
Tim Blattner and Michael Majurski
NIST | ITL | SSD | ISG

Scalable Workflow System for Whole Slide
Microscopy Analyses Using Neural Networks

2019-11-05GTC-DC

NIST Disclaimer

2

} No approval or endorsement of any commercial product by NIST is intended
or implied. Certain commercial software, products, and systems are identified
in this report to facilitate better understanding. Such identification does not
imply recommendations or endorsement by NIST, nor does it imply that the
software and products identified are necessarily the best available for the
purpose.

2019-11-05GTC-DC

Outline

3

} Part I – Specific Application
} Microscope Image Acquisition

} In-Situ Image Based Measurements

} Data Motion
} Triggers from Acquisition Software

} Scalable Data Processing
} HTGS, Fast Image

} Part II – Generalization
} How to write software to scale with hardware
} Problem Decomposition
} Software developer efficiency

2019-11-05GTC-DC

Motivating Problem

4

} Image-based measurements via Automated
Microscopy
} Automation increases data generation rate

} Microscopes can produce 100’s of whole slide
images per day
} 5 gigapixel whole slide images
} 100000 x 50000 pixels at 10x magnification
} 5 minutes to acquire each image

} Acquisition rate defines the compute budget
for performing image-based measurements.

Zeiss AxioScan Z1 Microscope

DISCLAIMER: Commercial products are identified in this document in order
to specify the experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by NIST, nor is it
intended to imply that the products identified are necessarily the best
available for the purpose.

2019-11-05GTC-DC

Whole Slide Image Analysis Problem

5

} Find all 1002 pixel objects of interest within each 100,000 x 50,000 pixel slide

Example Slide

Goal:
Automate tedious,
error prone tasks

2019-11-05GTC-DC

In Situ Image Analysis

6

} Perform analysis in semi-real-time while the next image is being acquired
} Brings image analysis into the wet-lab, providing immediate feedback/results

} Challenges
} System must be robust and stable
} Microscope acquisition time defines compute budget

} Benefits
} End to end solution, user scanned image results are available 90 seconds later

} Concurrent image acquisition and image processing
} Data management

} Integration with Zeiss Microscope to automatically copy image file to storage NAS
} Processing computation initiated automatically when copy completes

2019-11-05GTC-DC

Data Workflow

7

…

NAS
Trigger
Event

Trigger
Event

Image Acquisition Storage Image Processing

Execution
Manager

Monitor

2019-11-05GTC-DC

Microscope Acquisition System

8

} Queue up to 150 slides to be scanned

} AxioScan Z1 is driven from an attached
computer

} Zeiss software scans images one at a time
} Images saved locally
} No local compute is allowed
} Lightweight program monitors scan status

Zeiss AxioScan Z1 Microscope

2019-11-05GTC-DC

Acquisition Monitor

9

} Runs on Microscope
Machine

} Two responsibilities
} Showing System Status
} Monitoring Zeiss log and

copying completed scans
to the NAS

} Green board means
everything is up and
running

2019-11-05GTC-DC

Acquisition Monitor

10

} Runs on each Microscope Machine
} System supports N microscopes
} Current hardware supports 4 microscopes

} Hooks to Zeiss event log
} Watches for scan completed message

} Launches image copy to NAS
} Able to recover if the network goes down

} Processing starts upon copy completion

} Copy & Processing decoupled from
acquisition
} Compute is overlapped with Acquisition

…
NAS

Monitor

Monitor

2019-11-05GTC-DC

Execution Manager

11

} Runs on Processing
Machine

} Launches Processing
Workflow Per Image
} Has an input queue of images
} Monitor adds to that queue

} Displays Processing Log

2019-11-05GTC-DC

Processing Workflow

12

Image
Reader

100k x 50k pixels

Object
Detector

Secondary
Classifier

Secondary
Regressor

Database
Write

Fiducial
Mark

Detection

Fiducial
Mark

Registration

QA/QC

Processor Hardware:
2x - Xeon Gold 5120 “Skylake” 14-core CPUs
2x - NVIDIA GTX Titan V graphics cards

Codebase: C++
Libraries: OpenCV, TensorRT, LibCZI, FastImage*, HTGS*

Runtime: 90 s

GPU

CPU

NAS Execution
Manager

* NIST developed

GTC-DC 2019-11-05

Scalable Workflows

HTGS - Hybrid Task Graph Scheduler

13

2019-11-05GTC-DC

Processing Workflow

14

} Requirements
} Meet time demands
} Fully utilize processing hardware
} Scales with increase to data rates

} Multicore
} Adding more GPUs to a machine
} Additional processing nodes

Instruments / Sensors

GBs/TBs/PBs
of dataStoring / Streaming Data

Processing Node

} Approach
} Asynchronous pipelined workflow

} Effectively keeps processing resources busy

} Appropriately size hardware
} To deliver throughput

2019-11-05GTC-DC

What is Pipelining

15

} Dictionary
} A form of computer organization in which successive steps of an instruction sequence are

executed in turn by a sequence of modules able to operate concurrently, so that another
instruction can be begun before the previous one is finished.

} Applicable
} Instruction pipelining: pre-fetching, branch prediction
} Task pipelining: reading/writing data, copying, compute

Read

Copy

Compute

Copy

Read

Compute

------- Time ---à

Copy

Read

Compute

Copy

Read

Compute

Example pipeline

2019-11-05GTC-DC

Why Asynchronous Pipelined Workflow?

16

} Impacts on performance
} Moving data between address

spaces (CPU/GPU)
} Disk I/O
} Database updates

} Overlap computation with
data motion, disk I/O, and
database updates

} May require decomposing
problem into multiple sub-
problems

Synchronous approach

Asynchronous pipelined workflow approach

2019-11-05GTC-DC

Challenges of Asynchronous Pipelining Workflows

17

} Legacy code often does not play well with pipelining
} Restructuring and/or re-writing code may be necessary

} Possibly algorithmic redesign

} Writing code that pipelines from scratch requires a lot of code structuring
} Multi-threading
} Thread safety

} Making sense of asynchronous behavior in an algorithm is not always obvious

} Solution: use existing frameworks … helps
} Task libraries

} StarPU, Legion, …
} Hybrid Task Graph Scheduler (HTGS)

2019-11-05GTC-DC

Hybrid Task Graph Scheduler

18

} Our approach for developing
asynchronous pipeline workflows

} Application is a dataflow graph
} Persists at runtime
} Experimentation for performance
} Debug, Profile, Visualize performance

using the dataflow representation

} Targets powerful single nodes
} Dual multicore CPUs & multiple

GPUs

} Focus on
} Separation of concerns

} State maintenance versus computation
} Coarse-grain parallelism
} Hide latency of data motion
} Memory management

} C++ Header API only

2019-11-05GTC-DC

Streaming Tile Based Processing

19

Decompose Image Reconstruct Image

Processing
Machine

Stream Data

2019-11-05GTC-DC

HTGS API

20

} Task interface
} Templates define Input and Output

} Execute(input)
} Called when data is available for the task

} addResult(output)
} Called by user when output is ready to be

sent to the next task

} Data is sent to the task
} Each task holds a pool of threads
} Extra data + multiple threads = parallelism

} Specialty tasks
} Bookkeeper task

} Manages complex data dependencies
} Maintains state of computation

} CUDA Task
} Binds task to NVIDIA CUDA GPU

} Execution Pipeline Task
} Creates copies of a task graph

¨ Each copy bound to a specified GPU

} Memory Manager
} Attaches memory edge to a task

¨ getMemory(“nameOfEdge”)
¨ Binds memory allocation to address space

¨ CPU, GPU, etc.

2019-11-05GTC-DC

HTGS Profiling

21

} Zero overhead profiling
} Profiling is gathered in both Release and Debug

} Task level

} Graph visualization report generated after every run
} Immediately identify performance impacts per task
} Customize task profiling to obtain more details

} Optimize per task
} Find alternative methods

2019-11-05GTC-DC

HTGS Software Engineering

22

} Distribute tasks to developers
} Narrow view of the world

} Operate only on data sent as input and produce output

} Difficult for developers to have code conflicts
} Not impossible

} Maintains parallelism of the workflow

} Visual representation of critical path
} Self-motivating to improve performance

GTC-DC 2019-11-05

Microscopy Analysis

23

2019-11-05GTC-DC

Image Reading

24

} Zeiss generates CZI images (pyramidal)
} Tasks can operate at whatever pyramid they need to
} Fiducial Detection happens at level 2 (25% resolution)

} Read all pyramid levels in parallel using FastImage

2019-11-05GTC-DC

Fast Image

25

} C++ Library based on HTGS

} High level API to access an image
} Or part of it

} Only access interesting views in an
image

} https://github.com/usnistgov/FastImage

End User
Algorithm

Fast Image

Tile Loader

Compute with views

Views from image tiles
• High level image accessor
• Cache system
• Parallelization system

(HTGS)

Load image tiles

https://github.com/usnistgov/FastImage

2019-11-05GTC-DC

Views and Tiles

26

Tile
} Part of the image (here 28x28 pixels)

given by the image loader

View
} Center tile (here 4x4 pixels)
} Neighboring pixels within a radius

(here 2 pixels)
} Ghost (halo) values

Advantages
} Reduce memory footprint
} Enable tile caching & parallelism

GTC-DC 2019-11-05

Problem Decomposition into Tasks

27

2019-11-05GTC-DC

Relative Compute Time

Less More

Task Graph

28

Image
Readers

Processing
Workflow

Database
Transactions

} Traditional CV Tasks
} Quality Analysis/Quality Control
} Fiducial Mark Detection and

Registration
} Pipeline of subtasks

} AI Tasks
} Object Detection
} Secondary Classification/Regression

2019-11-05GTC-DC

QA/QC

29

} Input: whole slide image coming directly from microscope

} No guarantees the image was
} acquired correctly

} contains the expected content

} Need to verify that the input image is within quality specifications for
} Focus (image blur)
} Background noise
} Image brightness

} Each QA/QC item is a task in the HTGS system
} Leverages OpenCV

2019-11-05GTC-DC

QA/QC – Quality Heatmap

30

2019-11-05GTC-DC

AI Tasks

31

} Traditional Computer Vision Tasks
} Quality Analysis/Quality Control
} Fiducial Mark Detection/Registration

} Pipeline of subtasks

} AI Tasks
} Object Detection
} Secondary Classification/Regression

Relative Compute Time

Less More

2019-11-05GTC-DC

AI Tasks

32

} Object Detection
} Yolo v3 model

} Secondary Feature Categorization/Regression
} Pair of ResNet50 models

} Object detector extracts Regions of Interest (ROIs)

} ROIs are streamed to secondary AI models
} As soon as the detector task generates an ROI output

} Classification and regression tasks are run sequentially per ROI
} Each task adds a new metadata value to an ROI as it flows through the compute graph

2019-11-05GTC-DC

Task Scalability

33

} Specify thread count per task to control
task’s processing
} Fiducial mark detection is expensive

} 40 threads

} QA is cheap
} 1-10 threads

} AI tasks utilize all available GPUs

GPU0 GPU1

GTC-DC 2019-11-05

TensorRT

34

2019-11-05GTC-DC

TensorRT

35

} AI models trained in Tensorflow on Power9 with V100s
} Trained models saved in UFF format

} Deploy AI in TensorRT
} Enables FP16 inference using Titan V tensor cores
} Translate from UFF to TRT

} Processor detects what UFF/TRT models exist
} Auto-generates new optimized TRT when UFF is newer than existing TRT
} TRT creation time is amortized over many runs
} Generate TRT on deployment hardware to have models optimized for platform of

interest

2019-11-05GTC-DC

TensorRT Engine

36

} TensorRT engine initialization
} Loads serialized TRT model

} One TRT Engine per AI task
} AI tasks duplicate: one per GPU using

HTGS execution pipeline

} Example with 2 Titan V GPUs used for
inferencing on 3 separate TRT models
} Each red box is a sub-workflow per GPU

} Progress updates sent to database
} Real-time visualization of progress

Object
Detector

Secondary
AI Task 1

Secondary
AI Task 2

2019-11-05GTC-DC

Workflow Scalability

37

} Codebase is designed for scalability
} Auto detects the number of GPUs
} Initializes one AI workflow, per model, per GPU

} Add another GPU if AI tasks are the bottleneck
} AI tasks will duplicate

} CPU tasks specify the number of threads to use
} Allocation of threads distinct from what to compute
} Specifying thread count controls speed of task completion
} Allows for load balancing between different tasks

} Fiducial mark registration is CPU-bound and uses 40 threads
} QA is fairly cheap and gets 1 thread only.

2019-11-05GTC-DC

Programming Scalability

38

} Software developers write HTGS tasks
} Tasks are constrained so that they can scale arbitrarily if needed

} Once dev decomposes the problem into a data streaming task based
processing, tasks become the logical unit of thinking

} For example, whole image is never passed through the GPU for inference.
} Too large to fit in GPU memory
} Inference happens per 1024 x 1024 tile managed by Fast Image

} Developers incur upfront cost of learning curve
} Enables parallel development & testing at task level
} Simplifies obtaining performance-oriented software

GTC-DC 2019-11-05

Summary

39

2019-11-05GTC-DC

Requirements for Realtime Microscope Processing

40

} Hardware:
} Microscope with event hooks to enable automation
} Storage for images
} Processing machine

} Same as acquisition machine or on LAN

} Software
} Fixed analysis pipeline which needs to be applied to every image coming off the

microscope
} Task based, data streaming processing model
} Workflow system to orchestrate compute in a scalable manner

2019-11-05GTC-DC

Future Work

41

} Hedgehog: next generation of HTGS
} Hedgehog simplifies graph design

} Each task can have multiple input types and broadcast outputs

} Hedgehog implementation of FastImage
} Generalization beyond image data à serialized matrices data

} Available now

} Shift from UFF AI model format to ONNX

2019-11-05GTC-DC

Thank You

42

} Questions?

} Code
} HTGS: github.com/usnistgov/HTGS
} Hedgehog: github.com/usnistgov/hedgehog
} FastImage: github.com/usnistgov/FastImage
} HedgehogFastImage: soon

} Email
} timothy.blattner@nist.gov
} michael.majurski@nist.gov

https://github.com/usnistgov/HTGS
https://github.com/usnistgov/hedgehog
https://github.com/usnistgov/FastImage
mailto:timothy.blattner@nist.gov

