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Abstract—Dynamic spectrum access (DSA) to achieve spec-
trum sharing in unlicensed bands is a promising approach for
meeting the growing demands of forthcoming and deployed
wireless networks, such as long-term evolution license-assisted
access (LTE-LAA) and IEEE 802.11 Wi-Fi systems. In this paper,
we consider a coexistence scenario where multiple LAA and
Wi-Fi links compete for spectrum sharing subchannel access.
We introduce a reinforcement-learning-based subchannel selec-
tion technique which allows access points (APs) and eNBs to
select best subchannel distributively considering their medium
access control (MAC) channel access protocols along with the
physical layer parameters. The performance of this scheme
is investigated through simulations, including the convergence
property and sum throughput. Numerical results show that the
proposed reinforcement-learning scheme converges fast and the
sum throughput of the LAA and Wi-Fi systems is reasonably
close to the result based on exhaustive search.

Index Terms—5G and beyond, artificial intelligence, coexis-
tence, LTE-LAA, MAC layer, PHY layer, Q-learning, WLAN.

I. INTRODUCTION

Wireless communications are tightly integrated into our
daily lives and promise to become more so in the future.
Cisco Systems forecasts 3.6 mobile-connected devices per
person by 2022 and a 7-fold increase in global mobile data
traffic between 2017 and 2022 [1]. A promising approach to
accommodating this growth is to transition from exclusively-
licensed spectrum to a shared one, which offloads into un-
licensed spectrum bands. One difficulty in this approach is
balancing new network paradigms with incumbent networks,
such as Wi-Fi.

Operating long term evolution (LTE) in unlicensed bands,
such as with licensed assisted access (LAA), is a proposed
solution to improve spectral-usage efficiency [2]. While such
wireless coexistence proposals may have an enormous influ-
ence in solving spectrum usage issues, there are a number of
challenges for both Wi-Fi and LTE networks to constructively
share the spectrum. Assigning the spectrum in an intelligent
and adaptive way may satisfy the diverse networks’ require-
ments, build up an effective sharing of spectrum, and help to
design future radio technologies (e.g., 5G NR-U [3]).

Innovations in artificial intelligence (AI) and machine learn-
ing (ML) are transformative in many industries. Wireless
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networking is also poised to benefit from these advances.
For example, future 5G and beyond mobile devices are ex-
pected to access optimal spectral bands using highly-developed
spectrum learning and inference. However, future networks
will be immensely more intricate owing to complex network
typologies and coordination schemes facilitating various end-
user applications. Hence, it is computationally difficult for
these future mobile devices to optimize key performance
indicators (KPIs), such as throughput. Even more difficult
to determine are strategies for efficient network management
taking spectrum sharing into account. Nonetheless, as we
demonstrate below, data-driven and adaptive machine learning
algorithms are able to combat some of these difficulties to
improve network performance.

Reinforcement learning (RL) is an area of ML and op-
timization which is well-suited to learning about dynamic
and unknown environments [4]–[13]. It is especially suited to
solving problems related to coexistence of wireless commu-
nications devices, as demonstrated by recent research. These
works have been done mostly in the context of cognitive radio
networks (CRNs). For example, [4] applied RL to estimate
optimal channel access strategies for a single secondary user
(SU) who dynamically selects one channel out of some number
N channels. In [5], the authors assumed there is no primary
user (PU) and applied RL to determine channel allocation for
each SU without considering any collision with the PU. In
[6], it was shown that the sensing capability, and therefore
the transmission ability, could be enhanced for SUs with the
proposed multi-agent RL (MARL)-based channel allocation.
In [7], a MARL-based power control strategy was introduced
to speed up the learning process of energy harvesting in
communication systems.

A learning approach that accounts for the coexistence of
LTE-U to model the resource allocation problem in LTE-U
small stations (SBS), has been studied in [8], [9]. Specifically,
to determine fair coexistence between LTE and Wi-Fi in the
unlicensed spectrum, a Q-learning algorithm is applied in [8].
In [9] an RL algorithm based on long short-term memory
(RL-LSTM) learning architecture was proposed to allocate
the resources of LTE-U over the unlicensed spectrum. The
most similar prior works ( [10]–[13]) also used techniques
from adaptive and reinforcement learning to study coexistence
problems between Wi-Fi and other radio access technologies



(RATs). An adaptive MAC protocol for wireless sensor net-
works was proposed in [10], while the authors of [11] proposed
a channel-selection method among LTE-U networks given only
physical layer parameters. A learning method to select the duty
cycle of LTE-U networks was presented in [12], [13].

The main contribution of our study is a novel reinforcement
learning-based carrier-selection technique designed to ease the
concurrent operation of Wi-Fi and LAA networks in unli-
censed bands. Specifically, we use a Q-learning algorithm to
select the spectrum in which a transmission node will operate
based on self-learning experience. These transmission nodes
each learn to maximize total network throughput without
communicating with each other. Unlike earlier research on this
topic [10]–[13], we take into account both MAC and physical
layers and study the coexistence of two different types of
network (LAA and Wi-Fi) operating simultaneously. To better
reflect reality, we assumed there are different types of networks
in which each base station serves several users. We consider
the effects of collision between transmitting nodes. Moreover,
in order to have a fully distributed strategy, there is neither a
centralized controller in the network nor any information ex-
plicitly exchanged between different operators. The proposed
algorithm enables both networks to constructively share the
unlicensed spectrum and increase achieved data rates. It is
worth noting that the introduced Q-learning algorithm could
be applied to many types of communication systems, but LTE
here is used as an example.

The remainder of this paper is organized as follows. Section
II describes the system model and assumptions required for
our analysis. Section III presents the problem formulation and
introduces our proposed intelligent dynamic spectrum access.
The impacts of the MAC and physical layer parameters in
selecting a channel in a coexistence scenario is also explained
in Section III. Simulation results are shown and discussed in
Section IV. Finally, in Section V, an overview of the results
and some concluding remarks are presented.

II. SYSTEM MODEL

We consider a downlink coexistence scenario where two
mobile network operators (MNOs) share for their operations
the same unlicensed industrial, scientific, and medical (ISM)
radio band. We are primarily interested in the operation of
cellular base stations in an unlicensed band. However, the
LTE base stations may have permission to utilize a licensed
band as well. We assume each unlicensed band, indexed
by k ∈ K , {1, 2, . . . ,K}, can be shared between the
MNOs in a time sharing fashion. The LAA network consists
of nL eNodeBs, while the Wi-Fi network is composed of
nW APs. The eNodeBs and APs are randomly distributed
over a particular area, while LAA user equipment (UEs)
and Wi-Fi clients/stations (STAs) are distributed around each
eNodeB and AP, respectively, independently and uniformly.
The transmission node i ∈ {L,W}, where L , {n`|` =
1, 2, . . . , L} and W , {nw|w = 1, 2, . . . ,W}, serves a set of
|Ui| single antenna UEs/STAs on the unlicensed band, where
Ui , {ui,1, ui,2, . . . , ui,|Ui|}. We assume that the transmission

node i transmits with power pi and the user association is
based on the received power. Moreover, in order to meet the
diverse network’s requirement, we assume that eNodeBs may
belong to different LTE operators with different priority classes
(PCs) as introduced by the 3GPP standards committee [14].
Similarly, APs may belong to different Wi-Fi operators with
four different access categories (ACs) [15]. We also assume (i)
both Wi-Fi and LAA are in the saturated traffic condition, (ii)
there is no hidden node problem1 in the network (i.e., every
transmission node i is able to hear one another), and (iii),
the channel knowledge is ideal, so, the only source of packet
failure (unsuccessful transmission) is collision.

Medium access in Wi-Fi is based on contention with random
back-off. This process is known as carrier sense multiple
access with collision avoidance (CSMA/CA) [16], [17]. In
order to discover whether the channel is idle or busy, the
station that accesses the medium should sense the channel by
performing clear channel assessment (CCA). The distributed
coordination function (DCF) operation progresses if the chan-
nel is found out to be idle. Otherwise, the transmitting station
refrains from transmitting data until it senses the channel is
available. Similarly, LTE-LAA uses a listen before talk (LBT)
channel access mechanism to maintain fair coexistence with
the Wi-Fi. Among different LAA-LBT schemes, Cat 4 LBT,
which is based on the Wi-Fi CSMA/CA scheme, is well-suited
to coexistence [2]. Although LTE and Wi-Fi technologies
follow the same channel access procedure, they select different
carrier sense mechanisms, different channel sensing threshold
levels, and different channel contention parameters, leading
to different unlicensed channel access probabilities and thus,
different throughput.

In this section, we will briefly derive the normalized net-
work throughput of both systems on each unlicensed band,
a quantity we aim to optimize below. Conforming with the
analytical model in [18], the probability of packet transmission
by a transmitting node i in a randomly-chosen time slot on
the k-th unlicensed channel can be written as

p
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respectively, where ẃ = 1, . . . ,W and ´̀= 1, . . . , L.

1Here, we assume perfect spectrum sensing in both systems. Therefore,
there are neither hidden nodes nor false alarm/miss detection problems in the
network. The impact of imperfect sensing is beyond the scope of this paper
and investigating the effect of CCA errors is an important topic for future
work.



The probability of collision can be split into three parts: the
probability of collision due to the collision between the Wi-Fi
transmissions, between the LAA transmissions, and between
the Wi-Fi and the LAA transmissions, respectively given by
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channel, respectively. Moreover, the probability of a successful
transmission by the i-th transmitter on the k-th unlicensed
band can be written as
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Hence, the average length of a time slot in the unlicensed
channel k can be calculated as
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successful transmission probability of the whole Wi-Fi and
LAA networks on the k-th unlicensed band, respectively.
Moreover, T (k)
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time that the k-th channel is occupied by an LAA successful
transmission, a Wi-Fi successful transmission, a collision
among the Wi-Fi transmissions, a collision among the LAA
transmissions, and a collision between the Wi-Fi and the
LAA transmissions, respectively. Considering the basic access
scheme into account [18], [19], T (k)

s,W = TP,W + TSIFS +

T
(k)
idle + TACK + TDIFS + T

(k)
idle + (PHYheader + MACheader)/R

(k)
W ,

T
(k)
c,W = TP,W+(PHYheader +MACheader)/R

(k)
W +TDIFS +T

(k)
idle ,

T
(k)
s,L = TP,L+TSIFS +TACK +TDIFS +T

(k)
idle , T (k)

c,L = T
(k)
s,L , and

T
(k)
c,W,L = max(T

(k)
c,L , T

(k)
c,W); where TP,W (TP,L) indicates the

Wi-Fi (LAA) payload duration, PHYheader+MACheader presents
the packet header, and TSIFS, TACK, and TDIFS refer to short
interframe space (SIFS), acknowledgement signal duration,
and distributed interframe space (DIFS), respectively.

Finally, the normalized network throughput of LAA and Wi-
Fi systems on the k-th unlicensed band as a function of both
MAC and Physical layers parameters and can be expressed as
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hieve a successful transmission in the Wi-Fi (LAA) network
and R
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W (R(k)

L ) refers to the Wi-Fi’s (LAA’s) physical data
rate, which can be calculated as follows. Assuming each
channel k can be shared between the UEs associated with
the eNodeB n` in a time sharing fashion, the physical data
rate of the LAA network on the k-th unlicensed band can be
expressed as [20]
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is the channel access indicator which is
1 if the eNodeB n` serves the UE un`,i on the k-th unlicensed
channel, and is 0 otherwise. Moreover, SINR(k)

un`,i
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the signal-to-interference-plus-noise ratio (SINR) for serving
user un`,i on the k-th unlicensed band. Following the same
notation, the physical data rate of the Wi-Fi’s network can be
written as [20]
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It is worth noting that in the case where an eNodeB/AP
aggregates multiple unlicensed bands, the total throughput may
be obtained by summation over all unlicensed channels.

III. INTELLIGENT DYNAMIC SPECTRUM ACCESS

If both Wi-Fi and LAA on the unlicensed band select
channels appropriately, the spectral efficiency of the whole
network will improve. Equation (4) reveals the impact of
channel selection by each MNO on network’s throughput.
Specifically, if transmitter i selects channel k and channel
k is not occupied by the other transmission nodes, then the
probability of successful transmission by the i-th node in the k-
th channel increases, leading to higher throughput. Moreover,
if each channel is selected such that interference is avoided
(or at least minimized) among the transmission nodes, there
will be a higher SINR, leading to a higher physical data
rate and throughput. In this section, we employ an algorithm
for channel selection that learns from previous experience
to improve network throughput. The learning algorithm also
makes adaptive use of channel usage information.

We introduce a Q-Learning based dynamic channel selection
algorithm here for both MNOs. The aim is to enhance the
throughput of both Wi-Fi and LAA networks on the unlicensed
band. Q-Learning is a value-based reinforcement learning
technique that discovers the best action at each state by
maximizing a value function, typically denoted by Q, that
returns the expected reward of each action-state pair [21].
Here, “actions” are ways to explore the environment, and
“states” describe the environment (we give an example for
the coexistence problem below). The goal is to learn how
to map environmental conditions into actions that maximize
a reward. By interacting with the environment and trying
different actions over time, the algorithm learns which action



(in each state) provides the highest reward. Employing the
Q-learning algorithm in a coexistence scenario allows each
transmission node to learn to select the channel that yields the
best throughput based on its interaction with the environment.

To be specific, we consider a set of L eNodeBs and W
APs as the transmitters which will take actions. Denote the
ith transmitter’s set of actions by Ai = {ai,1, . . . , ai,|Ai|} and
states Si = {si,1, . . . , ai,|Si|}. There is an associated set of Q-
values related to each state-action pair. This is often called a
Q-table, and it is unknown a priori. In the proposed algorithm,
we consider four states for each channel observed by each
transmission node: Idle, Successful transmission, Collision,
and Contention. In the intelligent dynamic spectrum access
of our interests, a collision is detected if both transmitters
select the same channel for their operations, both have at least
one user to serve, and the energy that they received from
each other is less than predefined energy detectors threshold.
The observed state is Contention if the initial clear channel
assessment returns busy, either immediately or during the
DIFS, or if the transmitter wants to contend after a successful
transmission. The actions correspond to picking a different
transmission band out of |K| bands in K and |K| = |Ai|.

The Q-table determines the best action at each state as
judged by the action-state pair which yields highest reward.
Particularly, the Q-value at each action-state pair is initialized
with an estimate of the future reward. That results from
a transmitter selecting a particular action while it is in a
certain state. Then, based on interaction and feedback with the
environment (e.g., MAC layer parameters, channel propagation
model, topology of the Wi-Fi and LAA networks, sensing
threshold), the transmitter learns the outcome of that action-
state pair. In the proposed algorithm, each transmission node
i measures Q(si,j , ai,k), the expected reward achieved by
selecting the k-th channel when the i-th transmission node
is in the j-th state. If the k-th channel has never been selected
by the transmission node i in the past, then Q(si,j , ai,k) value
is fixed to an arbitrary value Q0 at the initialization step.

We denote by R(si,j , ai,k) := S
(k)
L + S

(k)
W the reward

resulting from environmental interaction. Since our goal is
to select the channel that maximizes the spectral efficiency
of the whole network, we define this reward as the average
throughput acquired by the i-th transmission node when it is
in the j-th state and selects the k-th action (channel). The
Q-value is then iteratively updated by

Qt+1(si,j , ai,k)← (1− α)Qt(si,j , ai,k) + αRt+1(si,j , ai,k)

where 0 ≤ α ≤ 1 is the learning rate and determines how fast
the learning happens [21]. As is typically the case in learning
algorithms, selecting α requires some care. Indeed, a small
value of α results in a long learning process (which could be
detrimental in practice), while a large value of α could cause
the algorithm to not converge. As soon as the Q-value of the
current state-action is updated according to the above equation,
the i-th transmission node selects a channel corresponding to
its new state.

Note that in order to find the effect of each selected channel,

the transmission node needs to explore the environment. This
suggests that the transmission nodes not only select the chan-
nels that provide the current highest estimated throughput, but
also take on new actions to find better channel selection strate-
gies. There are many methods for choosing action-selection
strategies to balance this exploration of the environment with
reward maximization. Examples are greedy action-selection,
ε-greedy action-selection, and softmax action-selection [21].
In the greedy action-selection strategy, the transmission node
always picks the channel that provides the highest Q-value
and never explores any new channels. Alternatively, in the
ε-greedy action-selection method, the transmission node uni-
formly picks a channel with probability ε. Although this
strategy attempts to balance the exploration of the environment
with maximizing reward, the chance of selecting the worst-
appearing channel is the same as the chance of picking
any other channel, due to the uniform selection probability.
The softmax action-selection policy, like the above aforemen-
tioned action-selection strategies, gives the highest selection
probability to the greedy action. In contrast, however, the
rest of the actions are weighted according to their estimated
values. Under this policy, the probability of picking the k-th
unlicensed channel by the i-th transmission node is

Pr(i, k) = exp

(
Q(si,j , ai,k)

τ(i)

)
/

K∑
m=1

exp

(
Q(si,j , ai,m)

τ(i)

)
,

where τ(i) > 0 is the so-called temperature. With a high value
of τ(i), the softmax policy is nearly identical to the ε-greedy
action-selection strategy and so, the probability of selecting the
different channels is almost the same. In contrast, selecting
τ(i) with a low value makes a big difference in selection
probability of an action that varies in Q-value. As a result,
the probability of selecting a channel increases when it has a
larger Q-value. Then, as τ(i) goes to zero, the softmax policy
becomes the greedy action-selection strategy. Hence, we select
the softmax policy to best balance exploration and reward
maximization. Moreover, as a means to decrease the amount
of exploration by the transmission node i (when the number
of channel selection by this node increases), we consider a
cooling function [22] that can be expressed as

τ(i) = τ0/ log2(1 + n(i)),

where τ0 denotes the initial temperature and n(i) represents
the number of channels that have been selected by the i-th
transmission nodes.

Remark 1. Compared to existing approaches, Q-learning is at
an advantage. Indeed, the Q-learning approach is model-free
and becomes adjusted to the new environment changes quickly.
Therefore, there is no need to have the full knowledge of
state transition in a dynamic environment. In addition, and in
terms of computational complexity, Q-learning has much less
complexity compared to the tradition optimization approaches
such as branch and bound algorithm. To be specific, Q-
learning is computationally limited by the size of the action
and state spaces. Q-learning is quadratic in the number of st-



ates and linear in the number of actions, e.g., O(|S|2|A|).

IV. SIMULATION RESULTS AND ANALYSIS

We evaluate the performance of the proposed algorithm in
a coexistence scenario. We simulate a scenario in which 3
eNodeBs compete for the unlicensed channels with 3 APs.
All transmitters are randomly distributed over an area of size
120 × 80 m2 with minimum distance 40 meters, as shown
in Fig. 1. All UEs and Wi-Fi clients are independently and
uniformly distributed around each eNodeB and AP, respec-
tively. We consider 5 UEs (Wi-Fi clients) per eNodeB (AP).
Each UE (Wi-Fi client) is assigned to the eNodeB (AP) that
provides it with the highest received power. The antenna height
of the transmission nodes and users are 6 meters and 1.5
meters, respectively. The carrier frequency is 5 GHz and each
channel bandwidth is 20 MHz. The path-loss and shadowing
between transmission nodes, and between transmission nodes
and users are generated following [23] for the indoor scenario.
The transmit power at each transmission node is fixed to 23
dBm while the noise figure and the thermal noise level at
each user is set to 9 dB and −174 dBm/Hz, respectively.
Moreover, we assume the omni-directional antenna pattern
with a 0 dBi antenna gain. While Wi-Fi uses the CSMA/CA
scheme to access the unlicensed band with CCA-CS and CCA-
ED thresholds of −82 dBm and −62 dBm, respectively [15],
an LBT with random back-off and variable contention window
size with CCA-ED threshold of −72 dBm is considered for the
LAA channel access scheme [14]. The MAC layer parameters
are given in Table I, and the initial Q-learning parameters are
set to α = 0.1, Q0 = 0.5, and τ0 = 0.15.

According to this geometry and propagation model, only
some pairs of transmitters can detect each other. We summa-
rize which transmitters can detect each other in matrix ID
given below, in which the ij-th element of ID is nonzero
only if transmission node i detects transmission j. In the
case of detection, this element is 1. The first three rows
(columns) corresponds to AP1 to AP3 while eNodeB1 to
eNodeB3 are organized in the last three rows (columns). For
the aforementioned scenario the matrix ID is given as

ID =


1 1 1 1 1 1
1 1 0 0 1 1
1 0 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

 (5)

Note that in calculating the reward function and updating
the Q-table in the proposed algorithm, we need to determine
the throughput. For computing the throughput, we need to
determine SINR. The ID matrix, which tells us which pairs
of transmitters can detect each other, helps us to calculate the
interference and hence the SINR, and throughput.

We consider the case of 6 different available channels in
which all active transmission nodes in the area apply the
proposed Q-learning method. Neither Wi-Fi nor LAA has
knowledge about the other operators’ selected channels. Each
node (i) measures the expected reward achieved by selecting

Fig. 1: Simulation layout

TABLE I: MAC Layer Parameters

Parameter value
LAA’s packet payload duration 1 ms
Wi-Fi’s packet payload duration 1 ms
MAC header 272 bits
PHY header 128 bits
ACK 112 bits + PHY header
SIFS 16 µs
DIFS 34 µs
Idle slot time 9 µs
Wi-Fi contention window size 16
LAA contention window size 16
Wi-Fi maximum backoff stage 6
LAA maximum backoff stage 3

each channel when it is in a specific state, (ii) updates its Q-
table, and (iii) chooses the channel that maximizes the whole
network throughput.

The channel selection probability of each transmission node
is shown in Fig. 2. At the initialization step, each transmis-
sion node interacts with the environment to explore different
channels. It is worth mentioning that if the radio conditions
change, the transmitters keep interacting with the environment
until they determine which channel best improves the whole
network throughput. With a change in radio conditions we
will see that a learner must re-learn its policies as well. It is
expected that any changes in the radio conditions during the
initialization step will increase the initialization step duration.
When the initialization step is done, according to the feedback
from the environment and past experience, each node selects
a channel that maximizes the whole network throughput, with
a high probability. Since AP1 detects all other transmission
nodes, it selects a fully vacant channel. AP2 and AP3 cannot
detect each other, and they select the same channel. eNodeB1
only detects AP1. At first eNodeB1 selects the 4-th channel for
its transmission, but when AP1 selects this channel, the eN-
odeB1 learns that this channel is now occupied, and switches
to channel 2. The eNodeB2 only detects AP1 and AP2, so
learns that the channels occupied by these two nodes do
not maximize its throughput, and therefore selects a different
channel. However, this channel is using by eNodeB1 that
eNodeB2 does not detect. Finally, eNodeB3 selects the first
channel which none of the other nodes picks as the means of
maximizing the whole network spectral efficiency.

Simulation time is measured with respect to algorithmic
time steps. Each time step is equal to the transmission nodes
payload duration, i.e., 1 ms. Taking the MAC layer parameters
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Fig. 2: Channel selection probability of each transmission node versus the time steps.

into account, all the APs and eNodeBs generate activity
periods where they transmit data to their users with an average
of 69- and 77-time steps. Since, the duration of initial time
to learn the best solution is in order of 800-time steps in
our simulations, the decisions of selecting a channel for
transmitting the data are made after trying 10 initial channel
selections.

It is worth mentioning that our simulation did not converge
to a simple solution of allocating each transmitter to its own
channel, instead favoring a scenario in which the transmitters
choose the same channels. The reason for this solution is
related to the physical scenario in which we pose the problem,
as well as the MAC and physical layer parameters used by the
APs and eNodeBs.

In Fig. 3 we consider a challenging case in which there are
only 4 channels available. All active transmission nodes apply
the proposed Q-learning method. For this scenario, again, we
randomly distribute all transmitters and receivers over the
area as discussed earlier. According to this geometry and
propagation model the new matrix ID is given as follows

ID =


1 1 0 1 1 1
1 1 1 1 0 1
0 1 1 0 0 0
1 1 0 1 0 1
1 0 0 0 1 1
1 1 0 1 1 1

 (6)

Since there are only 4 available channels, sharing the same
spectrum bands in the time domain is inescapable. Fig. 3
represents the channel selection probability of each transmis-
sion node. As it is shown in Fig. 3 after an initialization
step that all channels are evaluated, AP 2 and eNodeB 2
use the same channel. AP 2 and eNodeB 2 are located far
from each other and they are not reciprocally detected during
the sensing period. Hence, they can utilize the same channel
without sharing it in the time domain. Note that if these two

transmitters detected each other and decided to select a same
channel, they would share the channel in the time domain
obeying the LBT requirements. The same discussion is applied
to AP3 and eNodeB 1. AP1 and eNodeB 3 learn to use channel
1 and 4, respectively. This is a good choice since both not
only detect each other but also detect AP2 and eNodeB 1
and choose different channels (from those selected by these
detected nodes) for their transmissions.

In order to evaluate the usefulness of the proposed algo-
rithm, the performance is measured in terms of the cumulative
distribution function (CDF) of the normalized throughput. In
Fig. 4 the CDF performance of the normalized throughput of
the proposed scheme is compared with that of the optimum
channel allocation algorithm. The optimum channel allocation
assigns the channels to the transmission nodes in such way
that the total network throughput maximizes and, it is found
by exhaustive search over all possible channel combinations.
Fig. 4 shows that the performance of the proposed Q-learning
algorithm is close to the optimum one. Specifically, it is shown
that under the proposed algorithm users have high probability
to achieve the near-optimum normalized throughput with much
less computational complexity.

V. CONCLUSION

In this paper, we have studied machine-learning-based chan-
nel selection in a coexistence scenario of LAA and Wi-
Fi networks. We have proposed a reinforcement learning-
based spectrum selection algorithm that allows the concurrent
operating of Wi-Fi and LTE networks in an intelligent and
efficient way. This scheme has taken into account the effects
of both MAC and physical layers. We evaluated each chan-
nel’s probability of selection, convergence property, and sum
throughput. Simulation results demonstrate that this scheme
converges fast and provides a competitive sum throughput
reasonably close to that based on exhaustive search.
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