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a b s t r a c t 

Integrating environmental sustainability assessment into parametric design presents an opportunity for 

enabling sustainable product design. However, this is a challenging task as quantitative methods for sus- 

tainability assessment are poorly integrated with parametric design and optimization tools. Furthermore, 

current streamlined approaches for computing environmental impact during the design stage often ignore 

manufacturing-related impacts resulting from the geometric complexity of parts. To address these gaps, 

we present a systematic workflow for computing environmental indicators from parametric design mod- 

els. Our workflow utilizes the unit manufacturing process information model to evaluate manufacturing- 

phase resource consumption from process planning data, and consequently enables quantitative corre- 

lation of design parameters to the calculated environmental indicators. We demonstrate our workflow 

through a case study involving the design of a rigid flange coupling, wherein we evaluate the influence 

of geometric design parameters on the corresponding environmental impact of the design. 
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1. Introduction 

A significant portion of a product’s life cycle environmental im-

pacts are committed during the design stage ( Ramani et al., 2010 ).

This is especially true for mechanical parts as their life cycle envi-

ronmental impacts are primarily a function of material, geometry,

and attributes that are fixed at the design phase. However, assess-

ing such impacts during the design stage is challenging due to the

limited availability of downstream life cycle information ( Brundage

et al., 2018 ). Consequently, a wide range of qualitative and semi-

quantitative tools are used to guide the ecodesign process ( Ramani

et al., 2010 ). With the ubiquity of sensing capabilities relevant

for characterizing environmental sustainability throughout the pro-
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uction process ( Stock and Seliger, 2016 ), more quantitative ap-

roaches are possible. 

Creating quantitative methods in design decision-making, e.g.,

ncorporating results from streamlined life cycle assessment into

arameter selection or optimization, requires (i) estimating down-

tream life cycle information (e.g., energy consumption in man-

facturing) empirically or (ii) analytically quantifying variation in

nvironmental impact as an explicit or implicit function of design

arameters. Research that focus on the former area often use infor-

ation from similar existing designs to predict the environmental

mpact of the new designs ( Bernstein et al., 2010; Eisenhard et al.,

0 0 0; Ramanujan et al., 2015 ). In the latter case, design parameters

an be used to construct parametric life cycle inventories, which

n turn enable designers to explore relationships between specific

esign parameters and the resulting environmental impact. Note

hat most streamlined methods, e.g., SolidWorks SustainabilityX-
D license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.procir.2020.02.058
http://www.ScienceDirect.com
http://www.elsevier.com/locate/procir
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wzb@nist.gov
mailto:william.bernstein@nist.gov
https://doi.org/10.1016/j.procir.2020.02.058
http://creativecommons.org/licenses/by-nc-nd/4.0/


W.Z. Bernstein, M. Tensa and M. Praniewicz et al. / Procedia CIRP 90 (2020) 102–108 103 

p  

o  

m  

i  

F  

d  

s  

d  

p  

S  

p  

r  

d

 

p  

s  

f  

p  

s  

r  

s  

o  

s  

t

2

 

(  

E  

p  

e  

t  

m  

p  

s  

s  

t  

2

 

d  

p  

T  

s  

s

t  

“  

t  

p  

U  

r  

c  

(  

m  

f

 

y  

a  

s  

m  

c  

a

t  

e  

t  

e  

s  

 

d  

t  

i  

a  

i  

m  

t  

t  

d  

I

m  

r  

s

 

a  

t  

i  

t  

f  

e  

t  

(  

s  

(  

f  

t  

T  

m  

p  

r  

 

g  

a  

m  

S  

i  

C  

m  

w  

p  

c  

e  

T  

r  

o  

t  

a  

i  

v  

d  

fl  

i  

a  

c

ress 1 , scale such inventories volumetrically, i.e., with the volume

f the part or the volume of the material removed in subtractive

anufacturing processes. Hence, they do not account for variation

n manufacturing processes resulting from geometric complexity.

urthermore, data from downstream stages, e.g., machine-reported

ata from production systems needs to be represented through

tandard representations and interfaces that are useful for design

ecision-making. Although standards activities and reference im-

lementations are well underway for addressing such needs (see

ec. 2 ), to the best of the our knowledge, there is no published

revious research on standards-based approach for computing and

epresenting life cycle inventories such that can be linked to design

ata, e.g., computer-aided design (CAD) models. 

This paper focuses on creating a systematic workflow for com-

uting environmental performance indicators from parametric de-

ign models. The developed workflow utilizes the unit manu-

acturing process information model to evaluate manufacturing-

hase resource consumption from process planning data and con-

equently enables quantitative correlation of specific design pa-

ameters to environmental performance indicators from down-

tream life cycle stages. The primary contribution here is a proof-

f-concept workflow for performing sensitivity analyses of de-

ign attributes via ASTM E3012 ( ASTM E3012, 2020 ) demonstrated

hrough a case study of a rigid flange coupling. 

. Background and related work 

The basis for this work is the unit manufacturing process

UMP) information model defined in the recently revised ASTM

3012 ( ASTM E3012, 2020 ). The purpose of the UMP model is to

rovide the necessary digital definitions to fully characterize mod-

ls describing manufacturing processes. This includes all assump-

ions present in the model, i.e., free-text descriptions or mathe-

atical definitions, the model’s bounds of utility, and all model

arameters formally characterized and codified 

2 . The standard was

pecifically designed to handle environmental sustainability per-

pectives with one of the main goals to derive life cycle inven-

ory (LCI) data in more consistent and robust ways ( Bernstein et al.,

018b ). 

To demonstrate the generation of LCI data, several tools were

eveloped to interface with the UMP conceptual model. In this

aper, we leverage these tools to realize the proposed workflow.

he UMP Builder ( Bernstein et al., 2018a; Lechevalier and Bern-

tein, 2019 ) is a web-based tool that facilitates the recording and

yntactic validation of UMP reference models. To “operationalize”

he process models, Kulkarni et al. (2019) developed a plugin to

MOdel Composition and Analysis” (MOCA), a meta-modeling op-

imization tool, to accept UMP XML models. MOCA generates a

ython library with variable and expression descriptions of the

MP models and provides a link to simulation and optimization

outines via OpenMDAO ( Gray et al., 2010 ). Linking the UMP con-

ept with Life Cycle Assessment (LCA) practice, Bernstein et al.

2019) demonstrated the integration of MOCA-generated process

odels with Brightway2 ( Mutel, 2017 ), an open Python-based LCA

ramework. 

Here, we extend these works to facilitate sensitivity anal-

ses of product attributes relative to environmental sustain-

bility performance considerations. The current example UMP

chema ( Bernstein and Lechevalier, 2019 ) does not differentiate

odel attributes based on whether they relate to product or pro-

ess information. Instead, we classify model attributes based on
1 https://www.solidworks.com/sustainability/sustainability-software.htm . 
2 Refer to the reference documentation ( Bernstein and Lechevalier, 2019 ) to learn 

bout the UMP model. 

3

 

i

heir bounds and evaluation characteristics, e.g., whether a param-

ter is assumed to be fixed through the model evaluation or a con-

rol variable with specified bounds. Understanding the core differ-

nces between product-, design-, and process-anchored parameters

hould facilitate the advancement of the standard reference model.

Model-based design (MBD) describes a structured process for

eveloping formal (often mathematically defined) design defini-

ions to facilitate deeper understanding of how design character-

stics relate to product life cycle considerations. MBD is tradition-

lly leveraged in complex product systems, e.g., aircrafts and build-

ngs. Defining design, manufacturing, inspection, and sustainment

odels is an expensive task. To lessen barriers to implementation,

he International standards community has contributed informa-

ion models to improve interoperability across these domains, i.e.,

esign, production, inspection, and distribution ( Lu et al., 2016 ).

ntroducing environmental sustainability considerations into these 

odels has yet to be broadly standardized, but the current data

epresentations already provide the necessary infrastructure for

uch perspectives ( Brundage et al., 2018 ). 

We present a case study that explores sensitivity of design char-

cteristics relative to environmental sustainability-related evalua-

ions using standard parametric modeling methods. Though there

s limited work from the environmental sustainability perspective,

here is plenty of MBD implementations exploring traditional per-

ormance indicators, e.g., cost, throughput, and quality ( Simpson

t al., 2008 ). Recent effort s f ocus on constructing design definitions

hat are robust to life cycle disruptions. Donndelinger and Ferguson

2017) characterized a design to better deal with anticipated down-

tream considerations through “slack” parameters. Kumar et al.

2008) developed a compressor blade design robust against manu-

acturing variations. Xue et al. (2008) leverage the Taguchi method

o understand design attribute sensitivity to anticipated change.

hough there are more examples of research projects, business

ethods, e.g., automated change requests, remain challenging in

ractice partly due to their lack of conformance to standard data

epresentations, architectures, and interfaces ( Hedberg et al., 2017 ).

CAD and computer-aided manufacturing (CAM) software offer

reat potential for developing workflows to explore relationships

cross a product’s life cycle through open application program-

ing interfaces (APIs). Chen et al. (2017) demonstrated the use of

iemens NX platform to relate LCA workflows to CAD-generated

nformation. Similar efforts have been developed to interface with

AM intelligence. Gaha et al. (2016) manually generated possible

anufacturing scenarios from each part feature within a CAD soft-

are to evaluate environmental performance during the design

rocess. Russo and Rizzi (2014) developed the Eco-OptiCAD tool

onsisting of their own “standard” manufacturing process mod-

ls relating CAD-based part features to environmental assessments.

ao et al. (2018) leverage a commercial system integration tool to

elate product features with attributes within an LCA software to

ptimize products for environmental performance. Yet, such solu-

ions are platform-specific and do not provide a strong standards

ngle for broad dissemination. In many cases, once information

s retrieved from CAD/CAM systems, one-off prototypes are de-

eloped to perform problem-specific calculations to generate LCI

ata. The goal of our work is to construct a standards-based work-

ow that offers directions for platform-agnostic integration. Play-

ng central roles, the UMP model ( Bernstein and Lechevalier, 2019 )

nd the tools built around it offer standard interfaces for LCI cal-

ulations. 

. Methodology 

The overall methodology of the proposed workflow is illustrated

n Fig. 1 . Steps in this process are discussed below. 

https://www.solidworks.com/sustainability/sustainability-software.htm
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Fig. 1. Schematic describing the inputs and outputs of steps in the proposed workflow with exemplar methods called out in the workflow functions. 
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3.1. Formulating parametric CAD model and data structure 

First, a parametric design model of the part is generated which

consists of (i) a parameterized CAD “base” model and (ii) an

object-oriented description of design variables and computed ge-

ometric and physical parameters, i.e., { d i , ..., d n }. The CAD model

is parameterized based on a set of N independent driving geomet-

ric dimensions G = { g i : 1 ≤ i ≤ N ∧ N ≥ 1 } . These dimensions, the

driven geometric dimensions, and the geometric constraints be-

tween model elements are chosen such that they convey underly-

ing design intent. The driving dimensions G cam ne instantiated to

generate a valid CAD model C ( G ) that is representative of a physi-

cally realizable mechanical part (see step 4.2). 

The object-oriented description of the part includes a set of K

independent design parameters D = { d i : 1 ≤ i ≤ K ∧ K ≥ 1 } that re-

late to part geometry ( G ⊂ D ) and metrics for part performance P .

Instantiating a set of design parameters D produces a design model

M ( D ) with a corresponding CAD model C ( G ). The model M also

contains a description of constraints L on design requirements, e.g.,

required torque transmission for a coupling and moment of inertia

for a flywheel, and physical constraints, e.g., limits of physical di-

mensions, yield strength of material. Thus, for a set of design pa-

rameters D , the validity of the model M ( D ) can be checked based

on their satisfying L . 

3.2. Generating NC code for the manufacturing process 

The CAD model C ( G ) is generated within a commercial para-

metric CAD/CAM application. A model representing the initial stock

model is generated by offsetting the minimum bounding box of the

component by a predefined allowance. This is common practice to

allow for variation in incoming raw material. The work coordinate

systems used to define the location and orientation of the compo-

nent within the machine tool for the two setups are then defined

based on the CAD geometries. 

Machining operations are determined by automatically extract-

ing machinable features from the generated CAD geometry based

on the defined machine and setup condition. Note that auto-

matic feature extraction for CAD/CAM represents a rich area of re-

search ( Gao et al., 2004; Henderson and Anderson, 1984; Perng

et al., 1990 ) but its implementation is not trivial as described later

in the paper. The required tools for these operations are automati-

cally selected from a predefined tool catalog, first by selecting the

appropriate type of tool, e.g., a face mill for facing, an end mill for

pockets, and a drill for holes, then choosing the appropriate tool

size. In machining, it is preferred to use the largest tool possible

to complete an operation, as larger tools provide a higher mate-

rial removal rate (MRR) for a given set of machining conditions.

For holes, a drill is chosen with a matching diameter. For inter-

nal pockets, an end mill is chosen which is smaller or equal to

the minimum feature size, e.g., an internal corner radius. For open
ockets, large tool sizes are chosen as they are not constrained by

 minimum feature size. 

Toolpaths are then created for each operation based on the op-

ration type and defined manufacturing parameters. These param-

ters include cutting speed, chip load per tooth, axial tool en-

agement (depth of cut), and radial tool engagement (stepover).

hese parameters can vary between the specific machining oper-

tion type, the material to be machined, the cutting tool used, and

he machine tool used in the process. NC code for the created tool-

aths is then generated via a post-processor. 

.3. Evaluating performance indicators from the NC code 

Once the NC code is obtained from the CAD/CAM application,

e relate the instance data to the appropriate UMP reference

odel. Via MOCA, we generate a library of Python code by pars-

ng through a E3012 validated model ( Kulkarni et al., 2019 ). In

he case of machining, we consider each NC code line as an in-

ividual machining scenario taking into account whether the ma-

hine is in rapid-traverse or active-cutting modes. Based on NC

ode standards ( EIA, 1979 ), we developed a parser that evaluates

ach cut based on a previously constructed UMP model ( Bernstein

t al., 2019 ). These evaluations account for all necessary inputs

nto the process LCI. For more information, refer to the developed

apping method between E3012 and EcoSpold information mod-

ls ( Bernstein et al., 2019 ). The interaction of the two models us-

ng this mapping method enables selection of potential LCI mod-

ls based on the corresponding UMP model. Brightway2 coupled

ith a commercial LCI activity database is used to compute envi-

onmental impacts. 

For each design, we can access various performance indicators

epending on the nature of the search. For example, for a ma-

hined flywheel, we can get simulated LCA results of the design-,

etup-, and machine-specific process along with more traditional

erformance objectives, e.g., maximum Von Mises stresses com-

uted using the input design parameters. 

Our workflow supports cradle-to-gate LCA, while taking into

ccount contributions from material and energy flows, i.e., input

aterial, output waste, and recycled material. Although any LCA

ethod can be used given that the incorporated databases sup-

ort it, we use the ReCiPe method ( Goedkoop et al., 2009 ), which

elps translate various emissions and resource extractions into a

imited number of eco-impact scores through characterization fac-

ors. In our case, we equally weight the final scores to report a

ingle value; however, in practice, evaluating alternatives by con-

idering scores separately is often more telling. 

. Case study 

The proposed workflow enables automated evaluation of the

erformance indicators over an interval of design parameters.

herefore, the computed performance indicators can be used to
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Fig. 2. Cross-section for parametric design of straight flanges ( Blake, 1989 ) 
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rive iterative analyses commonly performed in the design stage,

.g., design optimization, sensitivity analyses, and trade-space ex-

loration. We demonstrate the application of the workflow to one

uch case, determining the influence of design parameters on the

radle-to-gate environmental impact of a straight flange coupling

esign. For assessing the environmental impact of the flange cou-

ling, we consider the amounts of (i) aluminum used for the stock

aterial, (ii) mineral oil for machining, (iii) water consumed dur-

ng machining, (iv) electricity consumed, (v) aluminum recycled,

nd (vi) oil recycled. 

.1. Design problem description 

The parametric design model for the straight flange coupling

as implemented as shown in Fig. 2 . For more detailed informa-

ion regarding the parameterization, please refer to the referenced

issertation ( Qureshi, 2011 ). The objective of this case study is to

dentify the sensitivity of the design parameters to a computed

radle-to-gate environmental impact indicator. To this end, we se-

ected four design parameters of the straight flange coupling. Be-

ow, we call out their nomenclature, with a brief description and

alue ranges studied. Values are presented in millimeters. 

• R hub – [30,90] – radius of the inner hub 

• R outer – [35,130] – radius of the flange assembly 

• h – [20,30] – height of the flange part 

• t – [1.5,20] – thickness of flange coupling 

Design parameters that were fixed throughout our study in-

lude the bolt diameter ( D bolt = 3 mm ), the shaft diameter ( R sha f t =
5 mm ), and the number of bolts ( N bolts = 5 ). To ensure the design’s

anufacturability, the following constraints were defined for gen-

rating each design alternative. 

 . 5 t − h + 1 ≥ 0 (1)

 hub + 0 . 5 − R outer ≥ 0 (2)

 sha f t + 0 . 5 − R hub ≥ 0 (3)

 R − 2 R + 1 + D / 2 ≥ 0 (4)
hub bolt bolt 

Fig. 3. Sample of the generated design alternatives evaluated throughout th
 R bolt + D bolt / 2 + 1 − 2 R outer ≥ 0 (5)

.2. CAM considerations 

The manufacturing process for the straight flange design im-

lemented in this case study required two setups, as the straight

ange component needed to be finished on all sides. In setup one,

he component was face machined and all holes were drilled. In

etup two, the other face and center boss of the component were

achined. The required tools for these operations, e.g., the appro-

riate drills size for a hole, were automatically selected from a pre-

efined tool catalog. This tool catalog contained a full range of drill

its in 0.5 mm increments, a range of endmills from 1 mm to 25

m and small selection of facemills. 

Once the tool has been selected for an operation, the machin-

ng parameters were assigned. The material used in this study

as Aluminum. Therefore, a machining speed V c was chosen based

n the manufacturing database (approx. 250 m/min). This cut-

ing speed determines the rotational speed of the cutting tool

 = (10 0 0 V c ) /d. Feed velocity of the tool V f is then calculated as

 f = s z N t N, where s z represents the defined feed per tool and N t 

epresents the number of teeth on the cutter. The axial a p and ra-

ial a e depth of cut were defined conservatively as percentages of

he tool diameter; a p = 0 . 2 d, a e = 0 . 1 d. 

.3. Sensitivity analysis of design parameters 

We conduct a screening study ( Iooss and Lemaître, 2015 ) to

dentify design parameters that significantly influence the resulting

nvironmental impact. We adopt the method proposed by Morris

1991) for computing elementary effects. It classifies input vari- 

bles (e.g., design parameters) into three categories, (i) design pa-

ameters with negligible effects, (ii) design parameters with signif-

cant linear effects and without interactions, and (iii) design pa-

ameters with significant non-linear effects and/or interaction ef-

ects ( Iooss and Lemaître, 2015 ) based on the absolute mean and

tandard deviation of the elementary effects. Thus, results from

hese analyses can guide further exploration of specific design pa-

ameters and consequently guide generation of alternatives. The

verall process for the screening analysis is shown in Algorithm 1

A1) and is elaborated below. Given a nominal design D nom 

, we

erformed a screening study in the neighborhood of the nominal

esign D limits ; D limits = D nom 

± ω. The value of ω is set by the en-

ineer performing the study. First, the study space ( D limits ) is dis-

retized into l levels as described in A1, line 2. Next, the elemen-

ary effect of each design parameter d i on the set of performance

arameters P is estimated for R random values of D as shown in A1,

ine 6. This is used to compute the mean absolute value (A1, line

) and the standard deviation of the elementary effect (A1, line 9).

1 plans for independent random sampling and requires 2 KR runs

f the computational model. 

Results of the screening study were further validated through

 linear regression analysis that estimated the cradle-to-gate indi-

ator using design parameters with significant elementary effects.

etails about the fitted model are presented in Section 5 . 
e design screening study. Design attributes are listed in millimeters. 
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Algorithm 1 Screening study for significant design parameters 

1: function screeningCALC ( a , l, K, R , D limits , M, C) 

2: δD ← − a 

l − 1 
; a, l ∈ Z 

+ 

� l is number of levels of discretization of D limits 

3: for i from 1 to K do 

4: for r from 1 to R do 

5: D 

r = random (D ) ; D ∈ D limits 

6: E r 
i 

= 

gen (D 

r + δD ∗ u i , M, C) − gen (D 

r , M, C) 

δD 

� u i is a vector of canonical base 

7: end for 

8: μ+ 
i 

= 

1 
R 

∑ R 
r=1 | E r i 

| 
� compute mean absolute value of elementary effects 

9: σi = 

√ 

1 
R 

∑ R 
r=1 

(
E r 

i 
− 1 

R 

∑ R 
r=1 E 

r 
i 

)2 

� compute standard deviation of elementary effects 

10: μ+ = μ+ ∪ μ+ 
i 

11: σ = σ ∪ σi 

12: end for 

13: return μ+ , σ
14: end function 

15: function Gen ( D, M, C) 

16: instantiate M(D ) , C(G ) 

� M is the design model, C is the CAD model, and G ⊂ D 

17: check validity of M(D ) , C(G ) 

� verify L is satisfied & C(G ) is valid. 

18: NC ← − { M(D ) , T } 
� generate NC code for milling operations based on M(D ) & 

machine specifications T 

19: P ← − { M(D ) , NC, EI} 
� define eco-indicator P , based on M(D ) , NC, & LCI database EI 

20: return P 

� calculate and return P ; the set of part performance metrics 

21: end function 

Table 1 

Absolute means ( μ+ ) and standard deviations ( σ ) 

for elementary effects of parameters. Each μ+ is 

greater than its estimated standard error ( σ/ 
√ 

R ). 

R hub h t R outer 

μ+ 8.3755 6.774 0.2414 8.3433 

σ 1.8306 2.9157 0.4738 11.5984 
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4.4. Study setup 

Simulations were performed on a desktop computer with an In-

tel Xeon E2186G @ 3.80 GHz processor. The object-oriented model

of the straight flange coupling was implemented in the Python

programming language and the parametric model was generated

using SolidWorks R ©. CAMWorks R © was used for generating the NC
Table 2 

Estimated coefficients along with 95% confidence intervals

Term Estimate Std error 

Intercept −0.253 0.034 

R hub 7.740 0.229 

h 7.351 0.965 

R outer 8.540 0.191 

( R hub -0.0499) ∗( R hub -0.0499) 60.697 12.559 

( h -0.0256) ∗( h -0.0256) −175.451 351.547 

( R outer -0.109) ∗( R outer -0.109) −50.201 9.057 

( R outer -0.109) ∗( h -0.0256) −77.103 60.712 

( R outer -0.109) ∗( R hub -0.0499) 17.362 15.360 

( h -0.0256) ∗( R hub -0.0499) 207.651 67.997 
ode that was fed into the UMP reference model. The follow-

ng values of constants were used in the sensitivity analysis al-

orithm to compute elementary effects: a = 1 ; l = 10 ; R = 100 ;

 = 4 . The values of D limits for the design parameters are detailed

n Section 4.1 . The values for a and l were set by the authors based

n the design problem. The number of replications R was set by

rogressively increasing the number of replications to the point

here we noticed insignificant deviation in the values for the com-

uted elementary effects ( Ruano et al., 2011 ). 

. Results 

Fig. 3 illustrates six design alternatives generated during the

creening study. A total of ( 2 KR = 800 ) such alternatives were gen-

rated which resulted in a approximate total run time of 225 min-

tes. The absolute means and standard deviations ( μ+ , σ ) of the

lementary effects for the four design parameters are shown in

able 1 . We found the thickness of the flange ( t ) has low values

f both μ+ and σ . Therefore, variations in t in the neighborhood

f D limits does not have a significant influence on the computed

radle-to-gate indicator. On the other hand, the three other de-

ign parameters ( R hub , h , and R outer ) had significantly high values

or both μ+ and σ . Therefore, we can conclude these variables

ave significant non-linear effects and/or interaction effects on the

omputed cradle-to-gate indicator. Eq. (6) details the model for the

inear regression analysis performed to validate results from the

creening study. 

coimpact = β0 + β1 (R hub ) + β2 (h ) + β3 (R outer )+ 

4 (R 

2 
hub ) + β5 (h 

2 ) + β6 (R 

2 
outer ) + β7 (R outer ∗ R hub )+ 

β8 (R outer ∗ h ) + β9 (R hub ∗ h ) (6)

We included second-degree terms for the three significant de-

ign parameters as they directly relate to the overall part volume.

e also included all two-way interaction terms between the de-

ign parameters as we anticipated such interactions could signif-

cantly change the process plan and consequently influence the

omputed indicator. Results from the ordinary least squares re-

ression analysis shows the model was significantly different from

 constant model ( F 7 , 790 = 841 . 2 ; p < 0.001). The parameter esti-

ates for the model terms are illustrated in Tbl. 2 . Results show

he linear terms for all three design parameters ( R hub , h, R outer )

ere significant predictors for ecoimpact at a significance level of

.01. The terms are positively correlated to ecoimpact (evidenced by

he positive values for their estimates), which is intuitive; increas-

ng the scale of the mechanical part, increases the impact in both

aterial extraction and machining. Only the second-order terms

 

2 
hub 

and R 2 outer were significant predictors for ecoimpact . This is

upported by the fact that the part volume is directly proportional

o R 2 
hub 

and R 2 outer while it is linearly related to h . A surprising re-

ult from our analysis is R 2 outer was inversely related to ecoimpact .

his can be partly explained by the fact that there is an increase in
 for the linear regression model described in Eq. (6) . 

t Ratio Prob > | t | Lower 95% Upper 95% 

−7.47 < .0001 −0.319 −0.186 

33.860 < .0001 7.292 8.189 

7.620 < .0001 5.457 9.244 

44.770 < .0001 8.165 8.914 

4.830 < .0001 36.043 85.350 

−0.50 0.618 −865.527 514.626 

−5.54 < .0001 −67.979 −32.423 

−1.27 0.205 −196.278 42.072 

1.130 0.259 −12.789 47.513 

3.050 0.0023 74.174 341.128 
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nvironmental credit from recycling of machining scrap and min-

ral oil with an increase in R 2 outer . Results also show that h ∗R hub 

as the only significant interaction term in the model, which can

e explained by the fact that these design parameters directly in-

uence the generated toolpaths. However, a deeper analysis of the

nderlying LCI model and design parameters is required to fully

xplain these findings. 

. Conclusions 

Some of the most significant limitations lie within the quality

f the CAM automation and simulation. We heavily rely on the au-

omated identification of machining operations, tool selection, and

oolpath generation, provided by the CAM software’s capabilities.

n practice, it is unlikely that operators would trust the quality

f automated process plans without rigorous validation to avoid

achining problems, e.g., collisions. That being said, we interact

ith the CAM tool’s API to eliminate redundant operations and

ther issues identified through this exercise. Coupled with the NC

ode generation, the NC parser that was developed in-house also

s admittedly not at the performance level of commercial simula-

ion tools, such as Vericut 3 . To stay grounded, we compared our

esults against Vericut by randomly selecting a few designs. We

ound that the material removal, total machining time, and total

istance traveled estimations were comparable, i.e., in the same or-

ers of magnitude. Incorporating more advanced simulation tools

ould obviously improve the accuracy of the performance evalu-

tions but would increase the overall computational time of the

esign screening process. Such trade-offs should be explored in fu-

ure research. 

Other limitations relate to the complexities of the part and

odels. In our case, we study a fairly simple design in which only

our attributes are explored. We also do not consider effects of

ole drilling in our simulation, since we only parse NC codes re-

ated to milling operations. Currently developing a drilling UMP

eference model, we plan to incorporate multiple UMP reference

odels into our pipeline. Studying these effects will be a novel

tep forward understanding detailed environmental impacts of ma-

hining setups and operations. Moreover, though our motivation is

o enable consideration of multiple downstream stages, including

se and sustainment, at design, we only focus on manufacturing-

riven impacts. To encode other information’s effects within the

MP concept, we plan to partner with on-going standards efforts

n the systems engineering community to embed promising repre-

entations into our pipeline. 

In summary, we described a standards-based workflow that

rovides a new way to quantify the environmental impact of man-

facturing processes. Starting with a parametric model with N in-

ependent design parameters, a CAM stock is created by a mini-

um bounding block and machining operations are automatically

reated by extracting geometry. Using predefined processes, NC

ode is generated and sent to a UMP reference model where NC

ode lines are parsed, creating inputs for the process LCI. Bright-

ay2 is coupled with an LCI database to compute the environmen-

al impacts. A case study on a rigid flange illustrated the ability

o identity design parameters with the largest effect on the envi-

onmental impact. These quantitative values take into account geo-

etric complexity which is currently not considered by other com-

only used software. 
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