization bases, is derived from reflectance
spectra measured in the B ‖ c Faraday geometry. The peaks in
conductivity denoted by cyan and green arrows are attributed to
the onset of W1 and W2 cyclotron modes, respectively. The brown,
orange, and purple arrows denote IBTs, where negative indices refer
to LLs in the valence band.

(cyclotron) transition as a function of field, and identify the
optical signature expected when the W1 and W2 lowest
Landau level transitions enter the quantum limit. The hallmark
signature of a Weyl state entering the quantum limit is a
spectrally broadened mode produced by transitions between
the n = 0 and the n = ±1 LLs.

Figure 7 reports the optical conductivity extracted from
relative reflectance spectra in the Faraday geometry with B ‖
c. The optical conductivities in the circular polarization gauge,
σ+

1 and σ−
1 , were obtained by taking the ratio of reflectance

whose initial polarization (aligned along the a axis) is rotated
from the incident polarization by 45 degrees in each direction
[33]. Since the circular polarization gauge is not a good basis
for materials with anisotropic Fermi pockets, distinguishing
holes from electrons in TaAs using the polarity of the cy-
clotron resonance in magnetic field in the circular polarization
basis is not exact as the correct basis for a single ellipsoidal
pocket is elliptically polarized light [18]. The absence of a
strong difference between the σ+

1 and σ−
1 responses in the

W2 cyclotron (0 → 1) modes is attributed to anisotropy of
the pockets in the ab plane.

The peaks in Fig. 7, indicated with cyan and green arrows,
are attributed to cyclotron modes in the Weyl pockets. As a
Weyl pocket enters the quantum limit, the optical conductivity
spectrum is expected to broaden due to the large spectral range
of allowable transitions between the n = 0 and n = ±1 LLs
arising from the kz dependence of the Landau level spacing

[19,20]. The W2 cyclotron transition for B � 2 T, indicated
by a green arrow, broadens with increasing field for B > 2 T,
indicating a quantum limit in these pockets for B � 2 T.
This finding is consistent with our conclusion that the W2
Fermi energy is below 3 meV as discussed in the paper and
calculations of the Fermi velocity of the W2 pockets in the
ab plane [21,26]. Peaks attributed to W1 cyclotron modes are
denoted by cyan arrows in Fig. 7. These peaks, present on
the background of the W2 broadened peaks, do not appear to
significantly broaden at fields below 7 T.

The peaks labeled with orange arrows are attributed to
−2 → 1 IBTs in the W1 pocket, as depicted in Fig. 7. The
−2 → 1 transition is first observed at B = 5 T, indicating that
the bottom of the n = 1 LL in the conduction band approaches
the Fermi energy [19,20]. The −1 → 2 IBTs are denoted by
purple arrows. The energy difference between −1 → 2 and
−2 → 1 IBTs is attributed to asymmetry between valence and
conduction bands of W1, as depicted in Fig. 4 of Ref. [20].
Such asymmetry is consistent with DFT calculations [21,26].
The fact that the peak attributed to −2 → 1 IBTs increases in
intensity relative to that of the −1 → 2 IBTs up to B = 7 T in-
dicates that the quantum limit lies above B = 6 T [20], corrob-
orating our conclusion from the magnetic-field-dependence of
the cyclotron modes. These findings are also consistent with
our estimate that the Fermi energy is approximately 15 meV
as discussed in the paper and values from band structure
calculations [21,26].

APPENDIX C: FURTHER DISCUSSION OF ZERO-FIELD
BROADBAND AND VOIGT FITS

The parameters from optical fits (Tables I, II, and III) are
reported in energy units for all fits with more than one degree
of freedom. The scattering rate γ in energy units is related to
the transport lifetime τ as γ = h̄/τ . Tables I and II refer to the
parameters used to fit the zero-field spectra for e ‖ a and e ‖ c,
respectively. Table III shows the parameters for the dielectric
model used to fit changes in the reflectivity spectra �R/R0 in
the e ‖ B ‖ c Voigt geometry for 0.5 T � B � 8 T.

In this model, the e ‖ c zero-field dielectric Drude term
is replaced with a new Drude term with two free parameters
[�(ω2

P ) and γ ], and adds two negative Lorentzians, each with
three free parameters. The parameters are given in Table III.
The fit to the reflectance data is shown in Fig. 1(e) in the main
text. The positive Drude term and two negative oscillators
are individually shown in Fig. 2(b) and the sum of the two
oscillators is shown in Fig. 2(d). Spectral weight is removed
from finite-frequency oscillators, continuously increasing in
magnitude and extending range to higher frequencies with
field, and transferring to the Drude term.

Representing the response as a single average scattering
rate is a simplification as the Drude term may be more
complicated due to the depth-dependent scattering from the
surface roughness. The field dependence of the IBT optical
response due to Landau level formation is more complex than
the broad fit with two Lorentzian oscillators used in this work.
However, the fits capture the main features of the �R/R0

data over the measured spectral range and are consistent with
the change in optical conductivity obtained by the Kramers-
Kronig method. The Drude and IBT oscillators demonstrate
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TABLE I. The fit parameters for the dielectric model associated with the zero field reflectance data in the e ‖ a geometry are reported. The
total response function is plotted in Fig. 2(a). Columns 2–5 are parameters associated with εG function described in the text. The remaining
columns are parameters for three Lorentzian oscillators. One of those oscillators (columns 6–8) describe the Drude term.

ωprθ
2 γG �G δG ωθ1 ωp1

2 γ1 ωθ2 ωp2
2 γ2 ωθ3 ωp3

2 γ3

Temp. (K) (meV2) (meV) (meV) (meV) (meV) (meV2) (meV) (meV) (meV2) (meV) (meV) (meV2) (meV)

10 2.89 × 105 43.83 24.29 0.9928 0 2.3 × 105 0.2779 15.87 3.6 × 102 0.7439 122.3 1.25 × 107 943
25 3.08 × 105 45.85 23.85 1.389 0 2.42 × 105 1.123 15.87 1.35 × 102 0.7439 134.2 1.29 × 107 989.3
50 2.68 × 105 41.05 23.73 1.419 0 2.71 × 105 1.472 15.87 1.56 × 102 0.7439 143 1.3 × 107 1007
75 3.29 × 105 84.11 23.63 1.189 0 3.17 × 105 1.345 15.87 1.17 × 102 0.7439 150.3 1.46 × 107 1152
100 1.46 × 105 67.74 23.86 0.8097 0 3.53 × 105 0.9541 15.87 3.63 × 102 0.7439 142.6 1.33 × 107 1025
125 0 37.2 0 1.24 0 3.92 × 105 1.586 15.87 2.58 × 102 0.7439 131.1 1.16 × 107 858.9
150 0 37.2 0 1.24 0 4.41 × 105 1.068 15.87 8.72 × 102 0.7439 185 2.13 × 107 1741
200 0 37.2 0 1.24 0 5.78 × 105 2.443 15.87 5.04 × 102 0.7439 259.6 3.1 × 107 2568
250 0 37.2 0 1.24 0 7.46 × 105 3.007 15.87 3.58 × 10−2 0.7439 202.7 1.59 × 107 1223
300 0 37.2 0 1.24 0 8.62 × 105 3.834 15.87 2.4 0.7439 206.3 1.61 × 107 1224

TABLE II. The fit parameters for the dielectric model associated with the zero field reflectance data in the e ‖ c geometry are reported.
The total response function is plotted in Fig. 2(b). The columns report the parameters for five Lorentzian oscillators. One of those oscillators
(columns 2–4) describe the Drude term.

ωθ1 ωp1
2 γ1 ωθ2 ωp2

2 γ2 ωθ3 ωp3
2 γ3 ωθ4 ωp4

2 γ4 ωθ5 ωp5
2 γ 5

T (K) (meV) (meV2) (meV) (meV) (meV2) (meV) (meV) (meV2) (meV) (meV) (meV2) (meV) (meV) (meV2) (meV)

8 0 3.68 × 104 5.928 23.33 1.90 × 103 2.054 31.62 7.70 × 102 1.098 47.42 6.82 × 105 136.3 42.5 4.8 × 106 578
9 0 4.31 × 104 4.474 23.25 1.70 × 103 2.032 31.63 7.93 × 102 0.6894 43.63 7.50 × 105 132.8 42.5 4.8 × 106 578
25 0 5.15 × 104 10.23 25.42 1.10 × 104 11.98 31.62 7.53 × 102 0.7215 56.05 6.55 × 105 138.1 42.5 4.8 × 106 578
50 0 6.09 × 104 10.06 27.41 1.72 × 104 15.66 31.59 4.43 × 102 0.3834 60.89 6.60 × 105 134.7 42.5 4.8 × 106 578
75 0 8.08 × 105 10.16 31.15 4.48 × 104 28.53 31.63 4.71 × 102 0.4144 69.84 6.14 × 105 143.6 42.5 4.8 × 106 578
100 0 1.01 × 105 10.11 40.86 1.93 × 105 52.58 31.46 5.90 × 102 0.5093 105.7 4.36 × 105 177.1 42.5 4.8 × 106 578
125 0 1.33 × 105 17.83 45.14 1.28 × 105 41.08 31.57 7.72 × 102 0.6267 109.7 4.18 × 105 163.0 42.5 4.8 × 106 578
150 0 1.46 × 105 14.43 48.12 8.75 × 104 41.43 31.58 8.02 × 102 0.5913 86.30 5.50 × 105 177.2 42.5 4.8 × 106 578
175 0 1.50 × 105 13.68 47.18 1.53 × 104 17.71 31.61 6.00 × 102 0.4548 72.54 6.22 × 105 163.1 42.5 4.8 × 106 578
200 0 1.47 × 105 8.973 47.18 0 17.71 31.55 5.54 × 102 0.3949 62.10 6.71 × 105 165.0 42.5 4.8 × 106 578
225 0 1.47 × 105 8.973 47.18 0 17.71 31.55 5.54 × 102 0.3949 62.10 6.71 × 105 165.0 42.5 4.8 × 106 578
250 0 1.47 × 105 6.907 47.18 0 17.71 31.50 4.69 × 102 0.4644 52.26 6.88 × 105 180.6 42.5 4.8 × 106 578
275 0 1.40 × 105 5.675 47.18 0 17.71 31.47 5.79 × 102 0.5758 42.99 7.05 × 105 184.0 42.5 4.8 × 106 578
300 0 1.20 × 105 4.139 47.18 0 17.71 31.66 1.01 × 103 2.216 26.78 7.41 × 105 178.2 42.5 4.8 × 106 578

TABLE III. The fit parameters for the physical model for the e ‖ B ‖ c optical response are reported. The zero-field e ‖ c Drude dielectric
term is replaced with a new Drude term with two free fit parameters (ω2

p, γ0), and two negative Lorentzians each with three free parameters
(ω0 j, ω

2
s j, γ j).

B(T) �ω2
pDrude (meV2) γ Drude(meV) ω0 High(meV) ω2

p High (meV2) γ High (meV) ω0 Low (meV) ω2
p Low (meV2) γ Low (meV)

0.5 1.35 × 103 5.69 0 0. 0 12.8 2.64 × 102 1.77
1 3.74 × 103 6.38 0 0. 0 14.8 1.5 × 103 3.52
2 8.06 × 103 7.09 41.6 1.03 × 103 160 17 4.25 × 103 7.1
3 1.52 × 104 8.91 22.2 2.88 × 103 6.59 16.7 4.4 × 103 5.54
4 2.49 × 104 11.8 22.4 1.09 × 104 14.4 16.5 4.61 × 103 4.49
5 3.15 × 104 14.3 24.4 1.4 × 104 16.2 17.5 6.74 × 103 5.7
6 4.19 × 104 16.1 25.6 2.02 × 104 19.6 17.6 8.51 × 103 7.1
7 4.51 × 104 17.4 24.3 2.42 × 104 16.9 17 4.46 × 103 4.09
8 4.72 × 104 18.6 25.5 2.86 × 104 19.6 17.1 3.54 × 103 3.22
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reasonable behavior. The Drude scattering rate and spectral weight increase with field, and the spectral weight of the IBTs leads
to negative contributions to the conductivity that broaden and increase to higher frequencies with field.

APPENDIX D: OBTAINING �ε DIRECTLY FROM �R/R0

Because the real and imaginary parts of ε(ω) are subject to the Kramers-Kronig relation, the complex optical response from
a reflectance spectrum can be obtained from [30] (

n(ω) − 1

n(ω) + 1

)2

= Reiθ (ω), (D1)

where R is the reflectance, n = √
ε(ω) is the complex index of refraction, and θ (ω) = 2ω

π

∫ ∞
0

ln[R(ω′ )]
ω′2−ω2 dω′.

The change in optical response from the relative change in reflectance �R(ω)/R0(ω) can be obtained from the following
equation: (

n0(ω) + �n(ω) − 1

n0(ω) + �n(ω) + 1

)2

= [R0(ω) + �R(ω)]ei[θ0(ω)+�θ (ω)],

(
�n(ω)

n0(ω)−1 + 1
�n(ω)

n0(ω)+1 + 1

)2

=
(

1 + �R(ω)

R0(ω)

)
ei�θ (ω). (D2)

The change in θ (ω) is given by

�θ (ω) = 2ω

π

∫ ∞

0

ln
(
1 + �R(ω′ )

R0(ω′ )

)
ω′2 − ω2

dω′. (D3)

The relative reflectance spectra shown in the main text are taken in the only spectral range in which �R/R0 is non-negligible.
For e ‖ B ‖ a, �R/R0, uncertainty in �ε(ω) in the measured spectral range from neglecting contributions from �R/R0 outside
the spectral range is negligibly small. For e ‖ B ‖ c, small uncertainty in the change in optical response is introduced due to
�R/R0 at frequencies below the measured spectral range.
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