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Abstract: The performance of marker-based, six degrees of freedom (6DOF) pose measuring systems is
investigated. For instruments in this class, the pose is derived from locations of a few three-dimensional
(3D) points. For such configurations to be used, the rigid-body condition—which requires that
the distance between any two points must be fixed, regardless of orientation and position of the
configuration—must be satisfied. This report introduces metrics that gauge the deviation from the
rigid-body condition. The use of these metrics is demonstrated on the problem of reducing robot
localization error in assembly applications. Experiments with two different systems used to reduce
the localization error of the same industrial robot yielded two conflicting outcomes. The data acquired
with one system led to substantial reduction in both position and orientation error of the robot,
while the data acquired with a second system led to comparable reduction in the position error only.
The difference is attributed to differences between metrics used to characterize the two systems.

Keywords: pose measuring systems; robot localization error; volumetric error compensation;
accuracy; rigid-body registration.

1. Introduction

The pose of a rigid object is defined by its location and orientation in three-dimensional (3D) space.
A location is determined by a 3× 1 vector and the orientation by a 3× 3 rotation matrix, which can
be parametrized by three angles (for example, Euler angles or yaw, pitch and roll). In most practical
applications, this six degree of freedom (6DOF) data is not directly measured, but rather is derived
from other raw measurements followed by some error minimization procedures. The procedure
for accomplishing this depends on the sensor used and the choice of post-processing algorithm(s).
For example, many sensor systems can acquire 3D point clouds quickly, and fit the data to one or
more objects’ computer-aided design (CAD) models using different versions of the Iterative Closest
Point (ICP) algorithm [1]. For instance, data acquired with a red-green-blue-depth (RGB-D) camera
can be processed using a voting scheme that matches pose estimates for an unstructured bin picking
application [2]. An approach based on pose-from-silhouette can be used to get a 6DOF pose from
two-dimensional (2D) images [3,4]. In image-guided surgery, 6DOF pose of a surgical tool can be
tracked by a camera based system using spherical markers that are attached to the tool [5].

In practical applications, it is important to know the accuracy and repeatability of the robot’s pose.
Many measurement systems can rapidly acquire repeated measurements, filter out noise, and return
mean values of individual 3D points. These preprocessing steps substantially reduce the uncertainty
of the derived pose. However, a reliable estimate of the systematic pose error is a more difficult task.
It requires comparisons of 6DOF poses as measured by an instrument under test (IUT) to ground truth
(GT) measurements. Since the GT sensor and the IUT acquire data in two different coordinate frames,
a transformation between both frames must be calculated. Thus, the error defined as the difference
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between the IUT and the GT pose includes a registration error. To minimize the registration error, the
relative pose in the GT frame is compared to a corresponding relative pose in the IUT frame. This may
be achieved by means of the ASTM E2919-13 standard for evaluating the performance of static 6DOF
pose measuring systems [6].

Since the 6DOF pose is derived from processing multiple 3D points, it is important to understand
how noise and bias in the points propagate to the derived pose. For many pose measuring systems, no
explicit formula is available. However, for a class of systems that derive pose by measuring several
markers, extensive research has yielded analytical formulas that link the uncertainty and bias in the
marker measurements with the uncertainty and error of the derived 6DOF pose. Such marker-based
systems estimate pose by performing point-based, rigid-body registrations between two sets of
corresponding points. Closed-form equations for propagating the uncertainty of the measured markers
to the pose were derived in [7,8] while the influence of bias in the marker locations on the pose was
studied in [9]. The analytical formulas derived in these papers for different noise models were tested
in both computer simulations and camera-based tracking systems [10,11]. The formulas enabled the
optimization of marker placement so that the error propagated to a specific point using noisy, inaccurate
registration could be minimized [12]. This is especially important in medical applications [13–15], and
was used to design optically-tracked instruments for image-guided surgery [5].

In this paper, new metrics gauging the performance of marker-based, pose measuring systems are
proposed that do not require a GT measurement system. The metrics gauge how well the rigid-body
assumption (central to the registration procedure) is preserved, with the premise being that, if the
rigid-body condition is better preserved, the system will yield a better pose measurement. The value
of these metrics is demonstrated on the problem of reducing robot localization error using an external
pose measuring system. The Restoration of Rigid Body Condition (RRBC) procedure [16] was used to
reduce both the position and the orientation errors of the robot end effector. The procedure was tested
on simulated 6DOF data as well as on a physical robot arm, using 6DOF data acquired by two different
pose measurement systems. The results showed that the procedure worked significantly better for
one measurement system than it did for the other. The metrics introduced in this paper have the
added benefit of explaining this difference in performance, as corresponding metrics for both systems
differ by an order of magnitude. The proposed metrics are easy to calculate from the data acquired by
marker-based, pose measuring systems, and may be useful in determining if a given system is suitable
for a particular task.

The paper is organized as follows: A short review of methods to reduce robot localization error is
provided in Section 2. This is followed in Section 3 by a brief description of the RRBC procedure, and
the metrics gauging performance of marker-based, pose measuring systems are defined in Section 4.
The experimental setup is then presented in Section 5, followed by results and discussion in Sections 6
and 7, respectively.

2. Reduction of Robot Localization Error

Most robotic tasks in manufacturing require precise manipulation and placement of an end-of-arm
tooling. For example, automated drilling in the aerospace applications must satisfy a position error
of the drill bit less than 0.25 mm [17]. Errors in positioning the end-of-arm tooling are typically
associated with localization accuracy. Localization errors for industrial robots have two principal
causes: (1) incorrect values of the Denavit-Hartenberg (DH) parameters in the robot’s kinematic
model; and (2) other, non-kinematic sources of error such as thermal effects, backlash, friction, drift,
joint compliance, or deformation under gravity. For robots with revolute joints, incorrect values of
joint-offsets contribute roughly 80% of the total robot localization error [18,19]. This kind of error is most
frequently minimized by remastering the robot. For many, low-precision applications, remastering
the robot may be achieved by visually aligning dial gauges mounted at each joint and running a
vendor-provided program. Higher-precision remastering techniques often require external sensors for
more accurate measurements. Such setups often consist of a spherically mounted retroreflector (SMR)
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mounted on the robot’s tool flange. The SMR is then moved by the robot to many locations within
the robot’s working volume. A high-precision measurement system (e.g., a laser tracker) collects 3D
points at each pose, and the kinematic model parameters are obtained by minimizing the distances
between measured points and corresponding points derived from the model [20,21].

To further reduce any residual errors remaining after calibration—as well as other, non-kinematic
errors—different compensation techniques have been developed. Many of these techniques require
dynamic tracking of the robot’s movement by external, vision-based systems, as in video servoing [22,23]
or different versions of the Volumetric Error Compensation (VEC) procedures [24–29]. Such approaches
have been demonstrated to reduce the position error to 0.05 mm, and orientation error to 0.05◦ for
industrial robots integrated with an optical coordinate measuring machine [30]. Another approach
used an indoor global positioning system (iGPS) to reduce position and orientation errors tenfold to
0.15 mm and 0.02◦, respectively [31].

Even after remastering, a robot may still exhibit significant pose error as a result of non-kinematic
causes. As such, another approach to recalibration generates static, pose-correction maps to correct for
kinematic errors without having to measure DH parameter offsets. Corrections to the robot’s pose
are calculated in predetermined locations from data acquired before regular robot operations begin.
These corrections are then interpolated to get the correction for an arbitrary robot pose during regular
operations. Different interpolation procedures have been used. For example, trilinear, cubic, and fuzzy
interpolation were tested in computer simulations [32]. The kriging interpolation, frequently used in
geostatistics [33], was applied to reduce position error of a drilling end effector using a SMR and a
laser tracker, resulting in an average position error reduction to 0.106 mm [34]. A similar procedure
was applied to reduce the position error of a drilling and riveting end effector mounted on a robot
arm; the reported maximum absolute position error was reduced to 0.32 mm [35]. In both studies, the
corrections applied to the commanded robot locations were calculated from experimentally-determined
semivariograms [36]. No corrections to the end effector orientations were calculated in either study.

Another method that does not require dynamic tracking, and that can reduce both position and
orientation error, was introduced in [16]. The Restoration of Rigid Body Condition (RRBC) was tested
on both simulated 6DOF data and data acquired by a motion capture system tracking an industrial
robot arm. The outcome of this study was ambiguous. The method worked very well on simulated
data and resulted in a 97% reduction in the median position error (down to 0.29 mm) and 99% reduction
in the median orientation error (down to 0.01◦). However, for experiments using the robot arm, only
the reduction in position error matched the performance observed in simulation (97%, median reduced
error of 0.3 mm). The reduction in the median orientation error was much smaller: only 57% (down to
0.27◦) compared to 99% in simulation results.

In this paper, the RRBC method was used in another experiment using the same robot arm as
in [16], but a different pose measuring system was used: a laser tracker. In this experiment, the method
worked well for both position and orientation error (92% reduction in position error, down to 0.43 mm
and 88% reduction in orientation error, down to 0.038◦). The difference in the current and previous
results is attributed to the substantially different characteristics of the pose measuring systems used
in both experiments. Both systems derived 6DOF pose from the measurement of three 3D points
which should preserve the rigid-body condition (i.e., the relative distances between points should
be constant) to ensure correct, unbiased pose determination. Neither of the systems satisfies this
requirement perfectly, but the deviations from the rigid-body condition are an order of magnitude
smaller for the laser tracker measurements than for the motion capture system. Thus, contrary to
our earlier conclusion in [16], the reduction in both position and orientation robot error is possible,
provided that the bias in the 6DOF data used to calculate the corrections is sufficiently small.

3. Description of the RRBC Method

In the RRBC method, small corrections to the commanded robot poses (target poses) are linearly
interpolated from previously determined corrections calculated from fiducial poses measured by a
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pose measuring system and derived from the robot kinematic model. Fiducial poses are measured in
both robot and sensor frames while the target poses are usually only measured in the sensor frame but
need to be accessed in the robot frame. To calculate the corrections, a rigid body transformation from
the sensor frame to the tool center point (TCP) frame is needed.

Generally, when there is a constant offset transformation, X̂, between the TCP frame and the robot’s
tool flange, hand-eye calibration is needed to find the transformation, Ŷ, from the sensor’s coordinate
system to the robot’s coordinate system. This procedure requires J ≥ 3 different measurements of
corresponding poses, B̂ j, in the sensor’s coordinate system, and Â j in the robot’s coordinate system.
Both homogeneous transformations, X̂ and Ŷ, can be calculated by solving the set of equations:

Â j X = Y B̂ j (1)

for all j = 1, . . . , J. Equation (1) can be rewritten for the orientation and the position parts separately as

A j X = Y B j , (2)

A j x + a j = Y b j + y , (3)

where X, Y, A j, B j are 3 × 3 rotation matrices, and x, y, a j, b j are column vectors. There are many
different methods to solve Equations (2) and (3) for X̂ and Ŷ. In this study, we use a modified analytical
solution based on the Kronecker product developed in [37]. The original method does not guarantee
that matrices X and Y are orthogonal. Therefore, we apply an orthogonalization procedure to the
resulting matrices as described in [38]. After the homogeneous matrices, X̂ and Ŷ, are determined,
poses from the sensor frame {B} can be transformed to the robot frame {A}. Fiducial poses mapped
from the sensor frame do not exactly match the corresponding measured fiducial poses in the robot
frame. A small rotation matrix Λ j and a position vector λ j are calculated from Equations (2) and (3) as:

Λ j = Y B j XT AT
j , (4)

λ j = Y b j + y− (A j x + a j), (5)

where (. . .)T indicates a transposed matrix. Once all matrices Λ j and vectors λ j are calculated from
the fiducial poses Â j and B̂ j, they can be used to estimate the orientation and position corrections of a
target pose, (Ã, α̃), transformed to the robot frame from the sensor frame

Λα(Ã, α̃) = ort(
J∑

j=1

w jΛ j), (6)

λα(Ã, α̃) =
J∑

j=1

w jλ j , (7)

where ort(. . .) denotes the orthogonalization procedure developed in [38], and (Ã, α̃) is the target pose
(B,β) transformed from the sensor frame to the robot frame using

Ã = Y B XT, (8)

α̃ = Y β+ y− Ã x . (9)

The corrected target rotation, ΛαÃ, and the corrected target position, α̃+ λα, should be closer to
the actual (and usually unknown) rotation A and position α in the robot frame. When the target pose
(A,α) is also measured in the robot frame (as in this research study), the corresponding target error
can be calculated and used to gauge the performance of the error compensation procedure.
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For the orientation error, we rely on the angle-axis (ρ, u) representation of the rotation, R(ρ, u). For
the position error, we use the Euclidean norm δ of the vector. We ensure that ρ is always non-negative
by using the property of rotation that R(−ρ, u) = R(ρ,−u). Thus, the target error has two components,
(ρ, δ), which are evaluated for the uncorrected poses in the robot’s coordinate system using:

R(ρunc, uunc) = Ã AT, (10)

δunc = ‖α̃− α‖, (11)

as well as for the corrected poses using:

R(ρcor, ucor) = Λα Ã AT, (12)

δcor = ‖α̃+ λα − α‖. (13)

The application of the RRBC method is successful when the corrected errors, (ρcor, δcor), are smaller
than their corresponding uncorrected errors, (ρunc, δunc). Note that both the angular error, ρ, and the
position error, δ, are invariant to the coordinate frame. Therefore, they are convenient metrics to gauge
the performance of the RRBC method. Alternatively, the difference between the two 6DOF poses
could be used as a performance gauge. However, this requires the comparison of twelve numbers that
depend on the choice of coordinate system, whereas the invariants (ρ, δ) yield the same conclusion in
a more concise way.

The weights, w j, are used to calculate the orientation corrections in Equation (6), and position
correction in Equation (7). We calculate the Euclidean distances, d j, between the joint angles of the
robot arm, θt, corresponding to the target pose, and the joint angles of the j-th fiducial θ f , j:

d j =

√√√ N∑
n=1

[
θt(n) − θ f , j(n)

]2
, (14)

where θ(n) is the n-th joint angle (for target or fiducial configuration), and N is the total number of
robot joints. Then, the inverse distance d′j = 1/d j was used to calculate the weights as

w j = d′j/
J∑

j=1

d′j . (15)

4. Performance Metrics

Two metrics are defined in this paper to gauge how well the rigid-body condition is preserved
by marker-based pose measuring systems. Additionally, a third metric is defined which can be used
to compare any two corresponding 6DOF datasets acquired in two different coordinate systems (for
example, one dataset could be acquired by the GT and another by the IUT). In the context of reducing
errors using the RRBC, we associate the first frame, {A}, with the robot, and the second frame, {B},
with the sensor. This third metric is sensitive to differences between two relative rotations in both
coordinate systems. A fourth, auxiliary, metric is defined specifically for robotic applications, where
both the robot and sensor errors contribute to a non-zero value of the third metric. Details of each
metric are provided below.

4.1. Metric 1: Distances between Markers

The rigid-body condition requires that a distance, Ln,m( j), between any two markers, n and m, is
fixed and does not depend on the j-th pose of the rigidly-mounted markers. At least three markers
must be used to uniquely define a 6DOF pose. To identify each marker given an arbitrary marker
configuration, the layout of the markers should be such that the distances between the centroid of
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all markers and each individual marker are distinct, and can be easily sorted from the longest to the
shortest (i.e., Lmin( j) < . . . < Ln( j) < . . . < Lmax( j) for each j ). After collecting marker locations for
many poses, j = 1, . . . J, the standard deviation, σL, and the mean distance, L, are calculated for each
pair of markers, (n, m). Thus, the ratio σL/L can be used as the first metric to gauge the performance of
any marker-based pose measuring system. For an ideal system that perfectly satisfies the rigid-body
assumption, this metric is zero.

4.2. Metric 2: Angles of Deviation from the Mean Rotation

For marker-based systems, the pose is derived from N ≥ 3 locations of 3D points. For N = 3 (as is
the case in this report), the three markers measured for the j-th pose are labeled as bS, j, bM, j, and bL, j,
according to the three lengths LS < LM < LL described previously. Then, three unit column vectors,
(n1, n2, n3), are used to define the orientation matrix, B j, as:

B j =


n1,x n2,x n3,x

n1,y n2,y n3,y

n1,z n2,z n3,y

, (16)

where:
n3 = s3(bL, j − bM, j) × (bS, j − bM, j) , (17)

n2 = s2(bL, j − b j), (18)

n1 = n3 × n2, (19)

and s2, s3 are normalization factors ensuring that n2, n3 are unit vectors, × indicates the vector product,
and b j is the centroid of bL, j, bM, j and bS, j.

For j = 2, . . . , J, different pose measurements (all triplets of points
[
bS, j, bM, j, bL, j

]
) can be registered

to the first triplet, [bS,1, bM,1, bL,1], using a point-based rigid body transformation [39]. From the
transformed triplets, the corresponding rotations, B̃ j, can be calculated using Equation (16), and the
average rotation, B̃avg, can be calculated as in [38]. Finally, small angles, ψ j, of relative rotations
∆B̃(ψ j, u j) between the average B̃avg and B̃ j rotation are calculated. Angles ψ j are non-negative due to
the rotation matrix symmetry: ∆B̃(ψ j, u j) = ∆B̃(−ψ j,−u j). The median of these angles, ψ̂, is reported
as the metric.

For systems using N > 3 markers, the orientation matrix B j can be determined by performing

the Singular Value Decomposition (SVD) of the N × 3 matrix,
[
b1, j . . . bN, j

]T
. Then, N-tuples of points[

b1, j, . . . , bN, j
]

for j > 1 are registered to the first N-tuple, and the remaining calculations are the same
as for the N = 3 case.

Note that the systematic bias in an uncalibrated sensor may affect the position component of the
derived 6DOF pose differently than the orientation component. If the measured point, bmes = s btrue + t
(where t is a constant vector and/or s(‖btrue‖) , 1 is a scalar function of distance ‖btrue‖), then
the position component of the pose (i.e., centroid b j ) provided by the sensor is inaccurate, while
the orientation matrix, B j, in Equation (16) is still correct. However, when measurements are
affected by the non-homogeneous scaling (i.e., the scale is no longer a scalar, but rather a tensor,
and bmes = (sxxtrue, syytrue, szztrue)), then both the orientation and position parts of the 6DOF pose
are affected.

4.3. Metric 3: Difference of Angles of Relative Rotations

For any pair, (A j, Ak), of orientations acquired in one coordinate frame (e.g., the GT’s coordinate
system or, as in this case, the robot’s coordinate system), and the same pair of orientations, (B j, Bk),
measured in another coordinate system (for example, the sensor’s coordinate system), the relative
rotations in axis u and angle ω representations are:
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R(ωrob
k, j , urob

k, j ) = A j AT
k , (20)

R(ωsen
k, j , usen

k, j ) = B j BT
k , (21)

The difference between the angles:
∆k, j = ωsen

k, j − ω
rob
k, j . (22)

accounts for the error in the relative rotations obtained in the two coordinate systems, {A} and {B}.
Since this is a relative error, and not an absolute error, the calculation does not require registration
between both coordinate systems. The difference ∆ can take both positive and negative values, and
the standard deviation, σ∆, is used as the third metric. Note that the angle of rotation, ω, is invariant
to the coordinate frame (as the angular error ρ in Equation (10) and Equation (12)). Therefore, the
difference ∆ in Equation (22) of the two angles characterizing rotations in two different coordinate
systems is meaningful.

4.4. Metric 4: Variability of Orientations for Multiple Inverse Solutions of Robot Kinematics

Unlike the three general metrics described earlier, the fourth metric is specifically intended for
evaluating pose measuring systems used in robotic applications. The angle error, ∆, in Equation (22) is
defined as the difference between two corresponding angles of rotation in both the robot Equation
(20) and sensor Equation (21) coordinate systems. Thus, both systematic biases originating from the
sensor and robot contribute to the angle ∆, and, generally, it is hard to separate them and estimate their
levels independently.

If both robot poses ( j, k) in Equation (20) have their corresponding arm configurations (θ j,θk)

close to each other, then the angle of relative rotation, ωrob
k, j , in Equation (20) is only slightly affected by

the robot calibration error. However, if the joint angles θ j differ substantially from θk, then ωrob
k, j is more

sensitive to the robot’s calibration error. To test this scenario, for each j-th robot pose in Cartesian space,
all M( j) inverse kinematic solutions are calculated, and the robot is commanded to go to each of them.
When the inaccurate parameters in the robot’s forward kinematic model are used, the resulting M( j)
poses recorded by the external pose measuring system yield dispersion. If B(φ j,m, u j,m) denotes the
orientation part of the pose measured by the system (in angle-axis representation) for the j-th Cartesian
pose and the m-th arm configuration, then the standard deviation σφ( j) of angles φ j,m characterizes the
spread in actual robot orientations. The median, σ̂φ, is used as the fourth auxiliary metric to estimate
the contributions of the pose measuring system and robot to the third metric, σ∆.

5. Experimental Setup

Data for calculating the four metrics described in Section 4, and for evaluating the performance
of the RRBC method using the errors defined in Equations (6) and (7), were acquired by two pose
measuring systems along with an industrial robot arm in two different experiments described in
Sections 5.1 and 5.2.

An industrial, open-chain manipulator robot, the KUKA LWR 4+, was used in both experiments.
Per the robot’s specification, the repeatability σrep of this 7DOF robot arm is ± 0.05 mm (ISO 9283:1998).
To ensure high accuracy in Cartesian space, the stiffness of the robot was set high. For all trials, the third
joint angle of the robot was fixed and set to zero, reducing the robot to a 6DOF model. An in-house
analytical inverse kinematic (AIK) module was used to solve the inverse kinematic problem rather than
relying on the robot’s built-in IK solver. Depending on the pose of the end-effector, the AIK module
yielded up to eight unambiguous solutions.

The first pose measuring system (used in [16]) was a fixed, three camera motion capture system,
an OptiTrack TRIO. Each of the three cameras of the TRIO has a resolution of 640 × 480 pixels, and the
sampling frequency of the tracking system was set to 120 Hz. Spherical infrared reflector (SIR) markers
were attached to an aluminum plate mounted at the robot’s tool flange, as shown in Figure 1b. For each
robot pose, the system output (x j, y j, z j) coordinates of each marker from which the corresponding
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pose, (B j, b j), in the sensor coordinate system was calculated as in Equations (16)–(19). To filter out
sensor noise, 12 repeated measurements were made with the TRIO system, and only the averaged
locations of each SIR marker were used for pose determination. The second pose measuring system
used in the experiment was an API T3 laser tracker. This sensor can measure pose using a 6DOF
SmartTrack Sensor (STS) target, but this target was not used in this study. For compatibility with
processing data from the TRIO sensor, three 12.7 mm (0.5 inch) nests were glued to a flange mounted
on the end of the robot arm, as shown in Figure 1a. For each commanded robot pose, a SMR was
placed in each of the nests, and 3D data were acquired with the laser tracker. Both the SMR nests
and SIR markers were arranged such that the distances between any two markers were sufficiently
different to enable unique identification of each marker. Each recorded point represented an average of
50 measurements, and the 6DOF pose was then calculated using Equation (16). Collecting data using
the SMR is a labor-intensive process since, for each commanded robot pose, a SMR had to be manually
moved from one nest to another. Therefore, compared to the TRIO, a smaller amount of data was
acquired with the laser tracker.Sensors 2020, 20, x FOR PEER REVIEW  8  of  17 
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Figure 1. Robotic arm with two different sets of 3D markers used for pose determination: (a) a single
SMR in one of three nests used for a laser tracker; and (b) a SIR marker configuration for the motion
capture system.

5.1. Experiment 1

The robot was commanded to K different target poses. Around each target pose, (Ak, ak), a few
surrounding fiducial poses, (A j, a j), were defined. For each commanded pose, target or fiducial,
corresponding measurements, (Bk, bk) and (B j, b j), were acquired using the pose measuring system.
Fiducial poses were used to calculate in Equations (4) and (5) the corrections for the exact orientation,
Λ j, and position, λ j, which were then used to produce the estimated target corrections in Equations (6)
and (7). For the TRIO, there were K = 66 target poses scattered throughout the robot’s work volume,
and each target pose was surrounded by 48 fiducial poses as described in [16]. For the laser tracker,
K = 50 target poses were selected in the robot’s work volume, and 16 fiducial poses surrounded each
target. Fiducial poses were obtained by deviating the last four robot joint angles by small amounts
[±2◦, ±3◦, ±3◦, ±4◦]. In total, 3,234 robot poses were acquired with the TRIO, and 850 poses were
acquired using the laser tracker. Almost all fiducial arm configurations associated with a given target
were close to the target configuration. However, for some fiducials, the AIK module could not provide



Sensors 2020, 20, 1305 9 of 17

an inverse solution close to the nearby target solution. For these, the robot’s joint configurations for
those fiducials were different from the nearby target configurations.

5.2. Experiment 2

A different set of J poses scattered in the robot work volume was selected to provide data for
Experiment 2. In each selected j-th pose, the AIK module was used to calculate all M( j) inverse
kinematic solutions, and the robot was commanded to position the TCP at each. Different joint
angles corresponding to the same Cartesian pose had substantially different configurations. When the
inaccurate parameters in the robot’s forward kinematic model were used, the resulting M( j) robot
orientations B(φ j,m, u j,m), as assessed by the pose measuring system, yielded a dispersion. For each
j-th pose ( j = 1, . . . , J), the standard deviation, σφ( j), of angles, φ j,m, was calculated as described in
Section 4.4. To ensure reliable estimates of σφ( j), only poses with M( j) ≥ 4 solutions were selected
for the calculations. All inverse solutions were determined for each of the J = 1, 370 Cartesian poses
measured by the TRIO, and J = 46 poses measured by laser tracker.

6. Results

Histograms of the distances (Lmin, Lmid, Lmax) between the three markers measured in Experiment
1 for the various robot arm poses are shown in Figure 2. The corresponding ratios of standard deviation
to the mean σL/L (i.e., the first metric described in Section 4.1) are (0.03%, 0.04%, 0.02%) for the data
acquired with the laser tracker, and (0.25%, 0.28%, 0.24%) with the motion capture system. Smaller
ratios of all three distances indicate better compliance with the rigid-body assumption.
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laser tracker (left column) and the motion capture system (right column).

Histograms of the angles ψ calculated from data acquired in Experiment 1 are shown in Figure 3.
The median of these angles (i.e., the second metric described in Section 4.2) is ψ̂ = 0.003◦ for data
acquired with the laser tracker, and ψ̂ = 0.035◦ with the motion capture system.
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Histograms of angles ∆ calculated from data acquired in Experiment 1 are shown in Figure 4.
The standard deviation of these angles (i.e., the third metric described in Section 4.3) is σ∆ = 0.037◦ for
data acquired with the laser tracker, and σ∆ = 0.405◦ for the motion capture system.
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The histogram of the numbers M( j) of the inverse kinematic solutions for all J = 1370 robot poses
in Cartesian space obtained from data acquired in Experiment 2 is shown in Figure 5.
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The histogram of standard deviations σφ( j) calculated from data acquired in Experiment 2 with
the motion capture system is shown in Figure 6. The median of the J = 1370 standard deviations (i.e.,
the fourth auxiliary metric described in Section 4.4) is σ̂φ = 0.285◦. For data acquired in Experiment 2
with the laser tracker, the median of the J = 46 deviations, shown in Figure 7, is σ̂φ = 0.168◦.Sensors 2020, 20, x FOR PEER REVIEW  11  of  17 
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Figure 7. Standard deviations σφ gauging the spread of angles φ j,m resulting from an uncalibrated
robot and multiple inverse kinematic solutions from data acquired in Experiment 2 with laser tracker.

The performance of the RRBC procedure was gauged by uncorrected and corrected orientation
errors, (ρunc,ρcor), as defined in Equations (10) and (12), and the position errors, (δunc, δcor), as defined
in Equations (11) and (13). Orientation errors obtained from the data acquired with the laser tracker in
Experiment 1 are shown in Figure 8. For comparison, the orientation errors obtained with the motion
capture system (presented earlier in [16]) are shown in Figure 9.

The position errors obtained from the data acquired with the laser tracker in Experiment 1 are
shown in Figure 10. For comparison, the position errors obtained with the motion capture system
(presented earlier in [16]) are shown in Figure 11.
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A summary of the results of the RRBC procedure applied to data acquired in Experiment 1 is
provided in Table 1. The first two rows (A-exp and A-sim) are based on the motion capture system
(experiment and simulation described in [16]), and the bottom row (B-exp) is based on data obtained
with the laser tracker. The percentage reduction rates are calculated for the position and angular
errors as;

γpos = (δ̂unc − δ̂cor)/δ̂unc, (23)

γang = (ρ̂unc − ρ̂cor)/ρ̂unc, (24)

where (δ̂unc, δ̂cor) are the median target position errors shown in Figures 10 and 11 for the uncorrected
and RRBC corrected errors. Similarly, (ρ̂unc, ρ̂cor) are the median target orientation errors shown in
Figures 8 and 9 for the uncorrected and RRBC-corrected errors.

Table 1. Median robot errors.

Data Source
Median Position Error [mm] Median Angle Error [deg]

^
δunc

^
δcor

γpos
^
ρunc

^
ρcor

γang

A-exp 10.233 0.301 97% 0.626 0.267 57%

A-sim 9.128 0.228 97% 0.952 0.010 99%

B-exp 6.134 0.433 92% 0.327 0.038 88%

7. Discussion

As seen from Figures 8–11 and Table 1, two different results were obtained even though the same
RRBC procedure was applied to reduce the localization errors of the same robot. The difference is
therefore attributed to the use of different pose measuring systems.

The two systems belong to two different classes of instruments, which may be appropriate
for different types of applications. The laser tracker yields measurements with lower uncertainty
and higher accuracy than the motion capture system. Both systems derived 6DOF pose from the
measurements of three 3D points. This approach requires that the configuration of the three points
behaves as a rigid-body, which means that the distances between any two measured 3D points are
fixed. While none of the systems used in the experiment fully complied with this requirement, the
laser tracker provided data that better satisfied the rigid-body condition than the motion tracking
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system, as the plots in Figures 2–4 imply. Consequently, we conclude that both the robot’s position
and orientation errors can be reduced if more accurate 6DOF data is used to calculate position and
orientation corrections in Equations (6) and (7). The three metrics defined in Sections 4.1–4.3, (i.e.,
the ratios σL/L, the median angle ψ̂, and the standard deviation σ∆) were calculated from mean
marker locations (average over 12 repeats for the motion capture system and 50 for the laser tracker).
Therefore, the observed spread of ψ, ∆ and L is caused by systematic error (bias) that is dependent on
robot position.

The metrics provide useful inputs when selecting a pose measuring system for robotic applications.
To simultaneously reduce both position and orientation errors, the biases in the data acquired with the
pose measuring system should be sufficiently small. The data shown in Figures 2 and 3 indicate that,
for systems deriving 6DOF pose from the measurements of a few points, the quality of the data used
for reducing robot error should satisfy the condition σL/L < 0.04 % for all distances L between any
two markers, and the median angle ψ̂ < 0.003◦.

A comparison of the angles ∆, shown in Figure 4, with the standard deviations σφ, shown in
Figures 6 and 7, can help estimate the actual level of robot miscalibration. Both variables are affected
by biases from the pose measuring systems and the uncalibrated robot. Recall that the angles ∆ were
calculated from pairs of target-fiducial robot poses that had very similar arm configurations. In contrast,
σφ was calculated using pairs of poses that had very different arm configurations. Because both ∆ and
σφ are derived from relative rotations, it is reasonable to expect that inaccurate DH parameters would
have a more significant effect on σφ than on ∆. However, this reasoning is blurred by differences in
performance between the two pose measuring systems, gauged by σL and ψ̂. For the motion capture
system, σL and ψ̂ are both large, and σ∆ = 0.405◦ and σ̂φ = 0.285◦. For the laser tracker, σL and ψ̂ are
both small, and σ∆ = 0.037◦ and σ̂φ = 0.204◦. Therefore, we propose an estimate of the lower bound of
the actual robot orientation error as χ =

∣∣∣σ∆ − σ̂φ
∣∣∣. For the motion capture system, χ = 0.120◦ and for

laser tracker χ = 0.167◦. In this case, since the tracker is a more accurate instrument than the motion
capture system, the more reliable estimate of the robot orientation error is 0.167◦.

While the laser tracker may provide more accurate measurements of 3D points than the
camera-based motion capture system, it is not obvious that the more accurate positional measurements
will always yield more accurate orientation data as characterized by smaller σ∆ and ψ̂. Both systems
directly measure 3D points, and 6DOF pose is derived from these measurements. Thus, the quality
of the orientation data depends not only on the bias in the acquired 3D points, but also on their
relative placement in space (i.e., the distances L between each two points): larger distances yield better
orientation data.

The two metrics (σL/L and ψ̂ ) are based only on point measurements, and do not require a GT
sensor or a specialized 6DOF target. Both provided useful information about marker-based pose
measuring systems. In an ideal situation where the rigid-body condition is perfectly satisfied, σL and
ψ̂ would be zero. Larger values of one or both parameters indicate worse performance. For example,
when the measurement of a marker is affected by homogenous scaling, the derived orientation remains
correct, and only the positional part of the 6DOF pose is affected. In this situation, the resulting ψ̂ ≈ 0◦

while σL/L will be proportional to the scale factor. For non-homogenous scaling (i.e., when scale is a
tensor) both orientation and position components of the 6DOF pose are affected. Then, both parameters
ψ̂ and σL/L will depend on the magnitude of scale.

Both angles, ψ and ∆ (i.e., metrics two and three), account for different aspects of the systematic
error and a direct comparison of them can be misleading. Note that angles ψ shown in Figure 3 were
calculated from triplets of 3D points acquired in different robot poses, and then transformed to the first
frame using rigid-body registration. Since registration is based on a minimization of the error function,
it is not surprising that the spread of ψ in Figure 3 is smaller than the spread of angles ∆ (which do
not require any minimization) shown in Figure 4. Thus, angles ψ should be interpreted as a lower
bound of the differences ∆ and both could be used in a complementary way to evaluate the relative
performance of two or more pose measuring systems.
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In our previous study [16] (based only on data acquired with a motion capture system), we
reported that only the position median error was substantially reduced (97%), while the orientation
median error was reduced only by 57%. Even more troubling was the observation that, for some robot
poses, the corrected orientation error (after application of the RRBC method) was actually larger than
the uncorrected error. For the dataset acquired with the laser tracker in the current study, all but one
target pose (#48 in Figure 8) resulted in a corrected orientation error smaller than the uncorrected
one. It is noted that the reduction rate, γang, reported for this dataset (B-exp in Table 1) is closer to the
simulation results presented in [16] (A-sim in Table 1). This is expected as the simulated and laser
tracker data better satisfied the rigid-body condition than the motion capture data.

The results given in Table 1 indicate that the quality of the collected data more significantly affects
the reduction of the orientation error, ρ, than the reduction of the position error, δ. This is not surprising
because the position component of the 6DOF pose provided by the sensor is defined as the centroid of
three 3D points. Any deviations from the rigid-body condition is mitigated by averaging the locations
of the three measured points. No such mitigating mechanism exists for the orientation component
of the full pose, which makes reduction of the orientation error more vulnerable to the biases in the
measurement of the 3D points.

As mentioned earlier, most of the fiducial poses surrounding each k-th target had robot arm
configurations close to the configuration of the target pose. However, for some targets, this condition
could not be satisfied, and the joint angles of the fiducial configurations were substantially different
from the target joint angles, even though the corresponding poses in the Cartesian space were
close. In such rare configurations, the robot calibration error had more of an impact, and led to a
degraded performance of linear interpolation of the estimated target corrections in Equations (6) and
(7). Consequently, large outliers are seen in the corrected position error, δcor(k), and orientation error,
ρcor(k) (see, for example, k = 48 in Figures 8 and 10).

In summary, the metrics proposed in this paper helped to explain the conflicting outcomes of the
reduction of robot localization error. Two of these metrics are convenient as they gauge the performance
of marker-based systems by evaluating a deviation from the rigid-body condition. Thus, they do not
require ground truth sensors. It remains an open question as to how to develop similar metrics for
other, markerless pose measuring systems.
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