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ABSTRACT
Here we review recent work by the authors to revisit the concept of extrapolating thermodynamic
properties of classical systems using statistical mechanical principles. Specifically, we discuss how the
combination of these principles with biased sampling techniques enables the prediction of free energy
landscapes and other detailed information, such as structural properties, of the system in question.
Remarkably accurate estimates of physical properties across a broad range of conditions have been
achieved using this approach, greatly reducing the number of simulations needed to explore a given
system’s behaviour. While approximate, these extrapolations significantly amplify the amount of
reasonably accurate information that can be extracted from simulations enabling a small set of them
to feed data-intensive regression algorithms such as neural networks. Thus, this extrapolation
methodology represents a useful tool for performing tasks such as high-throughput screening of
physical properties, optimising force field parameters, exploring equilibrium phase behaviour, and
enabling theory-guided data science for these systems.
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1. Introduction

Advances in computational resources during the twentieth cen-
tury have progressively made simulations a more standard part
of the scientific toolbox in many disciplines including the
chemical sciences [1–4]. The large quantities of data produced
by these tools created fertile ground in which novel algorithms
and statistical methods soon gave rise to the ‘big data’ paradigm
in science and engineering [5]. This paradigm for scientific
exploration relies on the intensive analysis of large amounts
of data to reach conclusions. In contrast to previous scientific
paradigms ( ‘empirical’, ‘theoretical’, and ‘computational’),
this fourth paradigm [6] relies as much on data quantity as
quality. When developing a theory to model a system, it is
expected that a governing equation might be solved exactly
or at least numerically to high accuracy if an analytical solution
cannot be found. The result is a model that accurately and pre-
cisely describes the physics of the system of interest using only a
few physical constants or other parameters, such as viscosity or
temperature.

In contrast, statistical methods used in data science take
large amounts of observations and combine them into a (gen-
erally) probabilistic model that makes predictions about the
system’s behaviour [7, 8]; because of the nature of the model,
there is some associated (often quantifiable) uncertainty associ-
ated with the accuracy of these predictions. Furthermore, they
rely on being provided a sufficient amount of data to be well
trained. Of course, if inaccurate measurements or observations
are made, the resulting model will produce erroneous results.
Regardless, many approaches such as neural networks [7],
Gaussian process regression [9], and other machine learning

techniques [7, 10, 11] are capable of finding coherence in
large amounts of data, and users are often willing to sacrifice
some degree of accuracy at each individual data point in
exchange for many more points. As the utility and popularity
of data-intensive approaches grows, it is important to have
appropriate techniques to generate and collect the large
amounts of data on which they rely [12].

Indeed, a number of hybrid approaches combining molecu-
lar simulation with data-driven modelling have appeared
recently. It has been demonstrated that relatively small
amounts of simulation data can be used to regress models
such as neural networks, autoencoders, and Gaussian processes
to predict properties of fluids [13–15] , adsorption isotherms
[16, 17], fit intermolecular potential functions [18, 19], develop
simulation biases [20], and design self-assembling systems [21–
23]. In the context of free energy simulations, much effort in
molecular simulation over the past decades has been devoted
to developing advanced computational tools to more accurately
calculate properties of chemical systems [24]. While this is an
important research objective, here we review some recent
developments [25–30] by the authors to instead develop rela-
tively simplified techniques which are reasonably fast, accurate,
and yield a high density of data relative to their computational
requirements. The principal driving force for the development
of these approaches is to produce more data at a reduced com-
putational cost, and by doing so, to enable data-intensive analy-
sis. We review the theory and applications of these methods to
date, and briefly highlight how they can be integrated within,
and further enable, data-driven science in the field of molecular
thermodynamics. This integration of physical results with data
science is part of a broader theory-guided data science
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paradigm [31] that seeks to incorporate physics into data
science methods to learn scientifically consistent models that
are sound, interpretable, and can be generalised to make new
scientific discoveries.

The basic technique we focus on is extrapolation via Taylor
series expansion. This is a foundational concept in statistical
mechanics that has been explored by many authors since at
least the mid-twentieth century [32]. It is premised on the
fact that derivatives of the free energy with respect to intensive
variables are given by fluctuations of extensive properties,
which are observable. For example, a temperature expansion
of the Helmholtz free energy of a system may be expressed as
a Taylor series in energy, which can be measured over the
course of a simulation. Similar expansions exist for open
ensembles as well [33] and have been used to predict phase
coexistence of fluids [34–38], order-disorder transitions [39],
and free energy changes in biophysical processes [40]. Pertur-
bation theories such as those premised on statistical associating
fluid theory (SAFT) can also directly link macroscopic
equations of state to the molecular level Hamiltonian of a sys-
tem [41, 42].

A central theme in previous simulation work is the expan-
sion around a single state point, for example, at a single
chemical potential, temperature and volume in a grand cano-
nical simulation. Due to statistical noise and truncation error,
these extrapolations have a limited range over which a pre-
diction has reasonable accuracy. Here, we reconsider this
notion of extrapolation, not of a single state point, but of
an entire free energy landscape. This landscape may be
obtained from flat-histogram simulations, which are biased
simulations that force the simulated system to explore differ-
ent regions of order parameter space over time. Flat-histo-
gram methods are already appreciated as being rich in
information since they can be reweighted to compute proper-
ties continuously over a range of certain conditions depend-
ing on the order parameter used to define the landscape; by
combining the two concepts, we illustrate further information
amplification which enables the prediction of thermodynamic
and structural properties over an even wider range of
conditions.

Specifically, we consider molecular systems for which Monte
Carlo methods may be employed to measure these landscapes
and the appropriate fluctuations needed to define the coeffi-
cients in these series expansions. We demonstrate that, despite
some inherent truncation error, the error is often quite small,
enabling accurate predictions of physical properties over a
broad range of conditions. This paper is organised as follows.
First, we review flat-histogram simulations and the relevant
statistical mechanics in Section 2, followed by a brief derivation
of the relevant extrapolation equations in Section 3. In Section
4, we illustrate how this can be applied to simple, single com-
ponent systems in both bulk and confinement. Section 5
extends this to multicomponent mixtures. Next, we show
how these principles may be extended to predict structural
properties of these systems in Section 6. Finally, in Section 7,
we discuss extensions of these extrapolation principles to
include systems with internal degrees of freedom and to predict
changes in the virial coefficients of fluids as a function of model
parameters (alchemical transformations). Throughout, we

discuss how this approach leads to data amplification making
extrapolation techniques amenable to high-throughput compu-
tational screens which can be used in conjunction with data-
intensive techniques.

2. Review of flat histogram methods

Flat-histogram, or ‘density of states’, simulations seek to
explore a set of (macro)states defined by some order parameter,
�C, with equal probability [1, 43]. This is done by recording the
frequency at which each state is visited or the transition prob-
abilities between different states. In the latter case, detailed bal-
ance allows the reconstruction of the landscape, or (logarithm
of) probability, of observing each state at equilibrium,
lnP( �C). Through the appropriate reweighting equations,
these landscapes can provide information about a broad
range of conditions often very different from that of the original
simulation. Although numerous variants exist, here we employ
a hybrid technique known as Wang-Landau Transition Monte
Carlo (WL-TMMC) [44, 45]. This approach begins with an
initial Wang-Landau (WL) stage [46, 47] to quickly produce
an initial estimate of the landscape, which is subsequently
refined with Transition Matrix Monte Carlo (TMMC) [48].
The former technique has a low tunnelling time during the
early stages of simulation and can construct an initial guess
quickly, but suffers from slow convergence rates. The opposite
is true of TMMC, so a combination of the two tends to be opti-
mal [44].

Depending on the thermodynamic ensemble of interest,
statistical mechanics allows us to express the probability of
observing a given microstate, p(s). The unbiased Metropolis
acceptance criterion of moving from microstate ‘a ’ to ‘b’ is

pu = min 1,
p(b)
p(a)

[ ]
. (1)

Note that a macrostate is defined as some collection of micro-
states with the same order parameter value, e.g., different
configurations with the same number of particles present. In
a flat-histogram simulation, a biasing function, h( �C), is intro-
duced to create artificially flat sampling of all macrostates. The
simulation proceeds according to pbias:

pbias = min 1,
exp h �C(b)

[ ]( )
p(b)

exp h �C(a)
[ ]( )

p(a)

⎡⎣ ⎤⎦. (2)

The biasing function is simply the inverse of the macrostate
distribution, which would result in an equally probable
sampling of the system’s macrostates:

h( �C) = −lnP( �C). (3)

Simulations proceed by updating h( �C) on-the-fly; once con-
verged, the landscape is computed from the bias function
according to Equation (3). WL simulations proceed by setting

h( �C) = 0 for all values of �C. After each move, the estimated
macrostate distribution is incrementally updated by a factor,
f, which is progressively reduced over time in cycles to con-
verge. The established protocols for this are described in detail
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elsewhere [46, 49]:

lnP( �C) = lnP( �C)+ lnf . (4)

Once the system has undergone enough cycles to establish a

reasonable guess of the true lnP( �C), TMMC begins. This con-
structs an estimate of the macrostate distribution by instead
measuring the transition probabilities between different macro-
states rather than the frequency of observing them. A collection
matrix, C, is recorded as a simulation proceeds and measures
the unbiased probability of moving between states, even as
the simulation actually proceeds according to the biased accep-
tance rates:

C �C(a) � �C(b)
[ ]

= C �C(a) � �C(b)
[ ]

+ pu, (5)

C �C(a) � �C(a)
[ ]

= C �C(a) � �C(a)
[ ]

+ (1− pu). (6)

The probability, P[ �C(a) � �C(b)], of moving between two
macrostates can be computed by normalising the transition
rates:

P �C(a) � �C(b)
[ ]

=
C �C(a) � �C(b)
[ ]

∑
i C

�C(a) � �C(i)
[ ] . (7)

Detailed balance then provides the relationship between this
transition probability and the macrostate probability.

lnP �C(b)
[ ]

= lnP �C(a)
[ ]

+ ln
P �C(a) � �C(b)
[ ]

P �C(b) � �C(a)
[ ]

⎛⎝ ⎞⎠. (8)

In what follows, the specific method by which the macrostate is

obtained is immaterial, and we take the landscape, lnP( �C), as a
known quantity.

3. Thermodynamic ensembles and typical
extrapolation equations

At this point, we have left the order parameter, �C, general. In
this paper, we discuss extrapolation primarily with respect to
systems in the grand canonical ensemble, so we review this
instance in detail. In this ensemble, the number of particles
in the simulation serves as a convenient order parameter to
study self-assembly, first-order phase separation, and other
phenomena. For a multicomponent mixture with k com-
ponents, the system is described by the set of chemical poten-
tials, �m = (m1, m2, · · · , mk), volume, V, and temperature, T
(b ; 1/kBT , where kB is the Boltzmann constant). The par-
tition function, J(�m, V , b), is given by

J(�m, V , b) =
∑
N1

∑
N2

· · ·
∑
Nk

exp b
∑k

i=1

miNi

( )
Q(�N , V , b),

(9)

where Q(�N , V , b) is the canonical partition function, and
�N = (N1, N2, · · · , Nk). It is possible to simply take �C = �N ;
however, the order parameter is now a vector and its size
grows with the number of components. Commensurately, the

(hyper)volume of macrostate space encompassing all possible
�N grows exponentially. Furthermore, it is practically difficult
to define the boundaries as sets of possible joint number obser-
vations that are possible in an arbitrary mixture , for example,
all possible (N1, N2) in a size-asymmetric binary mixture of
Lennard-Jones particles. Even when defined, it is computation-
ally intensive to sample these states exhaustively [50–52]. These
boundaries must be well defined for any flat-histogram simu-
lation since it will attempt to visit each possible state. It is
often simpler to recast J(�m, V , b) in terms of the isochoric
semigrand partition function, Y(Ntot; D�m, V , b) [53, 54],
which provides a scalar order parameter, Ntot:

J(�m, V , b) =
∑
Ntot

exp(bm1Ntot)Y(Ntot; D�m, V , b), (10)

where

Y(Ntot;D�m,V,b) =
∑
N2

exp(bDm2N2)

× . . .
∑
Nk

exp(bDmkNk)Q(�N,V,b).
(11)

Here, Dmi ; mi − m1. Consequently, one may write the prob-
ability of a macrostate as

lnP(Ntot; m1, D�m, V , b) = bm1Ntot + lnY− lnJ. (12)

This equation gives rise to a reweighting relationship that
enables the macrostate distribution to be recalculated for any
value of m1, at the same (D�m, V , b), if the distribution is already
known at another value of m0

1:

lnP(Ntot; m1) = lnP(Ntot; m1)+ b(m1 − m0
1)Ntot + C, (13)

where C is a constant related to the difference between the
grand canonical partition functions at different conditions,
which may be neglected in practice. In this way, only one simu-
lation needs to be performed to obtain a plethora of data. Note
that once the macrostate distribution is known, grand canoni-
cal ensemble average properties follow directly as weighted
averages of the states:

〈Xa〉 =
∑

Ntot[a P(Ntot)X̃(Ntot)∑
Ntot[a P(Ntot)

. (14)

Here α refers to the collection of macrostates that belong to a
given phase, and X̃ is the (isochoric semigrand ensemble) aver-
age property collected at each macrostate. This can found by
segmenting the macrostate distribution according to any local
minima that occur in the distribution. Two phases are in coex-
istence if they have equal pressures, which also follows from the
macrostate distribution [55]:

Pa = lnJa

bV
= ln

∑
Ntot[a P(Ntot)/P(0)[ ]

bV
. (15)

In summary, we have a method to perform a simulation at a
single condition, using a scalar order parameter, and use the
results to obtain all properties as a function of arbitrary m1.
However, this ‘exact’ reweighting relationship does not allow
one to predict what happens when, for example, the tempera-
ture changes. To obtain a reweighting relationship for that,

MOLECULAR SIMULATION 3



the energy must also be collected as part of the order parameter,
negating the original premise of seeking a simple, scalar one.
The same is true for multicomponent systems if we wish to
change mi (or equivalently, Dmi) where we would need to col-
lect the conjugate, Ni, for each i.

This is where an approximation to these reweighting
equations enables amplification of data without the need for
additional programming effort. We may expand the probability
distribution at each macrostate in a Taylor series with respect to
the intensive variables of interest that are not being reweighted
with respect to, in this case, �f = (b, m2, m3, · · · , mk), or
equivalently, �f = (b, D�m). Consider a general function,
g(Ntot; m1, �f); a second-order Taylor series of this function is
given by

g(Ntot;m1,
�f) = g(Ntot;m1,f

0
�

)+ d�f · ∇g(Ntot;m1,f
0

�
)

+ 1
2!

d�f ·H(Ntot;m1,f
0

�
) · d�fT

[ ]
,

(16)

where d�f = (db, dDm2, · · · , dDmk). The gradient,
∇g(Ntot; m1,

�f0), and symmetric Hessian matrix, H(Ntot;
�f0),

contain partial derivatives of g(Ntot; m1, �f) with respect to the
intensive variables in �f. It is well known that such partial
derivatives may be expressed using fluctuations in their conju-
gate extensive variables [56, 57], and therefore, if these proper-
ties are recorded during the simulation, one may compute all
necessary coefficients of the Taylor series. For example [27],

∂lnP(Ntot;
�f0)

∂b
= m1Ntot +

∑k

i=2

DmiÑi − Ũ + C, (17)

where C is a constant that can be neglected. Here, Ntot is a fixed
value for each macrostate and X̃ is the average quantity, X,
observed at that macrostate (Ntot) over the course of the simu-
lation. This can be measured on-the-fly or reconstructed from a
log file as a post-processing step. The latter can prove very help-
ful in employing this extrapolation scheme to previous work
that was not originally performed with this approach in mind.

Second derivatives follow naturally and contain terms that
are derivatives of isochoric semigrand averages, such as

∂2lnP(Ntot;
�f0)

∂b2 =
∑k

i=2

Dmi
∂Ñi

∂b

( )
− ∂Ũ

∂b
. (18)

These derivatives have closed-form expressions in terms of
fluctuations of extensive quantities,
f (X, Y) ; (X̃Y)− (X̃)(Ỹ), which are derived and presented
in more detail elsewhere [27]. Higher order terms involve
fluctuations of fluctuations, and may be generally described
by Ursell functions [58], or connected correlation functions,
but ultimately simply require knowledge of averaged extensive
quantities raised to certain powers. Consequently, we simply
need to measure

Z(Ntot; �j) = Nj1
1 Nj2

2 · · ·Njk
k Uju

[ ]︷�����������︸︸�����������︷Extensive Conjugates

Njn
tot (19)

over the course of the simulation and average the resulting
entries to obtain these moments. Here,

�j = (j1, j2, · · · , jk, ju, jn), where ji are integers ranging
from 0 to jmax which sets the maximum order to which extra-
polation may be performed [27]. Averaged over the course of
the simulation, this provides all the necessary information to
perform an extrapolation. We note that higher order moments
generally take longer to converge than lower order ones, and
the accuracy with which these are measured is usually the limit-
ing factor in this extrapolation approach since higher order
expansions enable accurate predictions to be made further
away from the originally simulated conditions.

4. Single component systems

First, we consider the simplest case of a single component sys-
tem, where Ntot = N1 = N , to illustrate extrapolation in temp-
erature. Reweighting in temperature (in practice, β) often
requires that the energy of the system be discretised in order
to create a histogram [60]; this presents its own challenges in
determining the bin width, for instance, which has led to the
development of binless variants [61, 62]. Consider a simple
square-well fluid presented in Figure 1 from [25]. A single
flat histogram simulation was performed to measure lnP(N)
at a supercritical reduced temperature of T∗ = 1.35. This
fluid has a critical point of T∗

c ≈ 1.22 so the initial simulation
represents a supercritical condition where sampling is typically
much easier than when subcritical. First, the macrostate distri-
bution was reweighted to different values of μ at T∗ = 1.35,
then extrapolated to lower temperature at fixed μ. From this
landscape, we computed the average density of the most stable
phase at each (T , m) to create various isotherms. Subsequent
comparison with direct simulation at those conditions reveals
essentially perfect agreement even down to deeply subcritical
temperatures as low as T∗ = 1.05.

Themacrostate distributions themselves are shown in Figure 1
(b) when the distributions have been reweighted to the value of μ
corresponding to vapour–liquid coexistence at subcritical temp-
eratures. It is clear that the extrapolated distributions match
nearly exactly, except for the intermediate region
(100 & N & 300) between the peaks. These low-likelihood
regions of N correspond to densities within the binodal where
bulk phase separation would occur. However, both the location
and height of the peaks are well predicted by extrapolation. Since
the properties of a given phase are a weighted average of the indi-
vidual canonical states, whose weights are determined by the
macrostate distribution (cf. Equation 14), the bulk properties
are essentially perfectly recovered. The binodal and enthalpy of
vaporisation obtained from the Clausius–Clapeyron equation
are shown in Figure 1(c) and, again, illustrate essentially perfect
agreement to within statistical error.

Extrapolation to higher temperatures is even more accurate
and is not reproduced here. Similar results have been obtained
for other simple fluids, such as Lennard-Jones. Therefore, for
these simple fluids, thermodynamic extrapolation enables
enough information to be extracted from a single flat-histo-
gram simulation to effectively represent a complete equation
of state with a valid range from supercritical conditions to
well below the vapour–liquid critical point.

This is not limited to bulk systems. For example, in Figure 2,
we applied this thermodynamic extrapolation procedure to a
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model of argon condensing in a slit pore composed of solidified
carbon dioxide [59]. This system exhibits a prewetting tran-
sition in which an initial low density film develops on the sur-
face which can exhibit coexistence with a thicker film. This
manifests in lnP(N) as a pair of peaks occurring at low N,
where each peak corresponds to different film thicknesses. Pre-
dictions were obtained by starting at the highest T∗ reported
then extrapolating to lower T∗ using different maximum orders

of terms in the underlying Taylor series. Second-order extra-
polation seems to not capture certain features which ultimately
manifest as systematic deviation in lnP(N) at higher N values,
whereas third-order extrapolation seems to capture this well
but is more noisy. Running these simulations for a longer
time to collect more accurate moments of the extensive proper-
ties would improve this; however, a natural trade-off would
emerge between running at higher T∗ to extrapolate better ver-
sus simply running a direct simulation at lower T∗. Achieving
the balance that minimises computational cost will depend on
the code efficiency (Monte Carlo moves, etc.) as well as the sys-
tem itself, so we do not attempt to generalise any conclusions
from this.

We emphasise, however, that this extrapolation was per-
formed using the original data that was deemed accurate
enough to compute properties at a single T∗; that is, a separate
flat-histogram simulation was performed at each different T∗

in the original work [59]. The extrapolation we have per-
formed in [25] and reproduced here was done by simply
retrieving the log files from these previous simulations, con-
structing the appropriate averages, then expanding the macro-
state distribution in a Taylor series at each N. Thus,
extrapolation can be used to amplify the data of existing simu-
lations without the need to add code or perform the simu-
lations again. This re-use illustrates data amplification
without the need for any additional effort beyond post-proces-
sing, making it a useful tool to extract much more information
from existing simulation results.

5. Multicomponent mixtures

Extrapolation in temperature conveniently enables the compu-
tation of phase diagrams for pure component systems. This can
also be performed for multicomponent systems [25]; however,
binodals for multicomponent mixtures are determined by the
equality of temperature, pressure, and chemical potentials of
all components in each phase; therefore, to locate the phase
envelope we must extrapolate in terms of the chemical poten-
tials for which we do not have an explicit reweighting equation
for (D�m values in �f).

A typical application of the extrapolation procedure for a
binary system would be as follows. First, a few

Figure 1. (Colour online) Comparison between extrapolation and direct simulation of the single component square-well system reported in [25]. (a) Isotherms obtained
from direct simulations (lines) at discrete subcritical temperatures (1.05 ≤ T∗ ≤ 1.30 in increments of 0.05) compared to those obtained from the extrapolation of a
single supercritical simulation at T∗ = 1.35 (points). (b) Representative macrostate distributions for this fluid from subcritical simulations (solid lines) compared to extra-
polation (dashed lines) of the supercritical one (solid black line) used in (a). (c) Phase diagram (vapour–liquid coexistence) computed from direct, subcritical simulations
compared to results obtained by extrapolating the supercritical one at T∗ = 1.35.

Figure 2. (Colour online) Comparison between direct simulations (solid lines) and
extrapolation from T∗ = 0.90 to T∗ = 0.70 (dashed lines) in increments of 0.05,
from top to bottom, for a model of argon on solidified carbon dioxide described
in [59]. Results are reported at the chemical potentials corresponding to the pre-
wetting transition. (a) Extrapolation using up to second-order terms in the Taylor
series. (b) Extrapolation using up to third-order terms in the Taylor series [25].
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simulations are performed at a given temperature and different
values of Dm2. The order parameter used is simply
�C = Ntot = N1 + N2. Note that following Equation (13) the
value of m1 used to perform the simulations is irrelevant, and
lnP(Ntot) can simply be recalculated at essentially any other
value desired via histogram reweighting. Figure 3(a) illustrates
this concept; because lnP(Ntot) can be reweighted along the
abscissa (m1), we can compute all properties along a given
blue line. However, each simulation is discrete along the ordi-
nate (Dm2). To obtain a numerical equation of state, we would
like to have lnP(Ntot; m1, Dm2, b); by extrapolating in Dm2
and β we can achieve this. Each simulation at a different
Dm2 can be extrapolated most accurately in its neighbour-
hood, bounded by its nearest neighbour simulation. To pre-
dict the properties at a value of Dm2 between two different
simulations, each can be extrapolated to that point, and
their individual results combined in a linear fashion with a
different weight assigned to each. The weight given to each
extrapolated macrostate distribution can be computed by
optimisation to satisfy the Gibbs–Duhem equation for ther-
modynamic consistency [27], or simply approximated as a
function of the distance each contributing simulation had to
be extrapolated. As the spacing between Dm2 values of the
simulations is reduced, this weight becomes progressively
less relevant as extrapolations from both neighbours predict
nearly the same values even if one is extrapolated further
than the other. For the example in Figure 3(b) which used
five different simulations, these weights were found to be of
the order of unity and the results were relatively insensitive
to them.

Thus, when properties of the system at a certain condition
(m1, Dm2, b) are desired, this reweighting plus extrapolation
procedure can be used to combine a small number of discrete
simulations to make predictions over a broad range of con-
ditions. To illustrate the representative accuracy of this pro-
cedure for simple fluids, we consider a binary square-well
mixture that forms an azeotrope in Figure 3(c,d) [27]. Here
we have extrapolated a single simulation performed at a
reduced temperature of T∗ = 1.20 and Dm2 = 0 to different
temperatures and chemical potentials. From these extrapolated
lnP(Ntot) arrays, we can compute the binodal for this system.
When extrapolating only this single simulation [cf. Figure 3
(c)], we are able to get reasonable predictions of the binodal
for mole fractions near x1 = 0.5 (corresponding to where
Dm2 = 0) across the temperatures of interest
(T∗ [ [1.20, 1.10, 0.95]); however, the predictions (solid
lines) quickly diverge from the true answer when x1 & 0.4 or
x1 * 0.6. By instead combining the results of five different
simulations over a range of different Dm2 values at the same
original temperature, we can achieve quantitatively
accurate predictions across the entire range of mole fractions
[cf. Figure 3(d)].

Similar quality results can be obtained for Lennard-Jones
systems as well [27]. While the choice of Dm2 spacing may
vary, this suggests that only a small handful of different simu-
lations are necessary to predict thermodynamic properties of a
binary mixture across a wide range of conditions, even for non-
trivial systems such as azeotropes. For systems with more com-
ponents, a similar method can be used to combine extrapol-
ations from a grid of different simulations at different Dmi.

Figure 3. (Colour online) Thermodynamic extrapolation of multicomponent mixture properties. (a) Qualitative construction of a (bm1, bDm2)-grid from a discrete set of
five different binary simulations. (b) Mole fraction of species 1, x1, in the most stable phase for the binary square-well mixture described in [27] over a grid as in (a). (c)
Symbols represent coexistence points for the binary square-well mixture obtained from direct simulation, whereas lines denote the predictions made by second-order
extrapolation of the simulation performed at T∗ = 1.20, Dm2 = 0.00 (circled in black). (d) The same predictions now using a combination of simulations at
Dm2 [ (+ 3.54, + 1.01, 0.0) and T∗ = 1.20 (circled in black) [27].
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Moreover, even if one decides to only trust the extrapolation
locally around each simulation and a combination procedure
is not used, a large amount of data is still produced; although
it contains gaps in Dmi or β, these can be used in machine learn-
ing models such as neural networks to generate accurate, pre-
dictive models.

For example, in Figure 4, we present a simple 4-layer, fully
connected neural network that has been fit to data obtained
by combining extrapolations for this binary Lennard-Jones
fluid [27]. Clearly even this relatively simple network can pro-
duce reasonable estimators of the original data. Deeper net-
works, more advanced layers, and other hyperparameter
optimisation via cross-validation can produce even better
results [7, 18]. However, this illustrates how data from five
simulations can be amplified via extrapolation to feed data-
intensive machine learning algorithms which can be used to
explore the properties of these fluids even further.

6. Structural properties

As previously mentioned, the concept of thermodynamic extra-
polation may also be extended to enable the extrapolation of a
system’s equilibrium structural properties, i.e. the average
spatial arrangement of atoms or molecules which constitute a
system. This includes properties such as radial distribution
functions, cluster size distributions, or radii of gyration for
polymeric systems. Recall that Equation (14) describes how
to average a property, X̃(Ntot), measured at each macrostate
(in this case, Ntot) to yield an ensemble average at the con-
ditions simulated, while Equation (16) describes how to extrap-
olate that result to other conditions. As discussed in [29], even
if this is not a conventional thermodynamic variable such as
particle number, it will not affect the equations defining the
derivatives in the Taylor series. The only caveat is that the
desired property will end up multiplying the moments matrix
which defines terms in the series. So we need to measure a
new matrix [27]:

Z′(Ntot; �j) = Z(Ntot; �j)× G(Ntot), (20)

where G(Ntot) is the structural property of interest.
Consider the case of the radial distribution function for a

canonical system (fixedNtot, V , b), which is typically computed

by collecting a histogram, hi,j(r; b), of the pairwise distances, r,
between particles of types i and j over the course of a simu-
lation. In general,

gı,j(rk; b) =
hi,j(rk; b)

Nc
Nj − di,j

V

( )
Vbin(rk)

[ ]
Ni

, (21)

where rk is the centre of a given histogram bin, di,j is the Kroe-
necker delta, Vbin is the volume of a given bin, and Nc is the
number of configurations collected over the course of the simu-
lation. For a single component system which we will consider
here, i = j which simplifies the notation. Instead of performing
a new simulation to measure g(rk; b) at a new temperature, we
can rewrite the radial distribution function as a Taylor series to
predict it from one previously measured:

g(rk; b) =
h(rk; b0)+ db

∂h(rk; b0)
∂b

+ 1
2!

db
( )2 ∂2h(rk; b0)

∂b2 +

Nc
N − 1
V

( )
Vbin(rk)

[ ]
N

.

(22)

Thus, to extrapolate g(r), we simply set G = h(rk) and
measure a Z′(N ; �j) matrix for each bin. In the end, we will
extrapolate the value of each individual bin, then renormalise
g(r) to satisfy the known relationship [63]:

〈N2〉 − 〈N〉2
〈N〉 − 1 = lim

R�1
〈N〉
V

∫R

0
[〈g(r)〉 − 1]4pr2dr

( )
. (23)

The average N and N2 values can be computed by extrapolat-
ing the thermodynamic properties as previously described.
Thus, the extrapolated structural and thermodynamic proper-
ties will yield consistent results. A similar procedure may be fol-
lowed for multicomponent radial distribution functions as well
with a few more bookkeeping steps [29].

However, at sufficiently low temperatures, systems often
undergo phase separation. When this occurs, only the states
contributing to a given phase should be averaged to yield a pre-
diction of, for example, the radial distribution function (cf.
Equation (14)). Taking this into account allows us to extrap-
olate and reweight the system to locate coexistence conditions

Figure 4. (Colour online) Isopleths (constant x1) for the binary Lennard-Jones fluid described in [27]. (a) Isopleths in chemical potential space at a reduced temperature of
T∗ = 1.3 created by extrapolating and combining five different simulations at various D�m. (b) Predictions from an example neural network composed of 4 dense, fully
connected layers of 15 nodes using the hyperbolic tangent activation function; 15,000 data points were collected spanning 5 temperatures with different combinations of
chemical potentials, as in (a); only 20 % of these data were used to train the network. (c) Predicted mole fractions from the neural network compared to those computed
directly from simulation. The root mean squared error (RMSE) on the training set was RMSE ≈ 6.3× 10−3, while for the test set RMSE ≈ 6.4× 10−3.
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and then examine the structural properties of each coexisting
phase. Figure 5 illustrates some examples of grand canonical
average radial distribution functions for a pure Lennard-
Jones fluid with long-range corrections [29] along its vapour–
liquid coexistence curve. The distribution was originally
measured at a reduced temperature of T∗ = 1.20 and extrapo-
lated using up to second-order terms to lower temperatures.
Extrapolation provides results nearly indistinguishable from
direct simulations even down to T∗ = 0.85, approaching the
triple point temperature of Tt ≈ 0.70 for this model [64].

In addition, we can also measure the cluster size distri-
bution, defined as

N(s) = P(s)× s∑
s P(s)× s

[ ]
r, (24)

where P(s) is the probability of observing a cluster containing s
particles when the system’s density is ρ. More details on how
clusters are defined are available in [29]. We collected this for
the same Lennard-Jones fluid and extrapolated (second
order) along the coexistence curves to examine the differences
between the liquid and vapour phases. Figure 6 shows the
results. Deviations increase with db and are most notable in
the liquid phase; however, even there this manifests as appar-
ently random noise oscillating around the correct mean
value. The vapour phase extrapolations are remarkably accu-
rate, even predicting the essential absence of certain cluster
sizes at low enough temperatures associated with the nucleation
behaviour of the fluid as the triple point temperature is
approached [65].

While we have highlighted calculations along the binodal for
this system, this extrapolation approach enables us to predict
properties such as g(r) and N(s) at any temperature or set of
chemical potentials. While accuracy is always a concern,
these results suggest that the range over which these extrapol-
ations can be expected to be reasonable is quite large. Thus,
we can make predictions across a wide and continuous range
of state points, rather than just a single, discrete point which
is yielded by a direct simulation or other conventional
approaches. Consequently, a broad range of conditions can
be explored with only a small set of (sometimes even a single)
simulations significantly amplifying the amount of reliable data
that can be extracted.

7. Extensions

So far we have reviewed the use and performance of the extra-
polation of macrostate distributions obtained by flat histogram
Monte Carlo simulations of relatively simple fluids. However,
the underlying principles can be extended to more complex sys-
tems and applied to other approaches as well. Next, we review
several examples of these extensions.

7.1. Internal degrees of freedom and Rosenbluth
sampling

While Monte Carlo insertion of rigid molecules simply requires
a random sampling of their centre of mass and orientation, the
same is not sufficient for the simulation of flexible molecules
(i.e., containing intramolecular potentials) which must typically
be ‘grown’ in a biased manner, such as with Rosenbluth
sampling, to be computationally efficient [66]. Extending the
temperature extrapolation of macrostate probabilities to sys-
tems that contain molecules with intramolecular degrees of
freedom requires us to consider an additional temperature-
dependent contribution within the reference state chemical
potential [30]. More details on why this can be neglected for
simple, monatomic fluids can be found in [26].

The reference state chemical potential of an ideal gas of rigid
particles, bmo

IG = − ln q(b), only contains a term correspond-
ing to the integration over all kinetic degrees of freedom,
q(b). Now consider a chain molecule with intramolecular
potentials. Even in the ideal gas limit, the chain will have
some intramolecular configurational energy, and thus integrat-
ing over all degrees of freedom results in an additional term for
the ideal chain (IC) reference state chemical potential,

bmo
IC(b) = − ln q(b)− lnQIC,c(b). (25)

Here QIC,c(b) is the configurational partition function of an
ideal chain with bonded degrees of freedom, �u, and intramole-
cular bonded energy, U int,

QIC,c(b) =
∫
d�u exp −bU int(�u)

[ ]
. (26)

This reservoir of ideal chains constitutes the reference state for
Rosenbluth sampling [1]. The chemical potential of a real gas
can finally be written as bm = bmo + ln (bfP), where ϕ is
the fugacity coefficient and P is the gas pressure. In practice,

Figure 5. (Colour online) Second-order extrapolation of a pure Lennard-Jones fluid’s properties from T∗ = 1.20 (points) compared to direct simulations (solid lines) [29].
(a) The radial distribution function of the vapour phase at coexistence for two representative temperatures. (b) Vapour–liquid binodal computed from direct simulations
compared to extrapolation of the simulation at T∗ = 1.20 (black squares). (c) The radial distribution function of the liquid phase coexisting with (a).
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the fugacity coefficient can be found either from a known
equation of state or from direct simulation of the bulk fluid.

To simplify notation consider a single component system of
chain molecules, Ntot = N1 = N . We have already shown how
to extrapolate the macrostate distributions to a new tempera-
ture using Equations (17) and (18) while holding μ constant.
However, the reference state for μ is a function of temperature
and so if we extrapolate in β leaving the numerical value of μ
constant, then P must change to compensate. For simulated
adsorption or phase equilibria corresponding to real systems,
P, not μ, is controlled. If we are interested in a transition
from m � m′ and b � b′, we can use the temperature extra-
polation equations developed thus far, followed by Equation
(13), to compute the new macrostate probability at m′ via

lnP(N;m′,b′) = lnP(N;m,b′) + (b′m′ − bm)N

= lnP(N;m,b′) + N ln
q(b)
q(b′)

QIC,c(b)
QIC,c(b′)

b′f′

bf

[ ]
.

(27)

Thus, we can extrapolate the macrostate probabilities involving
chain molecules by accounting for the temperature dependence
of the reference state. Practically, QIC,c(b) can be directly inte-
grated for sufficiently small chain molecules or when |�u| (the
stiff degrees of freedom) is small. Otherwise, the ratio of

QIC,c(b)/QIC,c(b′) can be obtained from a simulation of a single,
isolated chain [30].

Using this methodology, flat histogram simulations have
been performed for both rigid and chain molecules in an
adsorption system of practical interest, MOF-950 [30]. Sub-
sequent temperature extrapolation was used to vastly increase
the amount of thermodynamic information obtained. For all
three adsorbates studied (rigid CO2, CH4, and flexible C3H8),
the isotherms computed at a given temperature were extrapo-
lated over a total temperature range of 100 K. Figure 7 shows
how temperature extrapolation can accurately reproduce the
behaviour of the flexible propane adsorbate over a range of at
least 100 K using data collected from only a single simulation.

The isotherm extrapolated from simulation data at 400 K
predicts the isotherms at 350 K and 450 K exactly. The closed
circles of Figure 7 show the propane loadings predicted by
grand canonical Monte Carlo (GCMC) with Rosenbluth
sampling. Each discrete T and P point requires a separate
GCMC simulation, whereas the isotherms predicted by flat-his-
togram extrapolation can be made continuous in T and P space
by simple post-processing of the original simulation data.

The power of a flat-histogram technique lies in its ability to
generate significantly more thermodynamic data than would
otherwise be obtained from standard GCMC simulations. For
example, suppose one wishes to optimise temperature/pressure
swing operating conditions for an adsorbent bed in a chemical
separation process. To model the adsorption properties at
different temperatures requires either brute force grand canoni-
cal Monte Carlo (GCMC) simulations over the entire possible
temperature operating range (high computational cost) or
fitting the simulation data to an analytical adsorption model
often containing simplifying assumptions (potential loss of
fidelity). Temperature extrapolated flat histogram simulations
avoid both of these concerns. The computational cost of
post-processing simulation data to perform temperature extra-
polation, which can generate macrostate probabilities on an
arbitrarily fine temperature grid, is negligible compared to run-
ning more GCMC simulations. And in the case of complex,

Figure 6. (Colour online) Extrapolated grand canonical cluster size distributions,
〈N(s)〉, along the binodal for the pure Lennard-Jones fluid [29]. Solid lines corre-
spond to 〈N(s)〉 obtained from direct simulations; points correspond to second-
order extrapolations from T∗ = 1.20. (a) 〈N(s)〉 for the coexisting vapour phase.
(b) 〈N(s)〉 for the coexisting liquid phase.

Figure 7. (Colour online) Adsorption isotherms of propane in MOF-950 as reported
in [30]. Filled circles were obtained from standard GCMC simulations, colour-coded
by the simulation temperature T [K] [ (350, 360, 375, 385, 400, 410, 425, 435,
450). Dashed isotherms correspond to flat-histogram simulations calculated at a
fixed temperature, whereas solid isotherms correspond to the extrapolation of
the 400 K isotherm data.
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non-Langmuir adsorption behaviour, such as the 350 K pro-
pane isotherm in Figure 7, the accuracy of the temperature
extrapolation does not require selecting, deriving, or fitting a
sufficiently complex adsorption model. Finally, we note that,
in addition to flexible chain molecules, such extrapolation tech-
niques could be applied to flat-histogram simulations of fully
flexible adsorbents [67]. Extrapolation of fully atomistic
adsorption simulations of flexible molecules in flexible adsor-
bents will have the power to greatly increase the amount of
information obtained from simulations that are very expensive
to execute in the first place.

7.2. Virial coefficients and Mayer sampling

Virial coefficients are of great interest for both fundamental and
practical reasons. These coefficients can directly relate the inter-
actions between particles to an experimental bulk measurement
with very few assumptions [69]. For models with short-range
interactions, the extended law of corresponding states [70]
has shown how the second virial coefficient can be used to com-
pare different models to each other or to compare models to
experiments [71, 72]. In practice, virial coefficients are used
to inform industrial processes, separations, and determine the
stability of colloidal suspensions [73–76]. They have also
been used to measure the aggregation propensity of protein sol-
utions [77–79]. Thus, virial coefficient data obtained by compu-
tational methods over a large range of conditions [28, 80] has
the potential to greatly reduce the number of experiments
required for optimising chemical processes and performing
pharmaceutical research.

While lower order virial coefficients of relatively simple
models may be computed routinely [69], higher order coeffi-
cients and complicated models require specialised techniques
[81]. For example, Mayer-sampling Monte Carlo (MSMC)
[82] is a highly effective method for computing virial coeffi-
cients of complex models (e.g. proteins) [83, 84]. MSMC uti-
lises free-energy perturbation and importance sampling
methods such as umbrella-sampling to bias a Monte Carlo
simulation toward configurations which contribute to the
ensemble average of interest. Note that since histograms are
one way to compute an importance sampling bias over a
range of order parameter values [85], extrapolation principles
[25, 34–37, 56, 57] may be extended to importance sampling
Monte Carlo simulations.

Here we briefly review the extrapolation equations for
MSMC simulations [82]; a more detailed derivation may be
found in [28]. The MSMC [82] formula to compute the kth
order virial coefficient, Bk, via biased sampling is

B∗
k =

Bk

B̂k
=

gk
p

〈 〉
ĝk
p

〈 〉 = $
drgk$
drĝk

, (28)

where the ‘hat’ (e.g. B̂k) refers to a reference potential with a

known virial coefficient, 〈M〉 =
$
drMp

( )
$
drp

, π is the chosen

sampling distribution, and
$
dr is an integration over the pair-

wise translational and orientational coordinates. For the second

and third virial coefficients, k=2 and 3, respectively, g2 = f12
and g3 = f12f13f23, fij = exp(− bUij)− 1, where Uij is the pair-
wise intermolecular potential. Typically p = |gk| is found to be
effective but the following derivation does not depend upon this
choice. In order to perform extrapolations with respect to some
arbitrary variable, η, we now turn our attention to taking
derivatives of Equation (28). Using the quotient rule and Leib-
niz integral rule, we obtain

ĝk
p

〈 〉2
∂B∗

k

∂h
= ∂gk

∂h

1
p

〈 〉
ĝk
p

〈 〉
− gk

p

〈 〉 ∂ĝk
∂h

1
p

〈 〉
. (29)

If the reference potential is a function of η, i.e. ĝk = ĝk(h), then
higher order derivatives are obtained via the general Leibniz
(product) rule. This equation may be greatly simplified by
choosing a reference system, ĝk = ĝk(h) (e.g. a hard sphere),
to obtain the following equation for the nth order derivative:

ĝk
p

〈 〉
∂nB∗

k

∂hn
= ∂ngk

∂hn

1
p

〈 〉
. (30)

The only remaining quantities we need to evaluate are ∂nfij
∂hn ,

which depend upon what variable(s) we are extrapolating,
e.g. temperature or model parameters in the case of alchemical
transformations. The derivatives of the virial coefficients com-
puted at the simulation conditions may then be used to extrap-
olate to other conditions that were not simulated by using a
Taylor series or Padé approximants.

One demonstration of the ability of extrapolation to provide
large amounts of quality data at reduced computational cost is
the MSMC simulation of the SPC/E water model [28]. In this
example, a single simulation using the extrapolation technique
yields more data than hundreds of traditional simulations. As
shown in Figure 8, a single MSMC simulation accurately
extrapolates the second virial coefficient over the temperatures
range of 250 K to 104 K. The same simulation used for tempera-
ture extrapolation was also used to accurately extrapolate the
point charge of the model from 40% higher charge down to
zero charge, as shown in Figure 9. This is possible because
derivatives with respect to multiple variables may be obtained
simultaneously from the same simulation. One may also com-
pute mixed derivatives to perform multivariate extrapolation.
The accuracy of the extrapolations may also be improved
with Padé approximants [28].

Extrapolation with respect to model or forcefield par-
ameters, also referred to as an alchemical transformation, is a
promising way to improve and screen computational models.
In the previous example, the charges of the SPC/E point charge
water model were scaled by a constant. The development of
coarse-grained models is another area where these extrapol-
ation methods can be of great utility [78, 84, 86, 87]. For
example, the derivatives of the second osmotic virial coefficient
with respect to the model variables may be computed and used
to improve the model. This may lead to a significant improve-
ment in fitting the model to experimental data while reducing
the computational expense and number of simulations
required. Indeed, some minimisation and machine learning
algorithms may make explicit use of derivatives obtained by
the equations above to further improve efficiency.
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While the increasing power and speed of computers allow
researchers to perform an increasing number of independent
simulations over a range of conditions, fluctuation formulas
like those presented herein allow us to connect the dots more

efficiently. The computational cost to obtain derivatives of
ensemble averages of interest, in addition to the ensemble aver-
age themselves, is often negligible. Thus, statistical mechanical
simulations may provide a significant amount of data on vari-
ations in parameters that are not often directly sought after.

8. Conclusions

Extrapolating flat-histogram simulations enables the accurate
prediction of both structural and thermodynamic properties
of many systems across a broad range of conditions. This
approach simply requires the collection of moments of exten-
sive, observable quantities (such as energy) in simulations in
order to extrapolate in their intensive thermodynamic conju-
gates (such as temperature). As a result, these moments can
be either constructed during a simulation or via post-proces-
sing after the simulation has completed. Thus, this technique
can be used to amplify the amount of data extracted from
not only new simulations, but can be used to re-analyse the
log files of previously performed ones. Extrapolation employs
a series expansion to approximate a property of interest,
which fundamentally implies that we may obtain that property
as a continuous function of variables such as temperature or
chemical potential; however, it also enables one to quickly
obtain a large amount of discrete data points that can be
regressed using data-intensive techniques such as neural net-
works. As the fourth paradigm becomes progressively more
mainstream, it is important to have computational method-
ologies in place that can not only produce highly accurate esti-
mates of physical properties, but also a large number of
predictions in order to exploit these emerging techniques.
The extrapolation approaches we have briefly reviewed here
are capable of both, and are expected to be a useful tool in
many aspects of computational chemical analysis and design
including high throughput screening, force-field parameterisa-
tion, and process optimisation.
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Figure 9. (Colour online) The second virial coefficient of the SPC/E water model
with units of cm3/mol at T=800 K obtained from MSMC (black circles) and extra-
polation with respect to site charges, qi � %%

x
√

qi from a single simulation at
x = 1 (lines). The results are shifted by a parameter, D = 100 cm3/mol, so results
can be plotted on a log scale. Reproduced from [68].

Figure 8. (Colour online) The second virial coefficient of the SPC/E water model
obtained via MSMC (black circles) and extrapolations from T = 800 K (lines)
with an [nmax − 1/1] Padé approximant. The maximum order derivative, nmax, is
shown in colour. Reproduced from [68].
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