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Abstract— Many industries, including manufacturing, are 

adopting data analytics (DA) in making decisions to improve 

quality, cost, and on-time delivery. In recent years, more 

research and development efforts have applied DA to additive 

manufacturing (AM) decision-making problems such as part 

design and process planning. Though there are many AM 

decision-making problems, not all benefit greatly from DA. This 

may be due to insufficient AM data, unreliable data quality, or 

the fact that DA is not cost effective when it is applied to some 

AM problems. This paper proposes a framework to investigate 

DA opportunities in a manufacturing operation, specifically 

AM. The proposed framework identifies and prioritizes AM 

potential opportunities where DA can make impact. The 

proposed framework is presented in a five-tier architecture, 

including value, decision-making, data analytics, data, and data 

source tiers. A case study is developed to illustrate how the 

proposed framework identifies DA opportunities in AM. 

Keywords—Data analytics, opportunity identification and 

prioritization, architecture, additive manufacturing 

I. INTRODUCTION 

Additive Manufacturing (AM) is a set of manufacturing 
technologies that join materials to produce three-dimensional 
(3D) objects from 3D solid models in layer-upon-layer ways 
opposed to the traditional subtractive manufacturing [1]. The 
tool-less and layer-upon-layer nature of AM provides unique 
capabilities of shape complexity, material complexity, 
hierarchical complexity, and functional complexity [2]. Such 
AM-enabled capabilities have largely lessened manufacturing 
constraints and significantly broadened design freedom, 
which offers new opportunities for developing functionally 

enhanced customized products [3]. AM is expected to lead the 

next generation of the manufacturing industry, the 1-batch 
customization era. To reach this expectation, it is important to 
improve performance in AM processes that eventually 
contributes to achieving the objectives of AM on first-part-
correct and lead-time reduction. 

Data analytics (DA) tools are expected to analyze data and 
produce actionable intelligence for the decision-makers. In 
recent years, the technology of DA has rapidly advanced [4]. 
Many researchers have demonstrated DA can help solve 
various manufacturing problems [5]. In this context, AM has 
been generating increasingly available data in the sense of 

volume, variety, and velocity [6]. The AM big data is 
providing great opportunities to use DA technologies and 
leverage DA capabilities to improve AM decision-making. 
Indeed, DA has been attracting attention in AM for data-
driven decision-making [7]. 

DA studies in AM are still in the early stage. The majority 
of the existing DA studies in AM focuses on data analysis 
supporting only a few typical decision-making phases such as 
melt pool analysis for in-situ process signature monitoring  
[8]–[10]. This is because it is difficult to systemically map the 
decision-making and value chains to available DA capabilities 
and data, especially in AM where well-structured guidelines 
lack compared to other traditional manufacturing processes. It 
is necessary to systemically identify and prioritize DA 
opportunities in a complete view of AM decision-making that 
improves AM in general. 

This paper proposes a novel framework for identifying and 
prioritizing DA opportunities in AM. The proposed 
framework has a five-tier architecture that consists of value, 
decision-making, data analytics, data, and data source tiers. 
Based on the architecture, the framework enables (1) 
identifying DA opportunities in AM and (2) prioritizing the 
identified DA opportunities. At the former phase, DA 
opportunities are identified with a top-down approach. The 
latter phase evaluates importance and feasibility (data 
readiness) of each identified DA opportunity. 

The remainder of the paper is organized as follows. The 
second section describes background of AM data and DA 
opportunities. The third section introduces a five-tier 
architecture for AM data analytics that forms the foundation 
of the proposed framework. The fourth section presents the 
proposed framework for identifying and prioritizing DA 
opportunities in AM using the five-tier architecture. A case 
study in the fifth section implements the proposed framework. 
The paper is concluded with a brief conclusion and future 
work.  

II. BACKGROUND 

A. AM Data 

Advancements in sensor technologies have led to an 
unprecedented increase in AM data, encompassing many of 
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the aspects of big data. From the volume perspective, AM 
generates terabyte (TB) size of in-situ monitoring data per 
build and TBs of computed tomography (CT) scan data [7]. 
From the variety perspective, AM generates data types 
including numerical data (e.g., machine logs), 2D images (e.g., 
thermal, optical), 3D (e.g., CAD models, CT scans), Audio 
(e.g., acoustic signals), and videos (e.g., thermal, optical) [7]. 
From the velocity perspective, up to 600 variables may be 
logged per second during the build [7]. The examples of each 
AM data are categorized and listed in Section III. 

To capture, store, and properly manage for AM data, [11] 
proposes an additive manufacturing integrated data model 
(AMIDM) based on a product lifecycle management data 
modeling methods. Reference [12] presents a collaborative 
AM data management system, which is set to evolve through 
sharing of both the AM schema and AM development data 
among the stakeholders in the AM community. Reference [13] 
presents a digital thread and data package for AM to address 
not only data manageability but also traceability and 
accountability. As noted with the above studies, AM data 
management is studied actively but there are only few cases 
of DA using AM data. 

B. DA Opportunity Identification and Prioritization 

A DA opportunity can be defined as “a set of 
circumstances that makes DA possible to support and make 
impact on a decision-making issue”. Due to the lack of 
existing cases to refer, it is difficult to identify and prioritize 
DA opportunities in AM. Besides, there is no systematic 
method available to discover a DA opportunity. To address 
this issue, this paper proposes a two-phase approach: (1) 
identifying opportunities, and (2) prioritizing the identified 
opportunities. The methods for each phase used currently are 
reviewed as follows. 

For opportunity identification, DA architectures that help 
describe each DA opportunity can be leveraged. Two popular 
architectures are used to describe DA.  The Data, Information, 
Knowledge, Wisdom (DIKW) hierarchy uses four main 
components such as data, information, knowledge, and 

wisdom to describe DA [14]. However, the DIKW hierarchy 
has been criticized for its hard-to-consent definition of each 
tier [15]. The Analytics Canvas uses four-layer model 
including analytics use cases, data analysis, data pool, and 
data sources to describe DA use cases and the necessary data 
infrastructure [16]. However, the Analytics Canvas does not 
have a component that describes the value that each DA 
opportunity pursue. The DA opportunities may differ 
depending on the values pursued even in the same use case. 
For example, in the use case of predictive maintenance, the 
DA opportunity solves different problems depending on 
whether the value pursued is quality (good parts), 
performance (as fast as possible), or availability (no stop time). 

For opportunity prioritization, multi-criteria decision-
making methods, such as Fuzzy analytic hierarchy process 
(AHP), Fuzzy technique for order of preference by similarity 
to ideal solution (TOPSIS), and Fuzzy quality function 
deployment (QFD), can be used. Reference [17] uses Fuzzy 
AHP and Fuzzy TOPSIS to prioritize newly identified 
business model alternatives. Reference [18] uses Fuzzy QFD 
and Data Envelopment Analysis (DEA) to prioritize project 
portfolio. Reference [19] uses Fuzzy AHP and Fuzzy TOPSIS 
to prioritize solutions for reverse logistics barriers. Reference 
[20] uses Fuzzy AHP to select sustainable energy conversion 
technologies for agricultural residues.  

III. FIVE-TIER ARCHITECTURE FOR AM DATA ANALYTICS 

A five-tier architecture for AM data analytics is presented 
in Fig. 1. The architecture is composed of the following tiers: 
(1) ‘Value Tier’ where values pursued in AM lifecycle are 
defined, (2) ‘Decision-Making Tier’ where AM decision-
making activities are defined, (3) ‘Data-Analytics Tier’ where 
DA problems are defined, (4) ‘Data Tier’ where AM data and 
information are defined, and (5) ‘Data-Source Tier’ where 
AM data sources are defined. DA opportunity can be 
represented as a package composed of these five tiers.  

There are relationships that drive the interactions between 
each tier. ‘Value Tier’ gives motivation to ‘Decision-Making 
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Tier’, ‘Decision-Making Tier’ achieves ‘Value Tier’. 
‘Decision-Making Tier’ gives decision making objectives to 
‘Data-Analytics Tier’, ‘Data-Analytics Tier’ supports 
‘Decision-Making Tier’. ‘Data-Analytics Tier’ gives data 
requirements to ‘Data Tier’, ‘Data Tier’ provides data to 
‘Data-Analytics Tier’. Finally, ‘Data Tier’ gives data source 
requirements to ‘Data-Source Tier’ and ‘Data-Source Tier’ 
provides data sources to ‘Data Tier’. Each tier is explained in 
more detail as follows. 

A. Value Tier 

At the Value Tier, values pursued in AM lifecycle are 

defined in terms of Quality, Cost, and Delivery (QCD) [21]. 

QCD is about value dimensions used to assess production 

process. Quality in AM can be performance, conformance, 

durability, and aesthetics. Cost in AM can be labor costs, 

material costs, energy costs, and maintenance costs. Delivery 

in AM can be on-time delivery, right amount delivery, and 

right location delivery. Examples of related research works in 

AM are in improving quality [22], reducing cost [23], and 

realizing on-time delivery [24].  

B. Decision-Making Tier 

At the Decision-Making Tier, decision-making activities 
for AM are defined. These activities follow the design-to-
product transformation of the part, beginning at early design 
stages and ending with a finished part. The predefined activity 
model for Laser Powder Bed Fusion (LPBF) process  [13], 
[25], which is represented using the IDEF0 [26], is used as an 
example. The top three levels of the decision-making activities 
listed in that model are shown in Table Ⅰ. It includes six of 
Level-1 activities: ‘Generate AM Design’, ‘Plan Process 
(Machine Independent)’, ‘Plan Process (Machine 
Dependent)’, ‘Build Part’, ‘Post-process Part’, and ‘Test Part’. 
These six activities are decomposed to twenty-two (22) Level-
2 and thirty-four (34) Level-3 sub-activities. Decision-making 
objectives for each decision-making activity are also defined 
at this tier. 

Using IDEF0, the decision-making activities can be 
defined by functions and related components such as input (I), 
control (C), output (O), and mechanism (M), or ICOM [26]. 
A function describes what an activity should accomplish. An 
input can be data, objects, or materials that are transformed by 
the activity. A control can be one or more conditions necessary 
for the activity to create correct outputs. An output is a set of 
results generated by the activity. A mechanism is the means 
that support the execution of the activity such as software, 

equipment, and personnel. An example is shown in Fig.2 [25]. 
The activity ‘A11: Generate CAD Model’ itself is a function. 
The input of the activity is a design, which refers to the 
conceptual design of a part and related design requirements. 
The control of the activity is guidelines, which refers to the 
design guidance that may be provided from feedback 
opportunities or part of governing design or process or 
material requirements. It is at the controller where many of the 
decision-making opportunities can be identified, as the 
configuration of the controller will impact the output of the 
activity. Here, the output of the activity is a CAD model, 
which refers to the computer-generated geometry that was 
developed using a CAD software. The mechanism of the 
activity is software, which is used to transform the design into 
a CAD model. 

TABLE I.  HIGH LEVEL DECISION-MAKING ACTIVITIES IN AM 

Level-1 Level-2 Level-3 

A1: Generate AM 

Design 

A11: Generate 

CAD Model 
- 

A12: Optimize 
Shape 

- 

A13: Tessellate 

Model 
- 

A14: Repair 
Tessellated Model 

- 

A15: Modify 

Tessellated Model 
- 

A2: Plan Process 
(Machine 

Independent) 

A21: Choose 

Orientation 
- 

A22: Generate 
Supports 

- 

A3: Plan Process 

(Machine 
Dependent) 

A31: Setup 

Tessellated Model 

A311: 

Determine 
Orientation 

A312: Design 

Supports 

A32: Create Build 

Model 

A321: Place Part 

A322: Generate 

Slices 

A323: Generate 

Scan Strategy 

A33: Plan Powder 

Fusion Strategy 

A331: Set 

Quality 
Parameters 

A332: Set 

Control 
Parameters 

A333: Set 

Powder Fusion 
Parameters 

A334: Set 

Recoating 
Parameters 

A34: Plan 

Monitoring 
Strategy 

- 

A4: Build Part 

A41: Create 

Powder Layer 
- 

A42: Fuse 
Powders 

- 

A43: Monitor 

Fusion 
- 

A5: Post-process 
Part 

A51: Remove 

Supports 
- 

A52: Improve 
Properties 

- 

A53: Finish Part - 

A6: Test Part 
A61: Measure 

Tolerances and 

A611: Measure 
External 

Tolerances 

 

 

Fig. 2. Representation of a decision-making activity [25] 

 



Level-1 Level-2 Level-3 

Surface 

Roughness 

A612: Measure 

Internal 

Tolerances 

A613: Measure 

Surface 
Roughness 

A62: Measure 
Porosity and 

Cracks 

A621: Measure 

Part Porosity 

A622: 

Identifying and 

Measure Cracks 

A63: Measure 

Part Properties 

A631: Measure 

Mechanical 

Properties 

A632: Measure 

Microstructures 

Properties 

A633: Measure 

Electrical 

Properties 

A634: Measure 
Chemical 

Properties 

A635: Measure 
Thermal 

Properties 

A64: Evaluate 
Test Results 

- 

 

C. Data-Analytics Tier 

At the Data-Analytics Tier, each decision-making 
objective may be translated in DA perspectives with the 
following four types of analytics: prescriptive analytics, 
predictive analytics, diagnostic analytics, and descriptive 
analytics [16]. Each type of analytics is described as follows. 
Prescriptive analytics is to answer the question of what action 
should be done. Prescribing optimized powder fusion 
parameters is an example of prescriptive analytics in AM. 
Predictive analytics is to answer when and what will happen. 
Predicting porosity is an example of predictive analytics in 
AM. Diagnostic analytics is to answer the question of why it 
happened. Identifying the relationship between design 
parameters and surface roughness is an example of diagnostic 
analytics in AM. Descriptive analytics is to answer the 
question of what happened. Characterizing melt pool behavior 
is an example of descriptive analytics. 

As the type of DA is defined, it is often easier to choose 
suitable algorithms in a practical use. For prescriptive 
analytics, reinforcement learning algorithms, such as Deep Q-
Learning, and recommender system algorithms, such as 
associate rule mining, can be used to find best action or 
optimize problems [27]. For predictive analytics, supervised 
learning algorithms, such as neural networks and support 
vector machine, can be used to develop predictive model [27]. 
For diagnostic analytics, unsupervised learning algorithms, 
such as K-means clustering, can be used for grouping a set of 
objects; and supervised learning, such as linear regression, can 
be used to identify causal relationships [28]–[30]. For 
descriptive analytics, general statistics, like mean, min, and 
max; and signal processing algorithms, like Wavelet 
Transform and Fast Fourier Transform, can be used to obtain 
meaningful descriptive information from raw data [31]. 

D. Data Tier 

At the Data Tier, AM data types are defined. AM generates 
a variety of data. Examples are listed as follows [7]. 

• Material properties: material chemistry, material 
microstructure, powder size distribution, etc. 

• Design parameters: wall thickness, orientation, 
overhang angle, etc. 

• Process parameters: laser power, scan speed, hatch 
spacing, machine logs, etc. 

• Process signatures: thermal data (e.g., melt pool width, 
temperature), optical images and videos, acoustic 
signals, etc. 

• Part property: tensile toughness, hardness, etc. 

• Product performance: fatigue life, corrosion, meets 
design criteria, etc. 

 AM data can be stored in database systems. The Additive 
Manufacturing Materials Database (AMMD) [32] built by 
National Institute of Standards and Technology (NIST) is an 
example. 

E. Data-Sources Tier 

An AM lifecycle is composed of five stages: (1) Design, 
(2) Process Plan, (3) Build, (4) Post Process, and (5) Test and 
Validation [11]. Each stage produces data from its data 
sources. In this tier, the data sources can be categorized into 
Man, Machine, Material, Method, and Environment (4M1E) 
[33]. 

4M1E are the foundation resources managed for QCD in 
production systems. To achieve QCD, data from 4M1E needs 
to be analyzed. Among 4M1E, Man means participants in the 
AM lifecycle such as part designers and process planners. 
Machine can be every machine used in the AM lifecycle 
including coordinate measuring machine and AM machine, 
also known as 3D printer. Material can be any material used 
in the AM lifecycle such as plastic, metal powder, or ceramic. 
Method in the AM lifecycle can be  AM standards, part 
measurement methods, test specifications, etc. Finally, 
Environment in the AM lifecycle can be software, workplace, 
temperature, energy usage, etc. 

IV. PROPOSED FRAMEWORK 

The proposed framework uses a five-tier architecture with 
sequential steps. By applying the proposed framework to set 
an overall DA -direction in AM, we use a two-phase approach. 
First, the proposed framework helps to identify DA 
opportunities through a top-down approach. Second, the 
proposed framework helps prioritize the identified DA 
opportunities in terms of importance and feasibility. Here, the 
feasibility refers to data readiness.  The detail processes are 
described as follows. 

A. Phase 1 - Identifying DA Opportunities 

DA opportunities are identified with a top-down approach, 
as shown in Fig. 3. First, AM-lifecycle values are determined 
using QCD at the Value Tier. The value(s) can be one or more 
of the following: ‘Quality’, ‘Cost’, and ‘Delivery’, or their 
extensions, such as “Aesthetics” and “labor costs efficiency”. 

 



Decision-making activities and decision-making 
objectives are identified in the ‘Decision-Making Tier’.  
Decision-making activities are related to a pre-defined value 
from the Value Tier, here identified from the existing activity 
models, e.g., Table I. As mentioned in Section III, the 
decision-making activities can be broken into a set of 
functions and ICOMs. Once the value and decision-making 
activities are defined, a decision-making objective can be 
stated as “Improving + [value] + when + [decision-making 
activity]”, where “Improving” and “when” provide syntax. 
For example, if the target value and decision-making activity 
are defined as “Material cost efficiency” and “A11: Generate 
CAD Model”, then the corresponding decision-making 
objective can be stated as “Improving material cost efficiency 
when Generate CAD Model”.  

Once a decision-making objective is defined, potential 
types of DA problems are defined for each decision-making 
objective at the ‘Data-Analytics Tier’. The syntax of each DA 
problem is summarized as follows. Note that these syntaxes 
are examples and are for the illustration purpose. A more 
complete syntax is currently under development.  

• Prescriptive analytics: “Prescribing + [C] + to 
maximize + [V]” 

• Predictive analytics: “Predicting + [V] + based on 
given + [ICOM]” 

• Diagnostic analytics: “Identifying relationship  
between + [ICOM] + and + [V] + based on their 
characteristics” 

• Descriptive analytics: “Characterizing + [I] + [C] + 
[O] + [M] + [V]” 

 Where V represents a predefined value from the 
Value Tier, and I is a input, C is a control, O is an output, 
M is a mechanism defined in the ICOM. 

The goal of the prescriptive analytics is to directly support 
the achievement of the objectives of the corresponding 
decision-making activity in the IDEF0. Therefore, the 
prescriptive analytics tier in the framework identifies 

prescriptive analytics problems that consider DA objectives 
based on V, which aims to construct data-driven prescriptive 
guidelines. Based on the structured syntax of prescriptive 
analytics problems, following prescriptive analytics supports 
the development of a condition in C that can maximize V.  The 
syntax is intended to lead associated prescriptive analytics to 
specifically support a transformation of an input I to a desired 
O with a consideration of M identified from the IDEF0 
representation. Based on the syntax, prescriptive analytics can 
be then designed under possible situations or scenarios, to 
suggest courses of actions or strategies. 

The predictive analytics tier aims to identify analytics 
problems to predict the target V. V is intended to be 
maximized in the prescriptive analytics. Therefore, V is used 
as criteria for suggesting courses of actions or strategies in the 
prescriptive analytics. To support this, the predictive analytics 
tier sets problems to predict information about possible 
situations or scenarios influencing V. Leveraging V and 
ICOM, the proposed syntax of predictive analytics problems 
helps to design data analytics that provides predictive criteria 
for associated prescriptive analytics. 

The diagnostic analytics tier sets analytics problems for 
identifying the corelationships between ICOM and V in the 
past, or identifying which  ICOM relationships influenced V 
in the past. The proposed syntax of diagnostic analytics 
problems helps to set data analytics approaches that provide 
bases the associated predictive analytics selects/extracts 
predictive parameters based upon. An example of the 
diagnostic analytics that can be considered is data analysis of 
ICOM relationships as root causes of the target V. Such 
analysis can be pursued leveraging the proposed syntax to 
support the V prediction of which analytics is designed in the 
upper-level predictive analytics tier.  

The descriptive analytics tier identifies analytics problems 
to characterize ICOM and V to support the identification of 
relationships in the diagnostic analytics. It generates 
descriptive parameters representing data requirements that 
describe the required characteristics or behaviors of ICOM- 
and V-specific data. The ICOM- and V-specific data are then 
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adaptively requested in the data tier to support the 
identification of DA opportunities. 

The following examples illustrate the four DA problem 
types by using the same decision-making objective discussed 
previously, i.e., “Improving material cost efficiency when 
Generate CAD Model”. Note that the ICOM of A11 are I: 
Design, C: Design Guidelines, O: CAD Model, and M: CAD 
Software. To achieve that objective, a prescriptive analytics 
problem can be defined as “Prescribing Design Guidelines to 
maximize Material cost efficiency”. A predictive analytics 
problem can be “Predicting Material cost efficiency based on 
given Design, Design Guidelines, CAD Model, CAD 
Software”. A diagnostic analytics problem can be “Identifying 
relationship between Design, Design Guidelines, CAD 
Model, CAD Software and Material cost efficiency based on 
their characteristics”. Finally, a descriptive analytics problem 
can be “Characterizing each Design, Design Guidelines, CAD 
Model, CAD Software, and Material cost efficiency”.  

Each defined DA problem, presented using the proposed 
syntax, with some grammar modifications when necessary,  is 
treated as the title of a DA opportunity. Note that descriptive 
analytics can be sometimes substituted by the outputs of other 
decision-making activities. For example, when 
“Characterizing aesthetic”, other quality indicators such as 
surface roughness of ‘A613: Measure Surface Roughness’ can 
be used. 

To realize the objectives of the DA problems data 
requirement for each DA problem should be defined at the 
‘Data Tier’. For the above example, the descriptive analytics 
for “Characterizing each Design, Design Guidelines, CAD 
Model, CAD Software, and Material cost efficiency” requires 
data related to the Design, Design Guidelines, CAD Model, 
and Material cost efficiency. The prescriptive analytics for 
“Prescribing Design Guidelines to maximize Material cost 
efficiency” requires not only to have data related to the  
Design, Design Guidelines, and CAD Model, and Material 
cost efficiency but also the results of other analytics including 
the predicted Material cost efficiency as well. The data 

requirements of the DA problem will influence the feasibility 
of each DA opportunity. This is because the feasibility is 
mainly measured based on the data readiness level. 

Finally, data sources are defined in the ‘Data-Source Tier’. 
For instance, to satisfy the data requirements for the 
“Characterizing Design, Design Guidelines, CAD Model, 
CAD Software, Material cost efficiency,” it requires data from 
these data sources: part designer, design guideline documents, 
CAD software, and cost measurement method. 

Often, we identify many DA opportunities through the 
phase 1 process. In reality, it is difficult and also not necessary 
to research and develop all the identified DA opportunities, 
due to the constraints of time, cost, and importance. Therefore, 
prioritizing the DA opportunities is an important task. 

B. Phase 2 - Prioritizing DA Opportunities 

As shown in Fig. 4., the prioritization phase is broken into 
two parts: evaluating the importance of each DA opportunity 
and evaluating the feasibility of each DA opportunity. 
Decision makers (DMs) are the key persons to participate in 
the evaluation. 

To evaluate the importance of each DA opportunity, the 
evaluation is performed by the DMs, starting from the ‘Value 
Tier’ to the ‘Decision-Making Tier’, and then to the ‘Data-
Analytics Tier’. First, the importance of each identified value 
is assessed. Then, the importance of improving each identified 
value for the corresponding decision-making activity is 
evaluated and rated. At last, the importance of each DA 
problem for the decision-making activity is evaluated and 
rated. Finally, using a hierarchical multi-criteria decision-
making method, the importance of each DA opportunity can 
be calculated. 

To evaluate the feasibility of each DA opportunity, the 
evaluation is performed through ‘Data Source Tier’ to ‘Data 
Tier’ and ‘Data Tier’ to ‘Data-Analytics Tier’. First, the 
feasibility of data satisfying the requirements for each DA 
opportunity is investigated. Then, the importance of each data 
for each DA problem is evaluated. Finally, the data readiness 
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level for each DA opportunity is assessed by performing a gap 
analysis between the feasibility and the importance of the 
required data. 

A sample output of the prioritization, i.e., Phase 2, using 
the proposed framework is shown in Fig. 4. The identified DA 
opportunities from Phase 1 are mapped into the prioritization 
matrix, where x-axis represents feasibility and y-axis 
represents importance. Based on the prioritization matrix, the 
identified DA opportunities can be classified into four groups, 
as shown in Fig. 5. 

When mapping DA opportunities, the DA opportunities in 
the high importance and high feasibility groups are critical to 
work on. On the other hand, the DA opportunities in the low 
importance and low feasibility group are considered the 
lowest priority. The DA opportunities in the high importance 
and low feasibility group are potentially critical projects,  
where new solutions may be needed to improve the data 
readiness level and hence upgrade the prioritization group of 
the opportunity. The DA opportunities in the low importance 
and high feasibility group may be easy to develop but most 
likely the effort is not beneficial, however, sometimes such 
opportunities might be useful for proof of DA concept in 
emerging areas. 

V. CASE STUDY 

 Phase 1 of the proposed framework is illustrated in this 
case study on LPBF processes. Table Ⅱ shows the outputs of 
the proposed framework in the overall cases. Three cases, 
Case 1, Case 2, and Case 3 are identified by the proposed top-
down approach.  

The case study begins by taking the input Vs: surface 
texture quality, part porosity reducibility, and time efficiency. 
The Vs are mapped to associated decision-making activities 
of ‘Design’, ‘Build Part’, and ‘Test Part’ in Case 1, Case 2, 
and Case 3, respectively, in the Decision-making Tier. Then, 
the target levels of decision-making abstraction are 
systematically identified through the decomposition of the 
functional relationships in the IDEF0 that represents the 
Decision-making Tier. The AM activities identified at the 
target abstraction levels are “Generate Detailed Design Model 
for LPBF”, “Monitoring In-situ Process Signatures of  LPBF 
Behaviors”, and “3D Scan Part”. Once the target AM activity 
is determined, its corresponding ICOMs and decision-making 
objectives are also identified for the DA.  

At the Data Analytics Tier, the target Vs, ICOMs, and 

decision-making objectives are leveraged to define DA 

objectives utilizing the proposed DA objective structures.  

For example, in Case 1, the Prescriptive Analytics has an 

objective of “Prescribing design rule to maximize surface 

texture quality”. This objective is identified to prescriptively 

guide what specific design actions the activity A12-n should 

pursue to maximize surface texture quality for LPBF. The 

required information for this prescriptive analytics is the 

predicted surface texture quality (V for Case 1) based on 

based on given overhang design model, design rule, process 

plan, material properties, redesigned part. Based on this 

requirement, the Predictive Analytic formulates “Predicting 

surface texture quality based on given overhang design 

model, design rule, process plan, material properties, 

redesigned part”. 

The Dignostic Analytics in Case 1 aims to solve an 

associated problem to support the predictive analytics. Case 

1’s predictive analytics requires identified relationships 

between the overhang design model (I for Case 1), design rule 

for overhang features, process plan, material properties (C for 

Case 1), and surface texture quality (V for Case 1). Based on 

this requirement, a diagnostic analytics objective is set as 

“Identifying relationship between overhang design model, 

design rule, process plan, material properties, and surface 

texture quality based on their characteristics”. Such 

objectives  help group data features and set necessary 

hypotheses  in predictive analytics. Finally, the Descriptive 

Analytics has an objective of “Characterizing  each overhang 

design model, design rule, process plan, material properties” 

to generate descriptive parameters that describe the 

characteristics and behaviors of Case 1-specific data. 

In the proposed top-down approach, the DA objective 
structures enable selecting or requesting AM data sets suitable 
for each type of data analytics. At the same time, the DA 
objective structures become a bridge that links values and 
decision-making objectives to data requirements. Therefore, 
the top-down approach adaptively generates data 
requirements that are goal-oriented as well as DA type-
specific. Such advantage provides varying DA opportunities 
even for the same data sources that bottom-up approaches may 
not be able to capture. The data of material type are good 
examples while they are commonly required in the 3 cases for 
different values, decision-making objectives, and DA types. 
When required data sets are not available, the top-down 
approach can generate a request for new AM data to 
incorporate data requirements into plans for further data 
obtainments [34]. Examples of the further data obtainment can 
be fusions of available data, field tests and simulations, and 
installations of sensor environments guided by the top-down 
approach. 

The case study identified twelve DA opportunities from 
the three cases in the AM lifecycle. It is meaningful that the 
DA opportunities are identified without heavily referring to 
existing opportunities identified from other existing DA 
studies. This study is expected to serve as a structured 
guideline for researchers and practitioners who seek new DA 
opportunities in AM. However, the case study did not 
prioritize the identified DA opportunities yet. More 
opportunities remained to be identified so we will prioritize 
them in the future work.

 

Fig. 5. Prioritization matrix 



TABLE II.   AN OVERVIEW OF CASE STUDIES: OUTPUT OF EACH TIER

Tier 
Sub-items Case Studies 

Case 1 Case 2 Case 3 

Value 

Quality Surface texture quality Part porosity reducibility - 

Cost - - - 

Delivery - - Time efficiency 

Decision 

Making 

Decision 
Making Activity 

A1: Design 

A12: Optimize shape 

A12-n: Generate Detailed Design Model 
for LPBF  

• I: Overhang design model 

• C: Design rule for overhang 
features, Process plan, Material 

properties 

• O: Redesigned part 

• M: CAD Software 

A4: Build Part  

A43: Monitoring fusion 

A43-n: Monitoring in-situ process 
signatures of  LPBF behaviors   

• I: In-situ process signatures 

• C: In-situ defect evaluation 
rule/guideline, Process plan, 

material properties 

• O: Evaluation results 

• M: In-situ monitoring cameras and 

software 

A6: Test Part 

A61: Measure Tolerance and Surface 

Roughness 
A611: Measure External Tolerances 

A611-n: 3D Scan part 

• I: Target part 

• C: 3D Scan path, material 
properties 

• O: Reconstructed 3D model 

• M: Robotic 3D scanning system 

Decision 

Making 

Objective 

Improving surface texture quality when 

generating detailed design model for 
LPBF 

Improving  part porosity reducibility 

when monitoring in-situ process 
signatures of LPBF behaviors   

Improving time efficiency when 3D 
Scan part 

Data 

Analytics 

Prescriptive 

Analytics 
Prescribing design rule to maximize 

surface texture quality  

Prescribing in-situ defect evaluation 
rule/guideline to maximize part porosity 

reducibility 

Prescribing 3D scan path to maximize 

time efficiency 

Predictive 

Analytics 
Predicting surface texture quality based 

on given overhang design model, process 

plan, material properties 

Predicting part porosity reducibility 

based on given in-situ process 

signatures, process plan, material 

properties 

Predicting time efficiency based on 

given target part, 3D scan path, and 

material properties 

Diagnostic 
Analytics 

Identifying relationship between 

overhang design model, process plan, 

material properties, and surface texture 
quality based on their characteristics 

Identifying relationship between in-situ 

process signatures, process plan, 

material properties, and part porosity 
reducibility 

Identifying relationship between target 

part, 3D scan path, material properties 

and time efficiency based on their 
characteristics 

Descriptive 

Analytics 

Characterizing  overhang design model, 

design rule, process plan, material 

properties 

Characterizing in-situ process 

signatures, process plan, material 

properties, part porosity reducibility 

Characterizing target part, 3D scan path, 

material properties, time efficiency 

Data 

For Prescriptive 

Analytics 
Data of predictive surface roughness 

with given overhang geometry, process 

plan, and material properties changes 

Data of predictive porosity density, 

shape, location with given in-situ process 

signatures, process plan, and material 

properties 

Data of predictive scan time with given 

target part, scan path, reconstructed 3D 

model, material properties, scanning 

environment 

For Predictive 

Analytics 
Historical data on the surface roughness 
as response variable 

Selected/extracted features from 

overhang geometry, process plan, and 

material properties as input variables 

Historical data on the porosity density, 
shape, location as response variable 

Selected/extracted features from in-situ 

process signatures, process plan, and 

material properties as input variables 

Historical data on the scan time as 
response variable 

Selected/extracted features from target 

part, scan path, reconstructed 3D model, 

material properties, and scanning 

environment as input variables 

For Diagnostic 
Analytics 

Historical data on the surface roughness 

as response variable 

Historical data on overhang geometry, 
process plan, and material properties  as 

input variable 

Historical data on the porosity density, 

shape, location as response variable 

Historical data on in-situ process 
signatures, process plan, and material 

properties as input variable 

Historical data on the scan time as 

response variable 

Historical data on target part, scan path, 
reconstructed 3D model, material 

properties, and scanning environment as 

input variables 

For Descriptive 

Analytics 

Surface roughness data, Overhang 

geometry data (e.g. overhang type, 

downskin, surface angle, overhang 

dimension), Process plan data (e.g. tool 

path, energy source, power, speed, 

hatching distance, layer thickness, part 
position and orientation), and Material 

properties (e.g. density, powder 

distribution, material type), Design rule 

data 

Porosity data (e.g. density, shape, 

location), In-situ process signatures (e.g. 

melt pool size, shape), Process plan data 

(e.g. tool path, energy source, power, 

speed, hatching distance, layer thickness, 
part position and orientation), and 

Material properties (e.g. density, powder 

distribution, material type), Design rule 

data 

Scan time data, Target part data (e.g. 

CAD data), Scan path data, 

Reconstructed 3D model (e.g. point 

cloud), Material properties (e.g. material 
type), and Scanning environment data 

(e.g. light condition) 

Data 

Source 

Man - - - 

Machine 
LPBF machine, Ex-situ part 

measurement machine (e.g., XCT 

scanner)  

LPBF machine, in-situ monitoring 

camera (e.g., optical camera), ex-situ 

part measurement machine (e.g., XCT 

scanner) 

3D scanning robot 

Material Process planning model, LPBFed 

part model 

 

In-situ process signature model, process 

planning model, LPBFed part model   
Target part 

Method CAD development, LPBF machine 
control method, surface and volume 

measurement system (e. g., XCT 

scanner) 

 

LPBF machine control method, in-situ 
monitoring method, surface and volume 

measurement system (e. g., XCT 

scanner) 

3D reconstruction method 

Environment 

- - Scanning environment, CAD software 



VI. CONCLUSION 

Although AM generates big data that provides 
opportunities to use DA, the AM community does not have 
many successful stories of the DA applications. The lack of 
DA cases makes it difficult for researchers and practitioners 
in AM to define the AM problems where DA can have an 
impact. To address this issue, this paper proposes a framework 
in a five-tier architecture, including value, decision-making, 
data analytics, data, and data sources, to help (1) identify and  
(2) prioritize DA opportunities in AM. For the former phase, 
a top-down approach in the five-tier architecture is formulated 
with a set of suggested syntaxes for describing potential DA 
opportunities. For the latter phase, there are two dimensions 
to be evaluated for prioritization: importance and feasibility. 
By using the proposed framework, a case study identified 
twelve DA opportunities in LPBF processes. These DA 
opportunities were identified from different values, decision-
making activities, and DA types, where values are the targets 
the improvement aims at, decision-making activities are the 
AM activities that could potentially be improved in terms of 
quality, cost and delivery, and DA types include prescriptive, 
predictive, diagnostic, and descriptive analytics. The case 
study demonstrates the proposed framework could 
systematically identify potential DA opportunities in a 
complete view of the AM lifecycle, without heavily relying on 
the existing DA studies in AM. Since this framework does not 
stick to a certain domain so it is expected to contribute to not 
only AM but also other domain where DA is pre-mature. 

The future work will focus on formalizations of the 
proposed framework that will enable the identification and 
prioritization of DA opportunities in a consistent way. We will 
continue to develop novel sets of syntax structures where the 
proposed formulations of DA objectives are expanded. The 
range of the syntax structure formulation will be expanded for 
the other tiers in the proposed architecture as well. The future 
work will then transform the prioritization phase into a formal 
method. The formal method will be equipped with the 
prioritization techniques mentioned in Section Ⅱ. 
Furthermore, the formalized framework will be implemented 
in software environments with AM data and knowledge bases 
to automatically support identifying and prioritizing DA 
opportunities. The continuation of this study will eventually 
provide a set of DA opportunities with higher data readiness 
level and higher impact to the AM community.  
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