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Abstract

This report presents an approach to verifying executability of system behavior
models by treating them as logical constraint problems solved using Satisfiability
Modulo Theory (SMT). With behavior models interpreted as logical constraints
on execution order, these solvers can determine whether the models are executable
by finding executions that meet those constraints, or not executable because
they are overconstrained. The approach relies on Ontological Behavior Modeling
(OBM) to unify behavior modeling in the Systems Modeling Language (SysML)
under a logical framework based on its structural elements. Translation patterns
are proposed between SysML structural models, OBM, and logical constructs in
SMT-LIB, a language used as input to SMT solvers. Software developed based
on these patterns automatically translates SysML models extended with OBM
into SMT-LIB files. Finally, the approach and software are demonstrated by
translating and solving example SysML behavior models.

1. Introduction

Engineered systems have an increasing number of components that behave and interact
in increasingly complex ways. This is tackled with computerized models providing
automated support to system design. System models can be automatically processed
and transformed to derive new knowledge, including detection of errors that could be
missed in engineering reviews (verification). This document focuses on verification of
system model executability.
∗barbau@nist.gov
†conrad.bock@nist.gov
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The Systems Modeling Language (SysML) is a widely used graphical language
for specifying systems [1]. It extends the Unified Modeling Language (UML) [2],
a widely-used graphical language for specifying software.1 SysML was created for
systems engineers, who are responsible for coordinating activities of other engineers
(mechanical, electrical, production, and so on). SysML includes elements for describing
structural aspects of systems, and also has three ways to specify system behaviors:
activities, state machines, and interactions. For example, activities can describe a
sequence of actions taken on a product as it moves through a factory, state machines
can describe states of machine tools, and interactions can describe how machine tools
communicate.

The three behavior modeling techniques in SysML were originally developed
separately, and then brought together in one language. This resulted in a lack of
integration among them, with the same capabilities offered in different ways, and
unique capabilities unable to be mixed in one diagram. To address these problems,
Ontological Behavior Modeling (OBM) was developed to centralize aspects common
to these ways of modeling behaviors [3]. This method uses elements of SysML usually
only applied to structure (whole-part and part-part relationships) to model behaviors
in these three ways, capturing what they have in common, and building on this to
reflect their differences.

While the syntax of SysML imposes restrictions on how models can be built
(using a restricted set of elements and relationships, and constraints on how they
are assembled, and so on), it is still possible for behavior models to be have no
possible executions due to the semantics SysML gives for its model elements (language
semantics gives constraints models place on their allowed instances, in this case, their
executions). Executability can be determined by attempting to find instances of a
model, as allowed by the constraints of SysML semantics. If the attempt succeeds, the
model is executable, otherwise it is not. In the field of logic, the possibility for a model
to have instances meeting its language constraints (semantics) is the satisfiability
of the model, and finding an example of those instances is satisfiability solving. To
find out whether a behavior model is executable, an approach based on satisfiability
expresses this model in logical statements, and then uses a solver to find instances
that are consistent with all the logical statements.

Satisfiability is an old field of computer science that was originally limited to
Boolean variables and expressions without quantifiers (SAT). Subsequent extensions
introduced theories, which add new kinds of variables (e.g., Real, Integer, Arrays,
custom datatypes) and predicates (e.g., equalities, inequalities) to use in Boolean
expressions. Satisfiability Modulo Theories (SMT) are satisfiability problems that
include such theories[4]. SMT-LIB includes a de-facto standard language for giving
input to all the SMT solvers, as well as a large library of benchmark problems[5, 6].

This report describes a process for automatically transforming SysML behavior
models into logical statements and checking satisfiability by finding solutions using
1The remainder of the paper will refer to SysML/UML as SysML, for brevity.
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SMT solvers. A translation from a subset of SysML to SMT-LIB was proposed by the
NASA Jet Propulsion Laboratory (JPL) [7]. That work focused on aspects of SysML
typically used only for structure, which can be applied to complex behavior when
combined with OBM. This report presents an extension of JPL’s work to translate
SysML behaviors extended by OBM into SMT-LIB. Section 2 reviews behavior
modeling in SysML and OBM’s unification of its techniques. Section 3 gives a detailed
translation from SysML/OBM into SMT-LIB. Section 4 applies the translation to
example behaviors, giving results of SMT verification. Finally, Section 5 presents
future work.

2. Behavior modeling in SysML and OBM

This section briefly describes behavior modeling in SysML (Section 2.1), as well as an
implementation of OBM that covers commonalities between these behavior modeling
techniques (Section 2.2).

2.1 Behavior modeling in SysML

This subsection describes the main SysML concepts for representing system behaviors.
Behaviors in SysML can be specified in three ways: activities describe sequences of
actions in a process, state machines describe the states of a behavior and its reactions
to external stimuli, and interactions describe messages exchanged between participants.
Each method has its own constructs with corresponding diagrammatic notation. The
following paragraphs will briefly present overlapping features offered by these methods.

Composition All three methods can compose behaviors from others. Activities have
actions, some of which can call other behaviors (call behavior actions). State machines
have states, which can nest other state machines (submachines). Interactions have
messages grouped in fragments, some of which can use another interaction (interaction
use fragments). In each case, when a behavior is executed, the lifetimes of executions
that are part of a composition are within the lifetimes of the execution they are part
of.

Time ordering All three methods can order behaviors in time: Activities have
control flows between actions, state machines have transitions between states, and
interaction fragments have general orderings between the start and end of messages.
Time ordering can be further detailed by specifying alternatives, parallelism, and
looping:

• Activities have decision nodes to select among alternative next actions, and
merge nodes between any alternative previous actions and the next action.
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State machines have choice and junction pseudostates for alternative transi-
tions. Interactions have alternative interaction fragments within alt combined
fragments.

• Activities have fork nodes for multiple next actions, and join nodes between
multiple parallel actions and the next action. They also have parallel expansion
regions. State machines have fork and join pseudostates for parallel transitions
to states in other regions. Interactions have parallel interaction fragments within
par combined fragments.

• Activity control flows can form a loops. Activities also have loop nodes and
iterative expansion regions. State machines transitions can also form loops.
Interactions have iterated interaction fragments within loop combined fragments.

Start and end Two methods have constructs for the start and end of behaviors.
Activities have initial nodes and final nodes, while state machines have an initial
pseudostate and a final state.

Participants Two methods can specify objects that participate in behaviors. Ac-
tivities have partitions, while interactions have lifelines.2

Transfers Two methods can specify flow of items. Activities have object flows
between object nodes, which can be pins on actions, stand on their own between
actions (central buffer nodes), or be on the boundary of activities (parameter nodes),
all of which can specify the type of item flowing. Interactions messages have arguments,
which are also typed.

2.2 OBM extension

OBM describes behavior using SysML concepts that are usually only applied to
structure. Section 2.2.1 reviews these concepts and their commonalities with the
behavioral concepts introduced in the previous subsection.

2.2.1 Applying structural concepts to behavior

System structure in SysML describes the kinds of components a system is made of
(whole-part relationships), and how they are interconnected (part-part relationships).
SysML takes a logical approach to this, treating system models as classes (sets) of
the systems to be built (instances). SysML uses the term “block” instead of “class”, as
UML does, but this report uses “class.” Classes can have properties that each instance

2State machines react to stimuli from elsewhere rather than from external participants that might
have caused those stimuli. They can be used to specify behavior of each participant separately from
their interaction.
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can give values for. These values must be instances of the type of the property (a
class or a datatype), with the number of values in each instance constrained by the
multiplicity of the property. Property values often identify objects (instances of classes),
but can be data such as numbers or booleans (instances of datatypes). An association
is a relationship between two classes that specifies a property of each class to identify
instances of the other class (association end properties). Instances of associations are
links between instances (objects) of the associated classes, with each class instance
identifying the other via an end property. Classes can have connectors typed by
associations, which specify links between values of properties of the same object.
Connectors are part-part relationships, and the connected properties are part-whole.
A SysML model of these concepts is shown in Figure 1.

Connector

Association

Type

Datatype

Property

Class

*

1

2

2

1

*

Fig. 1. SysML structural concepts

The three ways of modeling behaviors in SysML have a lot in common, as explained
in the previous subsection. They also overlap structural modeling, because these
behaviors are also classes (blocks in SysML), with their instances being executions of
behaviors. OBM was developed to bring out more commonalities between behavior
and structure modeling in SysML. OBM treats:

• Nodes, states, and participants/executions as composite properties (whole-part
relationships)

• Edges, transitions, and messages as connectors (part-part relationships), with
connector end multiplicities modeling parallel and alternative flows

2.2.2 OBM models

To facilitate modeling behaviors as structure, users can indicate which structural
elements are also behavioral. There are two ways to achieve this (more information in
[8–10]):

• Extend the modeling language to add more specialized language elements. Most
UML tools do not support extending the UML metamodel directly, so UML
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provides profiles with stereotypes to extend UML metaclasses (such as Class,
Property, Connector). Users apply stereotypes to model elements to classify
them by these extensions.

• Create or extend model libraries and use them in new models. UML does not
have model libraries, but users can create classes, properties, and associations, in
libraries available to other modelers. These modelers type their properties and
connectors by library classes and associations, respectively, and extend library
elements by specializating classes and associations, or subsetting and redefining
properties, as needed.

The implementation of OBM in this report uses both the above techniques: be-
havior elements are classified by library and metamodel elements (as stereotypes)
simultaneously. Language extensions are required for adding properties to language
elements or when a classification should apply to an element but not its specialization
(e.g. Interface stereotype). Otherwise, language extensions are not needed except for
readability, and library elements can be used instead.

Figure 2 and 3 show the OBM library and the OBM profile used in this report,
respectively. The root class of the library is Anything, all other library classes (indi-
rectly) specialize it. Occurrence is a specialization of Anything classifying things that
happen in time (objects and performance of behaviors). BinaryLink is an association
between Anything and itself (specifying links between two things or between one thing
and itself). Stereotype extension relations (filled arrowheads) in Figure 3 indicate
which UML metaclass a stereotype extends (specializes). Generalization relations
(empty arrowheads) indicate which other stereotype a stereotype specializes.
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OBMLibraryclass 
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Anything
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«Behavior»
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0..*

{redefines source}transferSource

0..*

SelfLink

{redefines source}

0..*

self

{redefines target}myself

0..*

BinaryLink

target

0..*

source

0..*

Fig. 2. OBM Library
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profile OBM

inout
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«enumeration»

ParameterDirectionKind
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«stereotype»
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«stereotype»

ItemFlow

«stereotype»

«stereotype»

ObjectFlow

«stereotype»

Succession

Behavior

«stereotype»

Class

«Metaclass»

Connector

«Metaclass»

Property

«Metaclass»

{ordered, nonunique}

itemType

0..*

sourceOutputProperty

{ordered, nonunique}
1..*

{ordered, nonunique}

targetInputProperty

1..*

direction

1

Fig. 3. OBM Profile

Behaviors The BehaviorOccurrence class (from the OBM library) specializes Occur-
rence for performances of behaviors. BehaviorOccurrence and its specializations have
the Behavior stereotype (from the OBM profile) applied3.

Specializations of BehaviorOccurrence can have properties typed by BehaviorOccur-
rence or a specialization of it, in which case the properties have the Step stereotype
applied. When a property is typed by BehaviorOccurrence, its multiplicity indicates
how many times the step must or might be executed during the owner’s execution.
Steps with multiplicity 0..* might occur multiple times, but also might occur once
or not at all if there are other constraints on the steps, including others due to other
steps in same behavior. An exception is initial nodes, which occur exactly once per
execution of the behavior (multiplicity 1).

Temporal relations OBM treats Occurrences as time intervals, providing two
temporal relations between them modeled as associations:

• HappensBefore links occurrences that are separate in time (except possibly
overlapping at one time point), one happening before the other.

3A stereotype is needed because UML Behavior is abstract, it cannot directly classify model elements.
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• HappensDuring links occurrences that are completely overlapping, one happening
completely during the other (including happening exactly when another does).

Logical characteristics of these relations are:

1. Both temporal relations are transitive.

2. Both are asymmetric, except in these cases:

(a) HappensBefore is symmetric between occurrences of zero duration that
happen at the same time, which means it is reflexive for zero duration
occurrences (all zero duration occurrences overlap themselves at one time
point).

(b) HappensDuring is symmetric between occurrences that happen at the same
time, which means it is reflexive (all occurrences happen at the same time
as themselves).

3. When occurrences are related by HappensDuring, all HappensBefore relations
involving the occurrence of longer (or equal) duration also apply to the other
occurrence.

These associations are adapted from Allen’s interval logic [11]:

• Excluding the symmetric cases above, HappensBefore is equivalent to the union
of Allen’s before and meets interval relations, which are for intervals completely
separate in time and overlapping at exactly one point, respectively. Allen’s meets
and equals are disjoint, preventing time intervals from having zero duration.

• HappensDuring is equivalent to the union of Allen’s starts, during, finishes, and
equals interval relations.

Restricted versions of these are specified in translation to SMT solvers (see Section
3.4) and applied to detecting inconsistency in models using these associations.

Connectors typed by HappensBefore and HappensDuring specify temporal relations
between values of the connected properties, which are expected to be steps (properties
typed by BehaviorOccurrence). Connectors typed by HappensBefore specify links where
the source (a value of the first connected property) occurs before the target (a value
of the second connected property). These connectors have the Succession stereotype
applied. Connectors typed by HappensDuring specify links where the source occurs
during the target. A HappensDuring link is implied when a step (property typed by
BehaviorOccurrence) is owned by a specialization of BehaviorOccurrence.

Connector end multiplicities indicate how many links each value of the connected
properties might/must have. For example, two common connector end multiplicities
are:

• 1..1: each value has exactly one link for that connector.

9



• 0..1: each value has zero or one link for that connector.

Exclusivity constraints are currently represented as a OneOf constraint on connector
ends of 0..1 multiplicity. This ensures that each value of a property with multiple
incoming or outgoing connectors of 0..1 multiplicity will have exactly one link for
one of the connectors, and 0 for the others. Connector end multiplicities are used to
represent control nodes, see Section 4.1.1.

Transfers Transfer is an association between Occurrence and itself, specializing
BinaryLink and BehaviorOccurrence (since transfers are performances of behaviors,
rather than objects). Interactions between participants are modeled as connectors
typed by Transfer (or one of its specializations).4 These connectors have the ItemFlow
stereotype applied, which places additional restrictions on their transfers:

• itemType: kind of items flowing

• sourceOutputProperty: properties from which the items are coming (items are
values of these properties at the time a transfer begins)

• targetInputProperty: properties to which the items are going (items are values of
these properties at the time a transfer ends).

Object flows TransferBefore is an association between Occurrence and itself, special-
izing Transfer and HappensBefore. It specifies flows between occurrences that happen
after the source ends and before the target begins. This ensures transfers are between
the same occurrences that are in temporal order. Connectors typed by TransferBefore
have the ObjectFlow stereotype applied.

Behavior parameters Behavior may have parameters, which are properties that
are accessible to other behaviors. Parameters are modeled as properties stereotyped
by the Parameter stereotype. Parameters have a direction specifying whether the
parameter value can be read (in), written into (out), or both (inout)5. The return
direction value is not used in this implementation.

3. Translating SysML behaviors to satisfiability problems

This section explains how we translated OBM-based SysML behaviors into satisfiability
problems. Section 3.1 introduces satisfiability and its variants, Section 3.2 introduces
SMT-LIB, Section 3.3 describes how to translate basic SysML structural features (as
needed by OBM) into SMT-LIB, Section 3.4 describes how to translate OBM-specific

4Transfer connectors can be temporally ordered using a HappensBefore connector between their
adjunct properties.

5A stereotype is needed because UML Parameter does not specialization Property
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content into SMT-LIB, and finally Section 3.5 describes how the translation was
implemented as a software.

3.1 Introduction to satisfiability

In the field of logic, finding such instances (interpretations) is called solving a satisfiability
problem. Boolean satisfiability (SAT) refers to satisfaction of propositional logic formulas.
These single formulas are constructed with Boolean variables6, and the three logical
operators (not, and, or). The SAT solver then attempts to find an interpretation
(assignment of values to all variables) that satisfies the formula. In terms of complexity,
finding satisfying interpretations to SAT problems is NP-complete, which means no
polynomial-time algorithm exists that finds solutions to all SAT problems, but a
polynomial-time algorithm exists to check solutions if they are found for individual
problems. In addition, algorithms are available that find solutions to a many SAT
problems.

Satisfiability Modulo Theories (SMT) is an extension of SAT in which various
theories can be used to add non-Boolean variables and functions. Examples theories
are linear arithmetic, arrays, datatypes, etc. Theories should be decidable, meaning
that an algorithm exists to find a satisfying interpretation or determine that no such
interpretation exists, for all expressions and in finite time. This is however not the
case with theories like non-linear integer arithmetic. Theories work with quantifier-free
formulas (additional methods are needed to take care of quantifiers).

The overall objective of this work is to check whether behavior specifications can
have instances (be executed, are satisfiable). Instances found by SMT solvers do not
change over time, unlike procedurally generated instances of UML/SysML models.
The SMT solution is a collection of variable assignments given all once, rather than
over time. Changes to instances (variables) that satisfy a model might make them no
longer satisfactory. Satisfiability solvers can still work with temporal models, however,
finding instances that are ordered or nested in time, or that happen at specific points
in time.

3.2 Introduction to SMT-LIB

SMT solvers combine a SAT solver, decision procedures that work for particular
theories (quantifier-free), and a module for quantifiers specifically. Many SMT solvers
have been developed, and a textual language called SMT-LIB serves as input for all
these solvers. Hence, using SMT-LIB as a target language for translation of behaviors
guarantees that the result can be read by many tools7.

6These are called variables because they are assigned values by solvers, once per solution, rather than
because their values can change over time.

7Small variations currently exist for newer capabilities, but are expected to be reconciled by the
solvers in the future.
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Fig. 4. SMT-LIB concepts

An overview of the SMT-LIB concepts is shown in Figure 4. An SMT-LIB file
defines scripts, which are sequences of commands. The main commands declare and/or
define functions and constants8, as well as sorts (what programming languages call
types, and SysML calls datatypes). Examples of sorts include Boolean, Real, Integer,
Array, or user-defined datatypes. Functions are mappings from argument values to
a result value. Constants are elements that have a value. Datatypes are kinds of
sorts that have one or more constructors. Each constructor has zero or more selectors,
which are characteristics (properties, fields) of the datatype. All function arguments,
function results, datatype selectors, and constants are assigned a sort that restricts
the values they can have. Assertions are logical expressions that must hold true for all
solutions. Solving an SMT problem finds assignments for functions and constants for
which the assertions are true: constants are given a value, and functions are given a
mapping between function parameters and the returned value.

SMT-LIB defines the following logical functions: and, or, not, eq (equality), distinct,
=> (implication), and ite (if-then-else). SMT-LIB also defines the some and forall
quantifiers.

3.3 Translating SysML structural concepts to SMT-LIB

This section presents the SMT translation of SysML structure (that is extended by
OBM, see 3.4), mostly following the approach in [7]. Section 3.3.1 explains SMT-LIB
logics and their selection. Sections 3.3.2, 3.3.3, 3.3.4, and 3.3.5 address translation of
SysML primitive datatypes, blocks, collections, SysML properties, and associations,
respectively. Section 3.3.7 covers translation of operations defined by constraints, while
Section 3.3.8 presents translation of constraints on instances. Section 3.3.9 presents
the final steps to check the satisfiability of translated models.

8These are called constant because their value cannot change over time.
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3.3.1 Logic selection

The beginning of SMT-LIB scripts usually specify which parts of SMT-LIB to use
(particular theories, absence of quantifiers), which are called logics, supporting more
efficient solvers in some cases. SMT-LIB does not currently define a logic for datatypes,
so we select the ALL logic defined by the solver we use (Z3) to indicate no restriction:9

(set-logic ALL)

3.3.2 Primitive datatypes

SMT-LIB has sorts corresponding to the major SysML primitive datatypes. The
correspondence between the two is as follows:

• SysML Real: SMT-LIB Real

• SysML Boolean: SMT-LIB Bool

• SysML Integer: SMT-LIB Int

3.3.3 Blocks

SysML models include blocks, which are classes. Instances of classes (objects) have
identity, enabling other instances to refer to them, while instances (values) of datatypes
have no identity and must be replicated by other instances to reuse them. SMT-LIB
only supports datatypes, so a mechanism is needed to provide class semantics.

Block definition Non-abstract SysML blocks are translated as datatypes with one
constructor. Because the names of all elements (datatypes, constructors, selectors,
functions, constants) in an SMT-LIB file must be unique, a naming convention is
needed to avoid collision when translating SysML blocks. The name of the datatype
corresponding to a SysML block is the fully qualified block name, with “$” used as
namespace separator. The name of its one constructor is the datatype name prefixed
with “cons-“.

For example, translating an empty block DrillPress (from the package Report)
results in the following code:

(declare-datatypes ()(
(Report$DrillPress

(cons-Report$DrillPress))))

9Other solvers may use a different name for this logic.
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References The translation introduces a sort Ref, a type for giving identity to SMT-
LIB datatype values. Each value of Ref identifies a single object (instance of a class),
with one value per object. Since values of Ref can point to values of only one sort, and
the translation generates a unique sort (datatype) for each non-abstract SysML block,
an intermediate datatype Any is inserted between Ref and the datatypes corresponding
to non-abstract SysML blocks. Any has one constructor per non-abstract SysML block,
and each constructor has one selector typed by the datatype corresponding to the
SysML block. The name of the constructor is the name of that datatype prefixed with
"create-", and the name of the selector is the name of that datatype prefixed with
"get-". Identity is provided by associating a Ref value to an instance of Any, which
contains an instance of a datatype corresponding to a SysML block.

The following code shows the definition of Any when only the block DrillPress is
translated:

(declare-datatypes ()(
(Any

(create-Report$DrillPress
(get-Report$DrillPress Report$DrillPress)))))

The translator supports two implementations of reference:

• Heap-based: Ref is defined as an integer. An associative array called heap maps
these integers to instances of Any. A get-object function returns the instance
for a given reference by looking up the integer in the array and returning the
associated instance. New instances are created as needed by the solver, and the
number of instances is not limited. The definition of Ref in this approach is:

(define-sort Ref() Int)
(declare-const heap (Array Ref Any))
(define-fun get-object ((ref Ref)) Any (select

heap
ref))

• Constant-based: Ref is defined as a datatype with a limited number of construc-
tors, each pointing at one instance of type Any. Each instance is declared as the
value of a unique constant. A get-object function maps every reference to its
associated constant. All instances are are declared before solving, none can be
created by the solver. The definition of Ref in this approach is (for 3 instances):

(declare-datatypes ()(
(Ref

(ref0)
(ref1)
(ref2))))

(declare-const obj0 Any)
(declare-const obj1 Any)
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(declare-const obj2 Any)
(define-fun get-object ((ref Ref)) Any (ite

(=
ref
ref2)

obj2
(ite

(=
ref
ref1)

obj1
obj0)))

In the constant-based approach, the solver will fail if the number of instances is too
small. The heap-based approach is more appropriate when the approximate number
of instances is not known. Example instances for both implementations are provided
in Section 3.3.9.

De-references To retrieve data type values from Refs (de-referencing), three func-
tions are defined for every concrete block (X is a datatype corresponding to a SysML
block):10

• deref-is-X determines whether an Any instance corresponding to a given reference
contains an object of datatype X.

• deref-X returns the object of datatype X corresponding to the given reference.

• deref-isa-X returns whether the Any object corresponding to the given refer-
ence contains an object of datatype X, or of a datatype corresponding to any
specialization of the block X in SysML.

For example, dereferencing functions for a blockMachiningTool and its specialization
MillingMaching would be:

(define-fun deref-is-Report$MachiningTool ((this Ref)) Bool (
is-create-Report$MachiningTool (get-object this)))

(define-fun deref-Report$MachiningTool ((this Ref))
Report$MachiningTool (

get-Report$MachiningTool (get-object this)))
(define-fun deref-is-Report$MillingMaching ((this Ref)) Bool (

is-create-Report$MillingMaching (get-object this)))
(define-fun deref-Report$MillingMaching ((this Ref))

Report$MillingMaching (

10The deref-is-X function and the deref-X function are not defined for abstract classes in SysML,
because they cannot directly classify instances.
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get-Report$MillingMaching (get-object this)))

(define-fun deref-isa-Report$MachiningTool ((this Ref)) Bool (
or

(deref-is-Report$MachiningTool this)
(deref-is-Report$MillingMaching this)))

(define-fun deref-isa-Report$MillingMaching ((this Ref)) Bool (
deref-is-Report$MillingMaching this))

3.3.4 Collections

SysML provides four kinds of collections, depending on whether the elements in the
collection are unique and/or ordered. This gives four combinations:

• Sets: unique and non-ordered (the default)

• Bags: non-unique and non-ordered

• Sequences: non-unique and ordered

• Ordered sets: unique and ordered collections.

Some SMT solvers provide support for some kinds of collection [12], but these have
not been standardized in SMT-LIB yet. There are various alternatives to implement
these collections using purely SMT-LIB. Associative arrays from Ref to Bool or Int
can represent sets or bags. List datatypes can be used for sequences. One major
issue with associative arrays is that cardinality constraints (multiplicity) cannot be
conveniently enforced. As a result, the implementation uses List datatype for all
collections. Uniqueness is enforced as needed, but ordering is not, since Lists are
naturally ordered, and nothing prevents set and bags from being ordered as well, but
ignored. The following code shows the definition of a list of type Ref, as well as a
function to check lists for presence of a given element:

(declare-datatypes (X)(
(List

(nil)
(insert

(head X)
(tail List)))))

(define-fun-rec is-in-list ((elem Ref) (list (List Ref))) Bool
(and

(is-insert list)
(or

(= (head list) elem)
(is-in-list elem (tail list)))))
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This function is created for each sort being collected.
Functions can be created to enforce multiplicity and uniqueness restrictions on

collections. These functions return false if a given list violates the restrictions. Multi-
plicities can be checked by declaring how many consecutive insert constructors in a
given list appear. Uniqueness can be checked by stating that the heads of the previous
insert constructors are distinct. For example, the following code shows a function for
checking whether a list has exactly two distinct elements:

(define-fun listconstraint ((elem Ref)(list (List Ref))) Bool (
let ((list0 list))(ite

(is-insert list0)
(and

; constraints on the head
(let ((list1 (tail list0)))(ite

(is-insert list1)
(and

; constraints on the head
(let ((list2 (tail list1)))(ite

(is-insert list2)
; no more elements
false
; termination
(distinct (head list0) (head (list1))))

false)))))
false)))

3.3.5 Properties

Properties are translated as selectors of the constructor corresponding to their block.
Since there is no generalization in SMT-LIB, properties inherited to a SysML block
are translated as if they were owned by the block. Selector names are the block
datatype name, followed by the “$” character and the property name. If the property
multiplicity is 1, the selector sort depends on the SysML property type:

• Primitive datatypes: the selector sort is given in Section 3.3.2.

• Blocks: the selector sort is Ref.

If the property multiplicity is other than 1, the selector sort is a collection of the
above.

For example, consider a block Factory containing a property manager of type Person
and multiplicity 1, a property workers of type Person and multiplicity 0..* (unique,
non-ordered), and a property revenue of type Real and multiplicity 1. The following
code is generated:
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(declare-datatypes ()(
(Report$Factory

(cons-Report$Factory
(Report$Factory$manager Ref)
(Report$Factory$workers (Set Ref))
(Report$Factory$revenue Real)))))

(declare-datatypes ()(
(Report$Person

(cons-Report$Person))))

Functions are defined for each owned or inherited property in a class to access the
corresponding selector of each specialization of that class. This makes instances of a
class appear as if they were also instances of their generalized classes. Two functions
are defined for each owned or inherited property p in a SysML block X:

• X!p returns the value of the selector p for a given reference of type X.

• X.p returns the value of the selector p for the type of a given reference, which
might be more specialized than the type in the call (X).

The return type of these functions is the same as the type of the selector. Property
redefinition is handled in the second function, by calling selectors corresponding to the
redefining properties in a specialized class. For example, consider a block CarFactory
that specializes the block Factory previously introduced

The following code is generated for property access:

(define-fun Report$CarFactory!manager ((this Ref)) Ref (
Report$CarFactory$manager (deref-Report$CarFactory this)))

(define-fun Report$CarFactory.manager ((this Ref)) Ref (
Report$CarFactory$manager (deref-Report$CarFactory this)))

(define-fun Report$CarFactory!workers ((this Ref)) (Set Ref) (
workers (deref-Report$CarFactory this)))

(define-fun Report$CarFactory.workers ((this Ref)) (Set Ref) (
Report$CarFactory$workers (deref-Report$CarFactory this)))

(define-fun Report$CarFactory!revenue ((this Ref)) Real (
Report$CarFactory$revenue (deref-Report$CarFactory this)))

(define-fun Report$CarFactory.revenue ((this Ref)) Real (
Report$CarFactory$revenue (deref-Report$CarFactory this)))

(define-fun Report$Factory!manager ((this Ref)) Ref (
Report$Factory$manager (deref-Report$Factory this)))

(define-fun Report$Factory.manager ((this Ref)) Ref (ite
(deref-is-Report$CarFactory this)
(Report$CarFactory$manager (deref-Report$CarFactory this))
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(Report$Factory$manager (deref-Report$Factory this))))

(define-fun Report$Factory!workers ((this Ref)) (Set Ref) (
Report$Factory$workers (deref-Report$Factory this)))

(define-fun Report$Factory.workers ((this Ref)) (Set Ref) (ite
(deref-is-Report$CarFactory this)
(Report$CarFactory$workers (deref-Report$CarFactory this))
(Report$Factory$workers (deref-Report$Factory this))))

(define-fun Report$Factory!revenue ((this Ref)) Real (
Report$Factory$revenue (deref-Report$Factory this)))

(define-fun Report$Factory.revenue ((this Ref)) Real (ite
(deref-is-Report$CarFactory this)
(Report$CarFactory$revenue (deref-Report$CarFactory this))
(Report$Factory$revenue (deref-Report$Factory this))))

With these constructs, calling Factory.manager on an instance of CarFactory will return
the value of CarFactory.manager as expected.

Constraints on properties (including enforcing reference types) are addressed in
Section 3.3.8.

3.3.6 Associations and connectors

Associations are translated the same way as classes, with member ends owned by an
association translated the same way as other properties. The translation does not
currently support member ends owned by the classes being associated. Connectors
are translated as properties of multiplicity 0..*, typed by an association.

3.3.7 Operations as constraints

SysML operations on classes are a kind of behavior that only specifies input and
output/return parameters. Typically the rest of the information needed to execute an
operation is given by a behavior owned by a class, where the behavior specifies steps
taken over time to change property values. Another way is to give this information is
to constrain the operation return values relative to inputs in particular ways. Since
the translation does not support changing objects, only constraints on operations is
currently supported. SysML models often use the Object Constraint Language (OCL)
for expressing constraints, a language designed for use with UML and its extensions
[13].

In the translation, OCL expressions are parsed to create an abstract syntax tree,
which is scanned and translated to SMT-LIB statements. Property calls in OCL
are translated to calls of functions as in the Section 3.3.5, and operations calls are
translated to calls of functions as described below. Mathematical and logical operators
are translated to their equivalent.
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In SMT-LIB, functions corresponding to operations are given a parameter for the
object on which the operation is called. Additional parameters are added as defined
in the operation definition. The content of the SMT-LIB function is the translation of
the operation’s body condition, specified in OCL.

(declare-fun Behavior.isBefore (Ref Ref) Bool)
...
(define-fun Behavior.isBefore ((this Ref)(t Ref)) Bool

(<
(Behavior.end this)
(Behavior.start t)))

3.3.8 Class restrictions (invariants)

SysML models express various restrictions on class instances:

• Property type: attribute values are required to be of this type. In SMT-LIB,
datatype selectors typed by Ref or by a collection of Ref should be restricted to
have an object compatible with the type of the property, translated to SMT-LIB
as the corresponding deref-isa function.

• Property multiplicity (upper and lower): the number of values for a property
must be between the lower and upper multiplicity number. When the multiplicity
is 1, no constraint is needed in SMT-LIB since the property is translated as a
Ref selector, which has exactly one value. When the multiplicity is not 1, the
property is translated as a collection, with constraints added to ensure it has
the correct number of elements.

• Connectors: treated as properties typed by an association, with values limited
to links (instances of the association) between values of the connector end roles
(properties). Connector end multiplicities specify how many links the connected
property values may have for a given connector.

• Other restrictions in opaque expressions, written in OCL for example: all
constraints on a class are translated into their equivalent in SMT-LIB.

An “invariant” function containing the SMT-LIB equivalent of these restrictions is
defined for each SysML block. The function takes an instance of the corresponding
datatype as input, and states what must be true for that object, based on the restric-
tions above. Constraints that apply to each property or connector value separately
(e.g. type, number of links, not multiplicity) are defined in separate functions, which
are called by the block invariant function. This simplifies translation of lists, as this
separate function will apply constraints on property values to the head of the list, and
call itself on the tail of the list.
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Regarding connectors, consider a SysML connector c between property a to property
b, with a as the role of the first connector end, and b as the role of the second connector
end. For brevity, we will refer to the first end of links specified by the connector as
source, and the second end as target. The translator adds two kinds of constraints to
ensure:

• The ends of links specified by the connector are values of the properties at its
ends. For every link of c, the source must be equal to (or within the collection
of) the value of a of some instance of the connector’s owning block (or one of its
specializations) and the target must be equal to (or within the collection of) the
value of b of that same instance.

• The number of incoming and outgoing links specified by a connector satisfies
its end multiplicities for each end property value. For example, if the end
multiplicity of c on the b side is 0..1, then each value of a can be the source
for no more than 1 link of the connector. If the connector end multiplicity on
the a side is 1, then each value of b must be the target of exactly one link.
Utility functions are created to assert that there are exactly "0", "1", or "0 or
1" incoming and outgoing links.

When a OneOf constraint is applied to multiple connector ends with 0..1 multi-
plicity, the resulting SMT-LIB constraint is that exactly one of the end has to
have a 1 incoming/outgoing link, while the other have exactly 0 incoming/out-
going link. This is used to model the equivalent of SysML decision and merge
nodes.

For example, consider a block ToyFactory with the same properties as Factory (manager,
workers, revenue), plus two properties w1 and w2 of type Workstation and multiplicity
1, and a connector typed by Conveyor between these two properties. Conveyor is an
association between two instance of Workstation, with multiplicity 0..1 on one end,
and multiplicity 1 on the other end. The utility functions for E would be generated as
follows (assuming a size limit of 2 for collections):

(define-fun has0outReport$Conveyor ((elem Ref)(collection (Set
Ref))) Bool (

let ((list0 collection))(or
(is-nil list0)
(and

(is-insert list0)
(distinct

elem
(Report$Conveyor.end1 (head list0)))

(let ((list1 (tail list0)))(or
(is-nil list1)
(and
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(is-insert list1)
(distinct

elem
(Report$Conveyor.end1 (head list1)))

(is-nil (tail list1)))))))))
(define-fun has01outReport$Conveyor ((elem Ref)(collection (Set

Ref))) Bool (let ((list0 collection))(or
(is-nil list0)
(and

(is-insert list0)
(or

(and
(distinct

elem
(Report$Conveyor.end1 (head list0)))

(let ((list1 (tail list0)))(or
(is-nil list1)
(and

(is-insert list1)
(or

(and
(distinct

elem
(Report$Conveyor.end1 (head list1)))

(is-nil (tail list1)))
(and

(=
elem
(Report$Conveyor.end1 (head list1)))

(has0outReport$Conveyor
elem
(tail list1))))))))

(and
(=

elem
(Report$Conveyor.end1 (head list0)))

(has0outReport$Conveyor
elem
(tail list0))))))))

(define-fun has1outReport$Conveyor ((elem Ref)(collection (Set
Ref))) Bool (let ((list0 collection))(and

(is-insert list0)
(or

(and
(=
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elem
(Report$Conveyor.end1 (head list0)))

(let ((list1 (tail list0)))(or
(is-nil list1)
(and

(is-insert list1)
(distinct

elem
(Report$Conveyor.end1 (head list1)))

(is-nil (tail list1))))))
(let ((list1 (tail list0)))(and

(is-insert list1)
(or (and

(=
elem
(Report$Conveyor.end1 (head list1)))

(is-nil (tail list1))))
(distinct

elem
(Report$Conveyor.end1 (head list0)))))))))

(define-fun has0incReport$Conveyor ((elem Ref)(collection (Set
Ref))) Bool (let ((list0 collection))(or

(is-nil list0)
(and

(is-insert list0)
(distinct

elem
(Report$Conveyor.end2 (head list0)))

(let ((list1 (tail list0)))(or
(is-nil list1)
(and

(is-insert list1)
(distinct

elem
(Report$Conveyor.end2 (head list1)))

(is-nil (tail list1)))))))))
(define-fun has01incReport$Conveyor ((elem Ref)(collection (Set

Ref))) Bool (let ((list0 collection))(or
(is-nil list0)
(and

(is-insert list0)
(or

(and
(distinct

elem
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(Report$Conveyor.end2 (head list0)))
(let ((list1 (tail list0)))(or

(is-nil list1)
(and

(is-insert list1)
(or

(and
(distinct

elem
(Report$Conveyor.end2 (head list1)))

(is-nil (tail list1)))
(and

(=
elem
(Report$Conveyor.end2 (head list1)))

(has0incReport$Conveyor
elem
(tail list1))))))))

(and
(=

elem
(Report$Conveyor.end2 (head list0)))

(has0incReport$Conveyor
elem
(tail list0))))))))

(define-fun has1incReport$Conveyor ((elem Ref)(collection (Set
Ref))) Bool (let ((list0 collection))(and

(is-insert list0)
(or

(and
(=

elem
(Report$Conveyor.end2 (head list0)))

(let ((list1 (tail list0)))(or
(is-nil list1)
(and

(is-insert list1)
(distinct

elem
(Report$Conveyor.end2 (head list1)))

(is-nil (tail list1))))))
(let ((list1 (tail list0)))(and

(is-insert list1)
(or (and

(=
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elem
(Report$Conveyor.end2 (head list1)))

(is-nil (tail list1))))
(distinct

elem
(Report$Conveyor.end2 (head list0)))))))))

The invariant definition for the block ToyFactory looks like the following:

(define-fun Report$ToyFactory$manager.invC ((prop Ref)(owner
Ref)) Bool (

deref-isa-Report$Person prop))
(define-fun Report$ToyFactory$workers.invC ((prop (Set Ref))(

owner Ref)) Bool (
let ((list0 prop))(or

(is-nil list0)
(and

(is-insert list0)
(deref-isa-Report$Person (head list0))
(let ((list1 (tail list0)))(or

(is-nil list1)
(and

(is-insert list1)
(deref-isa-Report$Person (head list1))
(and

(is-nil (tail list1))
(distinct

(head list0)
(head list1))))))))))

(define-fun Report$ToyFactory$w1.invC ((prop Ref)(owner Ref))
Bool (and

(deref-isa-Report$Workstation prop)
(has01outReport$Conveyor

prop
(Report$ToyFactory.ToyFactory_connector5_end1_end2 owner)))

)
(define-fun Report$ToyFactory$w2.invC ((prop Ref)(owner Ref))

Bool (and
(deref-isa-Report$Workstation prop)
(has1incReport$Conveyor

prop
(Report$ToyFactory.ToyFactory_connector5_end1_end2 owner)))

)
(define-fun Report$ToyFactory$ToyFactory_connector5_end1_end2.

invC ((conn (Set Ref))(owner Ref)) Bool (
let ((list0 conn))(or
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(is-nil list0)
(and

(is-insert list0)
(deref-isa-Report$Conveyor (head list0))
(=

(Report$Conveyor.end1 (head list0))
(Report$ToyFactory.w1 owner))

(=
(Report$Conveyor.end2 (head list0))
(Report$ToyFactory.w2 owner))

(let ((list1 (tail list0)))(or
(is-nil list1)
(and

(is-insert list1)
(deref-isa-Report$Conveyor (head list1))
(=

(Report$Conveyor.end1 (head list1))
(Report$ToyFactory.w1 owner))

(=
(Report$Conveyor.end2 (head list1))
(Report$ToyFactory.w2 owner))

(and
(is-nil (tail list1))
(distinct

(head list0)
(head list1))))))))))

(define-fun Report$ToyFactory.invC ((this Ref)) Bool (and
(Report$ToyFactory$manager.invC

(Report$ToyFactory.manager this)
this)

(Report$ToyFactory$workers.invC
(Report$ToyFactory.workers this)
this)

(Report$ToyFactory$w1.invC
(Report$ToyFactory.w1 this)
this)

(Report$ToyFactory$w2.invC
(Report$ToyFactory.w2 this)
this)

(Report$ToyFactory$ToyFactory_connector5_end1_end2.invC
(Report$ToyFactory.ToyFactory_connector5_end1_end2 this)
this)))

Applying the invariant to instances depends on the way references are implemented
(see Section 3.3.3). When using the heap-based approach, the invariant application
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looks like the following:

(assert (forall ((this Ref))(=>
(deref-is-ToyFactory this)
(ToyFactory.inv this))))

Quantifiers must be used to make sure all references are processed.
When using the constant-based approach, the invariant application looks like the

following:

(define-fun invariants ((ref Ref)) Bool (and
(=>

(deref-isa-ToyFactory ref)
(ToyFactory.invC ref))))

(assert (invariants ref0))
(assert (invariants ref1))
(assert (invariants ref2))

3.3.9 Satisfiability check

The translation process starts with a root SysML block, and operates incrementally
on its dependencies. An assertion states that there must be exactly one instance of
the root block. A constant ROOT is created to store that instance.

Finally, commands to check satisfiability and show instances that prove it are
inserted.

For example, the following commands are generated for the block ToyFactory:

(assert (forall ((this Ref))(=>
(deref-isa-Report$ToyFactory this)
(Report$ToyFactory.invC this))))

(declare-const ROOT Ref)
(assert (deref-is-Report$ToyFactory ROOT))
(assert (forall ((x Ref)(y Ref))(=>

(and
(deref-is-Report$ToyFactory x)
(deref-is-Report$ToyFactory y))

(=
x
y))))

(check-sat)

Running that last command using the heap-based implementation yields the
following result:

sat
(model

(define-fun ROOT () Int
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0)
(define-fun heap () (Array Int Any)

(_ as-array k!0))
(define-fun k!0!5 ((x!0 Int)) Any

(ite (= x!0 0)
(create-Report$ToyFactory (cons-Report$ToyFactory 1 (

insert 9 nil) 0.0 2 3 (insert 8 nil)))
(ite (= x!0 8) (create-Report$Conveyor (

cons-Report$Conveyor 2 3))
(ite (= x!0 2) (create-Report$Workstation

cons-Report$Workstation)
(ite (= x!0 3) (create-Report$Workstation

cons-Report$Workstation)
(create-Report$Person cons-Report$Person))))))

(define-fun k!4 ((x!0 Int)) Int
(ite (= x!0 8) 8
(ite (= x!0 3) 3
(ite (= x!0 1) 1
(ite (= x!0 0) 0
(ite (= x!0 9) 9

2))))))
(define-fun k!0 ((x!0 Int)) Any

(k!0!5 (k!4 x!0)))
)

The first line is the result of the (check-sat) command, indicating the problem is
satisfiable. The lines after that give the model discovered by the solver. The heap is
defined as an array, which calls a function k!0 that gives the Any object corresponding
to the value of the parameter x!0, defined in k!0!5:

• Reference 0 corresponds to an instance of ToyFactory with the reference 1 as
value of the property manager, a list consisting of referenced 9 as value of the
property workers, 0.0 as value of the property revenue, the reference 2 as value of
the property w1, the reference 3 as value of the property w2, and the reference 8
as value of the connector.

• Reference 8 corresponds to an instance of the association Conveyor, with the
reference 2 on the first end and reference 3 on the second end.

• Reference 2 and 3 return an instance of Workstation

• Any other reference (i.e. 1, and 9) returns an instance of Person

Running the satisfiability checking command using the constant-based (with six
objects) approach yields the following result:
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sat
(model

(define-fun obj1 () Any
(create-Report$Person cons-Report$Person))

(define-fun obj3 () Any
(create-Report$Workstation cons-Report$Workstation))

(define-fun obj0 () Any
(create-Report$ToyFactory (cons-Report$ToyFactory ref1 nil

3.0 ref2 ref3 (insert ref4 nil))))
(define-fun obj4 () Any

(create-Report$Conveyor (cons-Report$Conveyor ref2 ref3)))
(define-fun obj2 () Any

(create-Report$Person cons-Report$Person))
(define-fun ROOT () Ref

ref0)
)

The first line is the result of the (check-sat) command, still indicating the problem is
satisfiable. The lines after that give the value of the five constants:

• obj0 is an instance of ToyFactory, with the reference 1 as value of the property
manager, an empty list as value of the property workers, 3.0 as value of the
property revenue, reference 2 as value of the property w1, reference 3 as value of
the property w2, and reference 4 as value of the connector.

• obj1 is an instance of Person.

• obj2 and obj3 are instances of Workstation.

• obj4 is an instance of the association Conveyor with reference 2 on the first end,
and reference 3 on the second end.

3.4 Translating the OBM extension to SMT-LIB

This section describes the translation of the OBM extension of SysML (see Section
2.2.2) to SMT-LIB. This is in addition to the translation of structural aspects of
SysML that OBM extends (see Section 3.3).

Temporal relations OBM defines two associations to model temporal relations
between behavior occurrences (HappensBefore and HappensDuring, see Section 2.2.2)
with several logical characteristics that are restricted in the implementation. The
relations are required to be completely asymmetric, which includes irreflexivity. This
means occurrences do not happen at the same time as others (occurrences can only
happen during others of longer duration, with longer ones having non-zero duration).
It also means occurrences cannot be related by HappensBefore and HappensDuring at
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the same time.11 Transitivity is not restricted. These narrow the correspondence to
Allen’s relations to

• HappensBefore is equivalent to the union of Allen’s before and meets interval
relations without the exclusions for symmetry in Section 2.2.2.

• HappensDuring is equivalent to the union of Allen’s starts, during, and finishes
(equals is not included).

The translation to SMT-LIB introduces two Boolean functions (logical predicates)
before and during corresponding to HappensBefore and HappensDuring, as restricted
above. The translation provides two approaches to specify that these functions are
transitive, asymmetric, and relate to each other per characteristic 3 in Section 2.2.2:12

• Without timepoints: Asserts the (restricted) logical characteristics of the func-
tions above, corresponding to:

– ∀x, y, z before(x, y) ∧ before(y, z) =⇒ before(x, z)

– ∀x, y before(x, y) =⇒ ¬before(y, x)
– ∀x, y, z during(x, y) ∧ during(y, z) =⇒ during(x, z)

– ∀x, y during(x, y) =⇒ ¬during(y, x)
– ∀x, y, z before(x, y) ∧ during(z, y) =⇒ before(x, z)

– ∀x, y, z before(y, x) ∧ during(z, y) =⇒ before(z, x)

• With timepoints: Adds two properties to BehaviorOccurrence: start and end,
both of type Real and multiplicity 1, and a constraint stating that start < end.
The functions above are defined with these properties to express transitivity and
asymmetry, corresponding to:

– before(b1,b2) ⇐⇒ b1.end ≤ b2.start

– during(b1,b2) ⇐⇒ (b1.start > b2.start ∧ b1.end ≤ b2.end) ∨ (b1.start ≥
b2.start ∧ b1.end < b2.end)

These definitions use numeric inequalities to ensure transitivity, asymmetry, and
mutual exclusivity.

11Derived from asymmetric HappensBefore and characteristic 3 in Section 2.2.2 relating it to Hap-
pensDuring.

12This could have been specified as OCL in OBM, but it is simpler to express these characteristics
directly in SMT-LIB than to translate the additional OCL constructs required. Translating these
constructs could result in unbounded lists for values of end properties of HappensBefore, or possibly
complex existential quantification over the reference heap.
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The before function is true between occurrences linked by instances of Happens-
Before, which exist between values of properties at the ends of connectors typed
by HappensBefore (see invariant functions in Section 3.3.8). The same is true for
during and HappensDuring connectors (see Figure 47 in Section 4.1.6), but for simpler
modeling, it is also taken to be true between occurrences when one is classified by
BehaviorOccurrence (or one of its specialization) and the other is a value of a property
(such as OBM step) of the first occurrence typed by BehaviorOccurrence (or one of its
specializations). Both functions are also true due to transitivity, but this is deduced
without corresponding transitively deduced links. Examples in Section 4 have sepa-
rate figures for links (instances of HappensBefore and HappensDuring) and temporal
functions (before and during).

Transfers, item flows, and object flow Transfers describe movement of items
between participants. They are modeled as a Transfer association, which connectors
can type. Transfer is a specialization of BehaviorOccurrence. An ItemFlow stereotype
indicates which properties of the participants give the transferred item. Another
association named TransferBefore is for transfers that order their participants (behavior
occurrences) in time.

3.5 Translator Implementation

The translation described in the previous sections was implemented in software [14]
that takes a SysML file in XMI format as input, performs the translation, and generates
an SMT-LIB file that can be executed on SMT solvers such as Z3[15].13 The translator
accepts various parameters, such as a root SysML block that is being translated, the
way collections should be implemented, and whether timepoints are used. The main
parts of the translator are:

• XMI readers and writer, based on Eclipse UML2. The main addition is an XMI
reader preprocessor, which accommodates multiple versions of XMI, UML, and
SysML.

• SMT-LIB Java classes, generated from an SMT-LIB metamodel.

• SysML to SMT-LIB translator, which implements the mapping from the previous
section to create SMT-LIB Java objects from SysML Java objects.

• OCL to SMT-LIB translator, which translates opaque expressions written in
OCL.

• SMT-LIB reader, which reads logics and theories defined as part of the SMT-LIB
standard.

13We tested the generated files using Z3 version 4.7.1
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• SMT-LIB writer, which generates an SMT-LIB file from SMT-LIB Java objects.

• Z3 bridge, which communicates the generated content directly to the Z3 solver.

SysML XMI File

SMT-LIB theories XMI reader

SMT-LIB reader SysML to SMT-LIB translator OCL to SMT-LIB translator

SMT-LIB metamodel SMT-LIB writer Z3 bridge

SMT-LIB File

Fig. 5. Overview of the translator

Experiments with the Z3 solver showed that reasoning was influenced by the
way models were serialized. Particularly, the solver would either timeout or give an
answer within a second depending on the order of the Any constructors. We could
not find a ordering strategy that would work for all our test models. As a result, the
implementation uses a timeout of 10 s, and shuffles the Any constructors up to 5
times, giving 60 s in total to find an answer. With that approach, all models have
been successfully checked (although this is not guaranteed). Benchmark numbers are
useful since the solving process is not deterministic (it is not guaranteed to behave
the same way given the same inputs).

4. Translation Examples

This section contains example translations. Many of them use a class AtomicBehavior
that is a specialization of BehaviorOccurrence for behaviors that have no steps. Each
example shows an OBM model along with the equivalent behavior represented using a
SysML diagram. Instances are shown in diagrams from the translations. The notation
shows instances as rectangles containing their identifier, type, and data values, if
applicable (this is not UML notation). The diagrams have two parts:

• Upper parts show structural relations (links of associations) between instances,
represented as solid arrows. Links for composite associations are indicated by a
black diamond tail.

• Lower parts show temporal relations (see Section 3.4) between the instances,
with before and during represented as short-dashed arrows and long-dashed
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arrows respectively. To simplify the diagrams, temporal relations deduced by
transitivity are not displayed.

Section 4.1 shows basic examples (e.g., control nodes, composition, and trans-
fers), while Section 4.2 shows more advanced examples (e.g., behavior inheritance,
redefinition).

4.1 Basic examples

4.1.1 Control nodes

Fork Figures 6 and 7 show SysML activity and OBM representations of a behavior
with a fork, respectively. In the OBM representation, BehaviorFork is a block with
three properties typed by AtomicBehavior: p1, p2, and p3. The multiplicity on p1 is
1 (it corresponds to an initial node), indicating that the step happens exactly once,
and the multiplicity on the two other properties is 0..*, indicating that the steps may
happen any number of times (they correspond to actions). Two connectors link p1
with p2 and p3 respectively. The multiplicities on all the ends of the connectors are 1.
This means each behavior occurrence in p1 must have a HappensBefore relationship
to exactly one behavior occurrence in p2 and exactly one in p3. In addition, each
occurrence in p2 or in p3 must have a HappensBefore relationship with exactly one
behavior occurrence in p1. The flow is expected to go from p1 to both p2 and p3.

ActivityForkact 

p1

p2

p3

Fig. 6. Fork model (activity)
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BehaviorForkcs 

«Step»

p2 : AtomicBehavior [0..*]

p1 : AtomicBehavior [1]

«Step»

p3 : AtomicBehavior [0..*]

«Step»

happensBefore

1happensBefore-1 1

 : HappensBefore

happensBefore-1 1 happensBefore

1 : HappensBefore

Fig. 7. Fork model (OBM)

Figure 8 shows two views of instances produced by the reasoner from SMT files
generated from Figure 7 by the translator. The top part shows links between instances,
while the bottom shows temporal relations. At the top is an instance #0 typed by
BehaviorFork, with the instances #1, #4, and #5 in p1, p2, and p3. Two links typed
by HappensBefore are present: #2 connects #1 to #4, and #3 connects #1 to #5. The
lower part shows that #1 happens before both #4 and #5, and these three instances
happen during #5. That means the flow went from p1 to both p2 and p3, as expected.

Fig. 8. Fork instance model
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Join Figures 9 and 10 show SysML activity and OBM representations of a behavior
with a join, respectively. In the OBM representation, BehaviorJoin is a block with
three properties typed by AtomicBehavior: p1, p2, and p3. The multiplicity on p1 and
p2 is 1, indicating that the steps happen exactly once, and the multiplicity on p3 is
0..*, indicating that the step may happen any number of times. Two connectors link
respectively p1 and p2 with p3. The multiplicity on all the ends of the connectors is
1. This means each behavior occurrence in p1 and in p2 must have a HappensBefore
relationship to exactly one behavior occurrence in p3. In addition, each behavior in
p3 must have a HappensBefore relationship from exactly one behavior occurrence in
p1 and exactly one in p2. The flow is expected to go from both p1 and p2 to p3.

ActivityJoinact 

p3

p2

p1

Fig. 9. Join model (activity)

BehaviorJoincs 

p3 : AtomicBehavior [0..*]

«Step»

p1 : AtomicBehavior [1]

«Step»

p2 : AtomicBehavior [1]

«Step»
happensBefore-1

1

happensBefore 1

 : HappensBefore

happensBefore 1

happensBefore-1

1

 : HappensBefore

Fig. 10. Join model (OBM)

Figure 11 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
BehaviorJoin, with three steps: #1 as value of p1, #2 as value of p2, and #6 as value of
p3. Both #1 and #2 happen before #6, so the model corresponds a join.
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Fig. 11. Join instance model

Decision Figures 12 and 13 show SysML activity nd OBM representations of a
behavior with a decision, respectively. In the OBM representation, BehaviorDecision is
a block with three properties typed by AtomicBehavior: p1, p2, and p3. The multiplicity
on p1 is 1, indicating that the step happens exactly once, and the multiplicity on
the two other properties is 0..*, indicating that the steps may happen any number
of times. Two connectors link p1 with p2 and p3 respectively. The multiplicities on
the ends on p1 are 1, and the multiplicities on the ends of p2 and p3 are 0..1 with
a OneOf constraint on them. This means each behavior occurrence in p1 must have
a HappensBefore relationship to exactly one behavior occurrence, either in p2 or p3,
but not both. In addition, each occurrence in p2 or in p3 must have a HappensBefore
relationship from exactly one behavior occurrence in p1. The flow is expected to go
from p1 to either p2 or p3.
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ActivityDecisionact 

p2

p1

p3

Fig. 12. Decision model (activity)

BehaviorDecisioncs 

p2 : AtomicBehavior [0..*]

«Step»

p3 : AtomicBehavior [0..*]

«Step»

p1 : AtomicBehavior [1]

«Step»

happensBefore

{OneOf}

0..1

happensBefore-1 1

 : HappensBefore

happensBefore-1 1

happensBefore

{OneOf}

0..1

 : HappensBefore

Fig. 13. Decision model (OBM)

Figure 14 shows an instance model produced by the reasoner, with the links in
the upper part and the temporal relations shown in the lower part. #0 is an instance
of BehaviorDecision, with the instance #1 as value of p1, and #5 as value of p3. The
temporal relations show that #1 happens before #5, and since there is no value for p2.
the model corresponds to a decision.
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Fig. 14. Decision instance model

Merge Figures 15 and 16 show SysML activity and OBM representations of a
behavior with a merge, respectively. In the OBM representation, BehaviorMerge is a
block with three properties typed by AtomicBehavior: p1, p2, and p3. The multiplicity
on p1 and p2 is 1, indicating that the steps happen exactly once, and the multiplicity on
p3 is 0..*, indicating that the step may happen any number of times. Two connectors
link p1 and p2 to p3. The multiplicities on the ends of p1 and p2 are 0..1 with a
OneOf constraint, and the multiplicities on the ends of p3 are 1. This means each
behavior occurrence in p1 or in p2 must have a HappensBefore relationship to exactly
one behavior occurrence in p3. In addition, each behavior occurrence in p3 must have
a HappensBefore relationship from exactly one behavior in either p1 or p2, but not
both. The flow is expected to go from p1 to p3, and from p2 to p3.

ActivityMergeact 

p3

p1

p2

Fig. 15. Merge model (activity)
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BehaviorMergecs 

«Step»

p3 : AtomicBehavior [0..*]

«Step»

p2 : AtomicBehavior [1]

p1 : AtomicBehavior [1]

«Step» happensBefore-1

{OneOf}

0..1 happensBefore 1

 : HappensBefore

happensBefore 1
happensBefore-1

{OneOf}

0..1
 : HappensBefore

Fig. 16. Merge model (OBM)

Figure 17 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
BehaviorMerge, with the instance #1 as value of p1, #2 as value of p2, and both #6
and #7 as values of p3. The temporal relations show that #2 happens before #7, and
#1 happens before #6. Since each value in the steps p1 and p2 has one successor in p3,
the model corresponds to a merge.
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Fig. 17. Merge instance model

Altogether Figures 18 and 19 show SysML activity and OBM representations,
respectively, of a behavior that combines the examples of fork, join, decision, and
merge. In the OBM representation, ComplexBehavior is a block with seven properties,
connected as follows (see previous sections for more detailed explanations):

• p1, p2, and p3 form a Fork,

• p2, p3, and p4 form a Join,

• p4, p5, and p6 form a Decision

• p5, p6, and p7 form a Merge.

The flow is expected to go from p1 to both p2 and p3, then from both p2 and p3
to p4, from p4 to either p5 or p6, and from either p5 or p6 to p7.

40



ComplexActivityact 

p6

p5

p4

p3

p2

p7p1

Fig. 18. Complete behavior (activity)

ComplexBehaviorcs 

p2 : AtomicBehavior [0..*]

«Step»

p4 : AtomicBehavior [0..*]

«Step»

p5 : AtomicBehavior [0..*]

«Step»

p3 : AtomicBehavior [0..*]

«Step»

p6 : AtomicBehavior [0..*]

«Step»

«Step»

p7 : AtomicBehavior [0..*]
«Step»

p1 : AtomicBehavior [1]

happensBefore-1

{OneOf}

0..1

happensBefore 1

 : HappensBefore

happensBefore-1

{OneOf}

0..1

happensBefore 1

 : HappensBefore

happensBefore-1 1

happensBefore

1 : HappensBefore

happensBefore-1 1

happensBefore

1 : HappensBefore

happensBefore-1

1

happensBefore

 : HappensBefore

happensBefore-1

1

happensBefore

 : HappensBefore

happensBefore-1 1

happensBefore

{OneOf}

0..1
 : HappensBefore

happensBefore

{OneOf}

0..1

happensBefore-1 1

 : HappensBefore

Fig. 19. Complete behavior (OBM)

Figure 20 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
ComplexBehavior, with the instance #1 as value of p1, #7 as value of p2, #9 as value
of p3, #10 as value of p4, nothing for p5, #11 as value of p6, and #14 as value of p7.
The temporal relations show that #1 happens before both #7 and #9 (forming a fork),
both #7 and #9 happen before #10 (forming a join), #10 happens before #11 not does
not happen before a value in p5 (forming a decision), and #11 happens before #14
(forming a merge).
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Fig. 20. Complete behavior instance model
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4.1.2 Loops

Figures 21 and 21 show SysML activity and OBM representations of a behavior
with a loop, respectively. In the OBM representation, Loop is a block with three
properties typed by AtomicBehavior: p1 has multiplicity 1, p2 has multiplicity 2..* (to
require at least two occurrences in the loop), and p3 has multiplicity 1..*. There are
HappensBefore connectors between p1 and p2, p2 and p3, and from p2 to itself. The
connectors around p2 are exclusive, with outgoing connectors acting like a decision,
while incoming ones act like a merge (see Section 4.1.1).

LoopActivityact 

p3p2p1

Fig. 21. Loop (activity)

Loopcs 

p3 : AtomicBehavior [1..*]

«Step»

p2 : AtomicBehavior [2..*]

«Step»

«Step»

p1 : AtomicBehavior [1]

happensBefore

{OneOf}0..1

happensBefore-1

{OneOf}0..1

 : HappensBefore

happensBefore-1 1

happensBefore

{OneOf}

0..1

 : HappensBefore

happensBefore 1

happensBefore-1

{OneOf}

0..1

 : HappensBefore

Fig. 22. Loop (OBM)

Figure 23 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations in the lower part. #0 is an instance of Loop,
with instance #1 as value of p1, instances #8 and #10 as values of p2, and instance #7
as value of p3. HappensBefore connectors exist between #1 and #8, #8 and #10, and
#10 and #7. The flow goes a second time to p2 before going to p3, forming a loop.
See Section 4.2 for examples of object flows in loops.
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Fig. 23. Loop instance model

4.1.3 Calling behaviors

Figures 24 and 25 show SysML activity and OBM representations, respectively, of
a behavior that contains a composed behavior in addition to atomic behaviors. In
the OBM representation, ComposedBehavior is a block with one property p2 typed by
NestedBehavior, and two properties p1 and p3 typed by AtomicBehavior. Connectors
link p1 to p2, and p2 to p3. NestedBehavior itself has two properties p4 and p5 typed
by AtomicBehavior and linked. All multiplicities are equal to 1. The flow is expected
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to go from p1 to p2, and from p2 to p3. Within p2, the flow is expected to go from p4
to p5.

ComposedActivityact 

p2 : NestedActivity

p3

p1

Fig. 24. Composed behavior (activity)

ComposedBehaviorcs 

p5 : AtomicBehavior [1]

«Step»«Step»

p4 : AtomicBehavior [1]

«Step»

p2 : NestedBehavior [1]

p3 : AtomicBehavior [1]

«Step»

p1 : AtomicBehavior [1]

«Step»

happensBefore-1happensBefore

 : HappensBefore

happensBefore

happensBefore-1
 : HappensBefore

happensBefore-1

happensBefore
 : HappensBefore

Fig. 25. Composed behavior (OBM)

Figure 26 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
ComposedBehavior, with the instance #1 as value of p1, #2 as value of as p2, and #3
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as value of p3. The instance #2 itself has the instances #8 and #9 as values of p4 and
p5. The temporal relations shows that #1 happens before #2, #2 happens before #3,
these three instances happen during #0, #8 and #9 happen during #2, and #8 happens
before #9. The steps of the composed behavior happen as expected.

Fig. 26. Composed behavior instance model
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4.1.4 Item flows and parameters

This section presents the use of transfers and behavior parameters, used to pass items
to inner behaviors.

Itme flows Figures 27 and 28 shows a SysML internal block diagram and an OBM
representation of transferring a property value between two participants, respectively.
ParticipantTransfer is a block containing a property supplier of type Supplier with a
suppliedProduct, and a property customer of type Customer with a receivedProduct.
These two properties are linked by a connector of type Transfer and stereotyped by
ItemFlow. The stereotype values indicate the flowing item comes from the supplied-
Product property of the source and goes to the receivedProduct property of the target.
Solving is expected to show that the product is the same in both participants. The
translation does not support changing objects, so the solver cannot produce instances
of the two participants when they do not have the product (customer before the
transfer, and supplier after the transfer).

ParticipantFlowibd 

:flow properties

receivedProduct : Product

customer : Customer

:flow properties

suppliedProduct : Product

supplier : Supplier

Product

Fig. 27. Participant transfer (item flow)

ParticipantTransfercs 

suppliedProduct : Product [1]

«participant»

supplier : Supplier [1]

receivedProduct : Product [1]

customer : Customer [1]

«participant»

«ItemFlow»

transferSource transferTarget

{itemType = Product,  

sourceOutputProperty = suppliedProduct,  

targetInputProperty = receivedProduct}

 : Transfer

Fig. 28. Participant transfer (OBM)

Figure 29 shows an instance model produced by the reasoner.#0 is an instance of
ParticipantTransfer, with instance #1 as value of supplier and #2 as value of customer.
#8 is a connector typed by Transfer that connects #1 to #2. Both #1 and #2 point
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have the product #7 as respectively suppliedProduct and receivedProduct, showing that
the model transfers the value from supplier to customer as expected.

Fig. 29. Participant transfer instance model

Behavior parameters Figures 30 and 31 show SysML activity and OBM repre-
sentations of a behavior with a parameter value passed between steps, respectively.
In the OBM representation, ParameterBehavior is a block with three property a, b,
and c of type A, B, and C respectively. B has two steps b1 and b2 of type B1 and
B2 respectively. Each of these behaviors has a value that is being passed through an
object flow:

• A has vout, with an outside read access

• B has vin, with an outside write access and an inside read access

• B1 and B2 have vinout, with an outside write and read access

• B has vout, with an outside read access and an inside write access

• C has vout, with an outside write access

Binding connectors link:

• B’s vin to b1.vinout

• B’s vout to b2.vinout

As a result, it is expected that values will be passed from a.vout to b.vin to b1.vinout
to b2.vinout to b.vout to c.in.
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ActivityParameteract 

c : C
vinb : B voutvin

a : A
vout

( vin, vout ) act B

voutvin b2 : B2
vinoutvinout

b1 : B1
vinoutvinout

Fig. 30. Behavior parameters (activity)
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ParameterBehaviorclass 

«Parameter» vinout : Real [1]{direction = inout}

«Behavior»

B1

«Parameter» vinout : Real [1]{direction = inout}

B2

«Behavior»

«Parameter» vout : Real [1]{direction = out}
«Parameter» vin : Real [1]{direction = in}

B

«Behavior»

«Parameter» vout : Real{direction = out}

«Behavior»

A

«Parameter» vin : Real{direction = in}

«Behavior»

C

BehaviorOccurrence

«Behavior»

ParameterBehaviorcs 

{direction = inout}

«Parameter»

vinout : Real [1]

b2 : B2 [1]

«Step»

vinout : Real [1]

«Parameter»

{direction = inout}

b1 : B1 [1]

«Step»

vout : Real [1]

{direction = out}

«Parameter»

«Parameter»

vin : Real [1]

{direction = in}

b : B

«Step»

«Step»

c : C [1]

a : A [1]

«Step»

«equal»

«equal»

«ItemFlow»

transferTarget

transferSource

{sourceOutputProperty = vinout,  

targetInputProperty = vinout}

 : TransferBefore

«ItemFlow»
transferSource

transferTarget

{sourceOutputProperty = vout,  

targetInputProperty = vin}

 : TransferBefore

«ItemFlow»transferSource

transferTarget

{sourceOutputProperty = vout,  

targetInputProperty = vin}

 : TransferBefore

Fig. 31. Behavior parameters (OBM)

Figure 32 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
ParameterBehavior, with instance #1 as value of a, #2 as value of b, and #3 as value
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of c. #2 has the instances #7 as b1 and #8 as b2. All these instances have the same
value for the property vin/vinout/vout), confirming that the parameter was passed
correctly between all these instances.
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Fig. 32. Behavior parameters instance model

4.1.5 Steps with multiple executions

A BehaviorOccurrence can have steps that are executed multiple times.
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Control flows Figures 33 and 34 show SysML activity and OBM representations,
respectively, of a behavior with a fork and a join connected with control flows, with
two occurrences on the first step (activity actions do not have multiplicity). In the
OBM representation, ControlFlowBehavior is a block with four properties p1, p2, p3,
and p4 of type AtomicBehavior. They are connected by HappensBefore connectors so
that p1, p2 and p3 form a fork, and p2, p3 and p4 form a join. The multiplicity on p1
is 2, indicating that there should be two flows going from p1 to p4.

ControlFlowActivityact 

p3

p2

p4p1

Fig. 33. Multiple control flows (activity)

ControlFlowBehaviorcs 

«Step»

p2 : AtomicBehavior [0..*]

p3 : AtomicBehavior [0..*]

«Step»

«Step»

p4 : AtomicBehavior [0..*]
p1 : AtomicBehavior [2]

«Step»

«ItemFlow»
happensBefore-1 1

happensBefore

1{sourceOutputProperty = i,  

targetInputProperty = i}

 : HappensBefore

«ItemFlow»

happensBefore-1 1

happensBefore

1{sourceOutputProperty = i,  

targetInputProperty = i}

 : HappensBefore

«ItemFlow»

happensBefore-1

1

happensBefore 1

{sourceOutputProperty = i,  

targetInputProperty = i}

 : HappensBefore

«ItemFlow»

happensBefore-1

1

happensBefore 1

{sourceOutputProperty = i,  

targetInputProperty = i}

 : HappensBefore

Fig. 34. Multiple control flows (OBM)

Figure 35 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
ControlFlowBehavior, with instances #12 and #5 as values of p1, instances #14 and #9
as values of p2, instances #1 and #6 as values of p3, instances #2 and #10 as values of
p4. The first flow goes from #12 to #14 and #1, and from there to #2. The second
flow goes from #5 to #9 and #6, and from there to #10.
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Fig. 35. Control flows instance model

In this example, control flows only specify temporal order between occurrences,
nothing actually flows between them that could be taken as representing a "flow".
Once the flow splits from a value of p1, it is possible that one branch goes to one
value of p4, and the other branch goes to another value of p4, as shown in Figure 36.
The flow can go from #1 to #10 instead of #2, and from #6 to #2 instead of #10

Fig. 36. Control flows instance model with mixed flows
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Object flows Figures 37 and 38 show SysML activity and OBM representations,
respectively, of a behavior with fork and a join connected with object flows, with two
occurrences on the first step. In the OBM representation, ObjectFlowBehavior has
four properties p1, p2, p3, and p4 of type BehaviorWithParameter. They are connected
by TransferBefore connectors so that p1, p2 and p3 form a fork, and p2, p3 and p4
form a join. These connectors indicate that the value of i is copied between the steps
involved. The multiplicity on p1 is 2, indicating that there should be two flows going
from p1 to p4.

ObjectFlowActivityact 

p3

p2

p1 p4

Fig. 37. Multiple object flows (activity)

ObjectFlowBehaviorcs 

p3 : BehaviorWithParameter [0..*]

«Step»

p2 : BehaviorWithParameter [0..*]

«Step»

p4 : BehaviorWithParameter [0..*]

«Step»

p1 : BehaviorWithParameter [2]

«Step»

«ItemFlow»

transferSource 1

transferTarget

1{sourceOutputProperty = i,  

targetInputProperty = i}

 : TransferBefore

«ItemFlow»
transferSource 1

transferTarget

1{sourceOutputProperty = i,  

targetInputProperty = i}

 : TransferBefore

«ItemFlow»

transferTarget 1

transferSource

1 {sourceOutputProperty = i,  

targetInputProperty = i}

 : TransferBefore

«ItemFlow»

transferSource

1

transferTarget 1

{sourceOutputProperty = i,  

targetInputProperty = i}

 : TransferBefore

Fig. 38. Multiple object flows (OBM)

Figure 39 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
ObjectFlowBehavior, with instances #7 and #14 as values of p1, instances #8 and #15
as values of p2, instances #6 and #1 as values of p3, instances #12 and #2 as values of
p4. The first flow, with a value of 3 for i, goes from #7 to #8 and #6, and from there
to #12. The second flow, with a value of 10 for i, goes from #14 to #15 and #1, and
from there to #2.
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Fig. 39. Object flows instance model

In this example, the value of i in p1 is passed along all successors, so the value in
p1 going to the two branches must end up going to the same value in p4.

4.1.6 Unsatisfiable

The section presents some unsatisfiable OBM models.

Due to connector end multiplicity Figures 40 and 41 show SysML activity and
OBM representations, respectively, of a behavior with a decision followed by a join,
which is found to be unsatisfiable due to the multiplicities on connector ends. In the
OBM representation, UnsatisfiableMultiplicity is a block with four properties typed by
AtomicBehavior: p1, p2, p3, and p4. They are connected so that p1, p2, and p3 form a
Decision, and p2, p3, and p4 form a Join. The model specifies that flow should go from
p1 to either p2 or p3, but not both, and from p2 and p3 to p4. This is not possible
because the decision prevents p2 and p3 from both having values to complete the join.
SMT verification confirms the model is unsatisfiable.
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ActivityUnsatisfiableMultiplicityact 

Fig. 40. Unsatisfiable model, connector end multiplicity (activity)

UnsatisfiableMultiplicitycs 

«Step»

p4 : AtomicBehavior [0..*]

p2 : AtomicBehavior [0..*]

«Step»

p3 : AtomicBehavior [0..*]

«Step»

«Step»

p1 : AtomicBehavior [1]

happensBefore-1

1 happensBefore 1

 : HappensBefore

happensBefore 1happensBefore-1

1

 : HappensBeforehappensBefore

{OneOf}

0..1

happensBefore-1 1  : HappensBefore

happensBefore

{OneOf}

0..1
happensBefore-1 1

 : HappensBefore

Fig. 41. Unsatisfiable model, connector end multiplicity (OBM)

Due to asymmetry of HappensBefore Figures 42 and 43 show SysML activity
and OBM representations, respectively, of a behavior with two occurrences happening
before each other, which is found to be unsatisfiable due to HappensBefore being
asymmetric. In the OBM representation, UnsatisfiableAsymmetry is a block with two
properties of multiplicity 1 typed by AtomicBehavior: p1 and p2. They are connected
so that p1 happens before p2, and vice versa, which is not allowed by asymmetry.
SMT verification confirms the model is unsatisfiable.

ActivityUnsatisfiableAsymmetryact 

p2[1]p1[1]

Fig. 42. Unsatisfiable model, asymmetry (activity)
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UnsatisfiableAsymmetrycs 

«Step»

p2 : AtomicBehavior [0..*]p1 : AtomicBehavior [1]

«Step»

happensBefore 1 happensBefore-1 1
 : HappensBefore

happensBefore

1

happensBefore-1

1

 : HappensBefore

Fig. 43. Unsatisfiable model, asymmetry (OBM)

Due to transitivity of HappensBefore Figures 44 and 45 show SysML activity
and OBM representations, respectively, of a behavior with three occurrences happening
before each other, which is found to be unsatisfiable due to HappensBefore being
transitive and asymmetric. In the OBM representation, UnsatisfiableTransitivity is a
block with three properties of multiplicity 1 typed by AtomicBehavior: p1, p2, and p3.
They are connected in a circle, implying by transitivity that they all happen before
themselves and each other bidirectionally, which is not allowed by asymmetry. SMT
verification confirms the model is unsatisfiable.

ActivityUnsatisfiableTransitivityact 

p3[1]p2[1]p1[1]

Fig. 44. Unsatisfiable model, transitivity (activity)

UnsatisfiableTransitivitycs 

p3 : AtomicBehavior [0..*]

«Step»

p2 : AtomicBehavior [0..*]

«Step»«Step»

p1 : AtomicBehavior [1]

happensBefore-1

1

happensBefore

1

 : HappensBefore

happensBefore-1

1

happensBefore 1

 : HappensBefore

happensBefore-1 1

happensBefore

1

 : HappensBefore

Fig. 45. Unsatisfiable model, transitivity (OBM)

Due to logical interaction of temporal relations (1) Figures 46 and 47 show
SysML activity and OBM representations, respectively, of a behavior with three
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occurrences connected by temporal relations, which is found to be unsatisfiable due to
logical interaction of HappensBefore and HappensDuring. In the OBM representation,
UnsatisfiableComposition1 is a block with three properties of multiplicity 1 typed by
AtomicBehavior: p1, p2, and p3. They are connected so that p1 happens before p2,
and p3 happens during p2, and p3 happens before p1. Logical interaction of the
temporal relations implies p1 and p3 happen before each other, which is not allowed
by asymmetry. SMT verification confirms the model is unsatisfiable.

ActivityUnsatisfiableComposition1act 

p2[1]

«structured»

p3[1]

p1[1]

Fig. 46. Unsatisfiable model, logical implications 1 (activity)

UnsatisfiableComposition1cs 

«Step»

p3 : AtomicBehavior [0..*]

p2 : AtomicBehavior [0..*]

«Step»

p1 : AtomicBehavior [1]

«Step»

happensBefore 1

happensBefore-1

1

 : HappensBefore

happensBefore-1

1

happensBefore

1

 : HappensBefore

happensDuring-1

happensDuring

 : HappensDuring

Fig. 47. Unsatisfiable model, logical implications 1 (OBM)

Due to logical interaction of temporal relations (2) Figures 48 and 49 show
SysML activity and OBM representations, respectively, of a behavior with three
occurrences connected by temporal relations, which is found to be unsatisfiable due to
logical interaction of HappensBefore and HappensDuring. In the OBM representation,
UnsatisfiableComposition2 is a block with three properties of multiplicity 1 typed by
AtomicBehavior: p1, p2, and p3. They are connected so that p1 happens before p2,
and p3 happens during p1, and p2 happens before p3. Logical interaction of the
temporal relations implies p2 and p3 happen before each other, which is not allowed
by asymmetry. SMT verification process confirms the model is unsatisfiable.
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ActivityUnsatisfiableComposition2act 

«structured»

p1[1]

p3[1]

p2[1]

Fig. 48. Unsatisfiable model, logical implications 2 (activity)

UnsatisfiableComposition2cs 

p2 : AtomicBehavior [0..*]

«Step»

«Step»

p3 : AtomicBehavior [0..*]

«Step»

p1 : AtomicBehavior [1]

happensBefore

1

happensBefore-1 1

 : HappensBefore

happensBefore

1

happensBefore-1

1

 : HappensBefore

happensDuring

happensDuring-1

 : HappensDuring

Fig. 49. Unsatisfiable model, logical implications 2 (OBM)

4.2 Advanced examples

This section shows examples adapted from [16], illustrating how to model taxonomy
of behaviors using OBM. Section 4.2.1 shows examples that use control flows with a
single occurrence per step (equivalent to UML activities with a single token), while
Section 4.2.2 shows examples with object flows and multiple occurrences per steps
(equivalent to UML activities with multiple tokens).

4.2.1 Control flow examples

Generic Food service Figure 50 shows a FoodService block, which is a generic
definition of food service. The block has five properties: prepare, order, serve, eat,
pay. The multiplicity of these properties is 0..*. The type corresponding to these
properties are all specializations of BehaviorOccurrence: Order, Prepare, Serve, Eat, Pay.
FoodService will be specialized and its properties redefined by concrete specializations,
as needed.
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FoodServiceclass 

«Step»prepare : Prepare [1]
«Step»order : Order [1]

«Step»eat : Eat [1]
«Step»serve : Serve [1]

attributes

«Step»pay : Pay [1]

FoodService

«Behavior»

«Behavior»

BehaviorOccurrence

Eat

«Behavior»

Valid

«Behavior»

Serve

«Behavior»

Invalid

«Behavior»

Prepare

«Behavior»

«Behavior»

Pay

«Behavior»

Order

Fig. 50. Food service

Figures 51 and 52 show SysML activity and OBM representations of the generic
FoodService, respectively. In the OBM representation, connectors are used to mark
the temporal relationships that are true for all food services. These are the following:
prepare and order must happen before serve, serve must happen before eat. Nothing
is said about pay. The connectors will be inherited, and possibly redefined, by all
specializations of FoodService.

FoodServiceActivityact 

prepare

pay

serve

eat

order

Fig. 51. Food service actions (activity)
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FoodServicecs 

«Step»

prepare : Prepare [0..*]

serve : Serve [0..*]

«Step»

«Step»

order : Order [0..*]

«Step»

pay : Pay [0..*]eat : Eat [0..*]

«Step»

happensBefore

happensBefore-1

 : HappensBefore

happensBefore

happensBefore-1

 : HappensBefore

happensBefore

happensBefore-1

 : HappensBefore

Fig. 52. Food service actions (OBM)

Generic single food service Figure 53 shows the SingleFoodService block, which
is a specialization of FoodService that redefines all its properties to have a multiplicity
of exactly one. This block has several specializations in which the steps are ordered
differently: BuffetService, ChurchSupper, FastFoodService, and RestaurantService. The
next subsections describe these specializations.
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SingleFoodServiceclass 

attributes

«Step»serve : Serve [1]{redefines serve}

«Step»pay : Pay [1]{redefines pay}

«Step»prepare : Prepare [1]{redefines prepare}

«Step»eat : Eat [1]{redefines eat}

«Step»order : Order [1]{redefines order}

SingleFoodService

«Behavior»

«Behavior»

RestaurantService

FastFoodService

«Behavior» «Behavior»

ChurchSupper

BuffetService

«Behavior»

«Behavior»

FoodService

SingleFoodServicecs 

«Step»

prepare : Prepare [1]

serve : Serve [1]

«Step»

order : Order [1]

«Step»

«Step»

pay : Pay [1]

eat : Eat [1]

«Step»

Fig. 53. Single food service

Buffet Figures 54 and 55 show SysML activity and OBM representations of a buffet
food service, respectively. In the OBM representation, BuffetService is a specialization
of SingleFoodService in which prepare occurs before order, and pay occurs after eat.

BuffetServiceActivityact 

pay

eatprepare

order

Fig. 54. Buffet service (activity)
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BuffetServicecs 

«Step»

prepare : Prepare [1]

«Step»

order : Order [1]

«Step»

pay : Pay [1]

«Step»

eat : Eat [1]

happensBefore 1

happensBefore-1 1

 : HappensBefore

happensBefore 1

happensBefore-1 1

 : HappensBefore

Fig. 55. Buffet service (OBM)

Figure 56 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
BuffetService with the instances #1, #2, #3, #4, #5 as values of order, prepare, serve,
eat, pay. The temporal relations show that #2 happens before #1, #1 happens before
#3, #4 happens before #4, #4 happens before #5.
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Fig. 56. Buffet instance model
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Church Figures 57 and 58 show SysML activity and OBM representations of a church
supper, respectively. In the OBM representation, ChurchSupper is a specialization of
SingleFoodService in which pay occurs before prepare and order.

ChurchSupperActivityact 

prepare

pay

order

Fig. 57. Church supper (activity)

ChurchSuppercs 

«Step»

prepare : Prepare [1] order : Order [1]

«Step»

pay : Pay [1]

«Step»
happensBefore-1

happensBefore

 : HappensBefore

happensBefore-1

happensBefore

 : HappensBefore

Fig. 58. Church supper (OBM)

Figure 59 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
ChurchSupper with the instances #1, #2, #3, #4, #5 as values of order, prepare, serve,
eat, pay. The temporal relations show that #5 happens before #1 and #2, #1 and #2
happen before #3, #3 happens before #4.
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Fig. 59. Church supper instance model

Fast Food Figures 60 and 61 show SysML activity and OBM representations of
a fast food service, respectively. In the OBM representation, FastFoodService is a
specialization of SingleFoodService in which pay occurs before eat.
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FastFoodServiceActivityact 

eat

order

pay

Fig. 60. Fast food service (activity)

FastFoodServicecs 

order : Order [1]

«Step»

pay : Pay [1]

«Step»

«Step»

eat : Eat [1]

happensBefore

happensBefore-1

 : HappensBefore

happensBefore-1

happensBefore

 : HappensBefore

Fig. 61. Fast food service (OBM)

Figure 62 shows an instance model produced by the reasoner, with the links in
the upper part and the temporal relations shown in the lower part. #0 is an instance
of FastFoodService with the instances #1, #2, #3, #4, #5 as values of order, prepare,
serve, eat, pay. The temporal relations show that #1 happens before #5, and #3 and
#5 happen before #4.
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Fig. 62. Fast food instance model

Restaurant TheFigures 63 and 64 show SysML activity and OBM representations
of a restaurant service, respectively. In the OBM representation, RestaurantService is
a specialization of SingleFoodService in which pay occurs after eat.
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RestaurantServiceActivityact 

pay

eat

Fig. 63. Restaurant service (activity)

RestaurantServicecs 

pay : Pay [1]

«Step»

eat : Eat [1]

«Step»

happensBefore

happensBefore-1
 : HappensBefore

Fig. 64. Restaurant service (OBM)

Figure 65 shows an instance model produced by the reasoner, with the links in
the upper part and the temporal relations shown in the lower part. #0 is an instance
of RestaurantService with the instances #1, #2, #3, #4, #5 as values of order, prepare,
serve, eat, pay. #1 and #2 happen before #3, #3 happens before #4, and #4 happens
before #5.
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Fig. 65. Restaurant instance model

Unsatisfiable Figures 66 and 67 show SysML activity and OBM representations,
respectively, of a food service that cannot have any execution. In the OBM represen-
tation, UnsatisfiableService is a specialization of SingleFoodService in which eat occurs
before pay, and pay occurs before prepare. This service is unsatisfiable since these
connectors imply that eat occurs before prepare.
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UnsatisfiableServiceActivityact 

prepare

pay

eat

Fig. 66. Unsatisfiable service (activity)

UnsatisfiableServicecs 

prepare : Prepare [1]

«Step»

«Step»

pay : Pay [1]

«Step»

eat : Eat [1]

happensBefore-1 1

happensBefore 1
 : HappensBefore

happensBefore-1 1

happensBefore 1
 : HappensBefore

Fig. 67. Unsatisfiable service (OBM)

The verification process correctly returns that this model is unsatisfiable, since eat
cannot occur before prepare.

4.2.2 Object flow examples

Generic food item flow service Figure 68 shows a generic item flow food service
block IFFoodService, which is a specialization of FoodService in which prepare, serve,
eat, and pay are redefined to have a specialized type that carries some information.
The blocks IFOrder, IFPrepare, IFServe, IFEat, and IFPay have an additional property
that correspond respectively to the ordered food, the prepared food, the served food,
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the eaten food, and paid food item and the amount paid. These are common to any
kind of food service tracking the food. More specializations are created for actions that
exist in some “custom” food services. IFCustomOrder has properties for the destination
of the food, and the amount of the order. IFCustomPrepare and IFCustomServe have a
property for the destination of the food. An OCL constraint ensures the food item
and the destination are unique for every order.

IFFoodServiceclass 

«Step»pay : IFPay [0..*]{redefines pay}

attributes

«Step»serve : IFServe [0..*]{redefines serve}

«Step»order : IFOrder [0..*]{redefines order}

«Step»eat : IFEat [0..*]{redefines eat}

«Step»prepare : IFPrepare [0..*]{redefines prepare}

«Behavior»

IFFoodService

«Step»prepare : Prepare [0..*]

«Step»serve : Serve [0..*]

attributes

«Step»pay : Pay [0..*]
«Step»eat : Eat [0..*]

«Step»order : Order [0..*]

FoodService

«Behavior»

prepareDestination : Location
attributes

«Behavior»

IFCustomPrepare

preparedFoodItem : FoodItem
attributes

IFPrepare

«Behavior»

serviceDestination : Location
attributes

«Behavior»

IFCustomServe

orderedFoodItem : FoodItem
attributes

IFOrder

«Behavior»

attributes

servedFoodItem : FoodItem

IFServe

«Behavior»

orderAmount : Real
attributes

orderDestination : Location

IFCustomOrder

«Behavior»

«Behavior»

IFParallelFoodService

attributes

paidFoodItem : FoodItem
paidAmount : Real

«Behavior»

IFPay

IFSingleFoodService

«Behavior» «Behavior»

IFLoopFoodService

attributes

eatenItem : FoodItem

«Behavior»

IFEat

«Behavior»

Prepare

«Behavior»

EatOrder

«Behavior»

Serve

«Behavior» «Behavior»

Pay

Fig. 68. Generic food item flow service

Figure 69 shows the generic composition of item flow food services. IFFoodService
has connectors that are common to all food services: the flow of food from prepare
to serve, and the flow of food from serve to eat. A connector from order to serve also
shows the flow of food. These item flows redefine the corresponding HappensBefore
relations defined in FoodService.
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IFFoodServicecs 

prepare : IFPrepare [0..*]

«Step»

serve : IFServe [0..*]

«Step»

order : IFOrder [0..*]

«Step»

«Step»

pay : IFPay [0..*]

«Step»

eat : IFEat [0..*]

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = orderedFoodItem,  

targetInputProperty = servedFoodItem}

 : TransferBefore

«ItemFlow»

transferTarget

transferSource

{sourceOutputProperty = preparedFoodItem,  

targetInputProperty = servedFoodItem}

 : TransferBefore

«ItemFlow»
transferTarget

transferSource

{sourceOutputProperty = servedFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

Fig. 69. Composition of generic food item flow service

Single item flow food service Figures 70 and 71 show SysML activity and OBM
representations, respectively, of a food service in which items flow once. In the OBM
representation, IFSingleFoodService is a specialization of IFFoodService that redefines
its properties to use IFCustomOrder, IFPay, IFCustomPrepare, IFCustomServe, and IFEat.
The amount of money is flowing from order to pay, and the destination is flowing from
order to prepare, and from prepare to serve. Also, the food item is flowing from pay to
eat, and from serve to eat.

IFSingleFoodServiceActivityact 

eat
eatenFood

pay
paidFoodamount

serve
servedFood

destination

servedFoodprepare

destination

preparedFood

destination

preparedFood

order

destination

orderedFood

amount

Fig. 70. Single food item flow service (activity)

IFSingleFoodServicecs 

«Step»

prepare : IFCustomPrepare [0..*]

«Step»

serve : IFCustomServe [0..*]

order : IFCustomOrder [1]

«Step»

«Step»

pay : IFPay [0..*]

«Step»

eat : IFEat [0..*]

«ItemFlow»

transferTarget

transferSource

{sourceOutputProperty = orderAmount, orderedFoodItem,  

targetInputProperty = paidAmount, paidFoodItem}

 : TransferBefore

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = paidFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

«ItemFlow»

transferSource transferTarget

{sourceOutputProperty = preparedFoodItem, prepareDestination,  

targetInputProperty = servedFoodItem, serviceDestination}

 : TransferBefore

«ItemFlow»

transferSource
transferTarget

{sourceOutputProperty = orderedFoodItem, orderDestination,  

targetInputProperty = preparedFoodItem, prepareDestination}

 : TransferBefore

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = servedFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

Fig. 71. Single food item flow service (OBM)
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Figure 72 shows an instance model produced by the reasoner, with the links in
the upper part and the temporal relations shown in the lower part. #0 is an instance
of IFSingleFoodService, with the instances 2 as eat, #19 as pay, #1 as order, #15 as
prepare, and #11 as serve. The ordered food corresponds to the prepared food, to the
served food, to the paid food, and to the eaten food. The destination is also passed
along these actions, and the amount during the order corresponds to the amount paid.
#1 happens before #19 and #15, #15 happens before #11, and #19 and #11 happen
before #2.

75



Fig. 72. Single food item flow instance model
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Food item flow with loop Figures 73 and 74 show SysML activity and OBM
representations, respectively, of a food service in which items flow twice, one after
the other. In the OBM representation, IFLoopFoodService is a specialization of
IFFoodService that is similar to the previous example with the following modifications:
a property start is introduced before order, a property end is introduced after eat,
the multiplicity of Order is set to 2. A new connector goes from eat to order. The
properties start, eat, and order form a Merge, while the properties eat, order and end
form a Decision.

IFLoopFoodServiceActivityact 

eat
eatenFood

pay
paidFoodamount

serve
servedFood

destination

servedFoodprepare

destinationdestination

preparedFoodpreparedFood

order

destination

orderedFood

amount

Fig. 73. Food item flow service with loop (activity)

IFLoopFoodServicecs 

«Step»

prepare : IFCustomPrepare [0..*]

«Step»

serve : IFCustomServe [0..*]

«Step»

order : IFCustomOrder [2]

start : IFStart [1]

«Step»

pay : IFPay [0..*]

«Step»

eat : IFEat [0..*]

«Step»

«Step»

end : IFEnd [1]

happensBefore

{OneOf}

0..1

happensBefore-1

{OneOf} 0..1

 : HappensBefore

«ItemFlow»

transferSource

1

transferTarget

1

{sourceOutputProperty = paidFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

«ItemFlow»

transferTarget

1

transferSource1

{sourceOutputProperty = orderAmount, orderedFoodItem,  

targetInputProperty = paidAmount, paidFoodItem}

 : TransferBefore

«ItemFlow»

transferSource

1

transferTarget

1

{sourceOutputProperty = preparedFoodItem, prepareDestination,  

targetInputProperty = servedFoodItem, serviceDestination}

 : TransferBefore

«ItemFlow»

transferTarget

1

transferSource1

{sourceOutputProperty = orderedFoodItem, orderDestination,  

targetInputProperty = preparedFoodItem, prepareDestination}

 : TransferBefore

happensBefore-1

1

happensBefore

{OneOf}

0..1

 : HappensBefore

«ItemFlow»

transferTarget 1

transferSource 1

{sourceOutputProperty = servedFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

happensBefore1

happensBefore-1

{OneOf}

0..1

 : HappensBefore

Fig. 74. Food item flow service with loop (OBM)

Figure 75 shows an instance model produced by the reasoner, with the links in the
upper part and the temporal relations shown in the lower part. #0 is an instance of
IFLoopFoodService, with the instances #1 as start, #25 and #34 as eat, #18 and #3 as
pay, #15 and #5 as order, #23 and #28 as prepare, and #24 and #33 as serve, and #2 as
end. There are two distinct set of steps, happening one after the other: first #15, #18,
#23, #24 and #25 are executed, then #5, #25, #3, #33 and #34 are executed. Each set
has a same location, food item, and amount.
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Fig. 75. Loop food item flow instance model78



Food item flow with parallelism Figure 76 shows an OBM representation of
a food service in which items flow twice, with no particular temporal relationship
between the two flows. The SysML activity representation is the same as in Figure
70, since the only change is the multiplicity of a step and SysML actions do not have
multiplicities. IFParallelFoodService is a specialization of IFFoodService that is similar
to IFSingleFoodService, except that the multiplicity of order is 2.

IFParallelFoodServicecs 

«Step»

prepare : IFCustomPrepare [0..*]

«Step»

serve : IFCustomServe [0..*]

order : IFCustomOrder [2]

«Step»

«Step»

pay : IFPay [0..*]

eat : IFEat [0..*]

«Step»

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = paidFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = orderAmount, orderedFoodItem,  

targetInputProperty = paidAmount, paidFoodItem}

 : TransferBefore

«ItemFlow»

transferTargettransferSource

{sourceOutputProperty = preparedFoodItem, prepareDestination,  

targetInputProperty = servedFoodItem, serviceDestination}

 : TransferBefore

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = orderedFoodItem, orderDestination,  

targetInputProperty = preparedFoodItem, prepareDestination}

 : TransferBefore

«ItemFlow»

transferSource

transferTarget

{sourceOutputProperty = servedFoodItem,  

targetInputProperty = eatenItem}

 : TransferBefore

Fig. 76. Food item flow service with parallelism (OBM)

Figure 77 shows an instance model produced by the reasoner, with the links in
the upper part and the temporal relations shown in the lower part. #0 is an instance
of IFParallelFoodService, with the instances #12 and #24 as eat, #17 and #21 as pay,
#16 and #20 as order, #25 and #14 as prepare, and #11 and #1 as serve. For each step,
the former instance belongs to the first execution and the later instance belongs to
the second execution. All instances in each execution refer to the same food item,
destination, and amount. There are two distinct set of steps: #12, #17, #16, #25 and
#11, and #24, #21, #20, #14 and #1. Each set has a same location, food item, and
amount.
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Fig. 77. Parallel Food item flow service instance model

5. Conclusion and Future work

This report presents an implementation of Ontological Behavior Modeling (OBM)
in SysML, as well as an approach for automatically verifying executability of these
models with Satisfiability Modulo Theories (SMT) solvers. OBM unifies similar
concepts from the three SysML behavior modeling techniques (activities, interactions,
state machines). The report describes a translation from OBM to SMT-LIB, a de-
facto standard language for SMT solvers. A software implementation automatically
translates OBM models to SMT-LIB, calls an SMT solver to verify executability by
finding a satisfying set of instances (execution), and displays the instances graphically.
Examples covering various SysML behaviors are presented, as well as their automatic
verification using the software.

Regarding the next steps following this work, we identified several directions:

• Modeling the start and finish of occurrences as zero-duration occurrences, to en-
able temporal precedence beyond finish to start. This requires looser asymmetry
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in the temporal relations.

• Support changing values of objects and behavior properties, which requires more
advanced techniques such as 4D modeling to break single instances into time
slices that differ in their property values [17].

• Support for OCL to model, for example, the OneOf multiplicity constraint used
in decision and merge nodes.

• Mapping and translator from UML/SysML behavior modeling techniques to
OBM models, for the overlapping concepts identified in this report. This will
enable applicaiton of our approach to existing behavior models.

• Supporting features that are specific to only one UML/SysML behavior modeling
technique.

We plan to apply this approach to more realistic use cases, including examples related
to manufacturing systems. This will test scalability of the approach, because these
cases will have more complex behaviors, number of occurrences, deep nesting, and so
on. We might also study alternative approaches and tools for logical verification, such
as TLA+ (finite-state automata)[18] or the Alloy analyzer[19].
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