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ABSTRACT
Advanced Persistent Threats (APT) has become the concern of
many enterprise networks. APT can remain undetected for a long
time span and lead to undesirable consequences such as stealing of
sensitive data, broken workflow, and so on. To achieve the attack
goal, attackers usually leverage specific tactics that utilize a variety
of techniques. This paper explores the recognition of APT tactics
through synthesized analysis and correlation of data from various
sources. We propose a framework for detecting the APT tactics
and discuss the application of machine learning techniques in this
problem. Our framework can be used by the security analysts for
effective detection of APT attacks. The evaluation of our approach
shows that it can detect APT tactics with high accuracy and low
false positive rate. Therefore, it can be used for tactic-centric APT
detection and effective implementation of cyber security response
operations.
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1 INTRODUCTION
Cyber attacks against organizations, including Advanced and Per-
sistent Threats (APT), usually employ certain attack tactics. It is
common that some attack tactics are used repeatedly in different
APT attacks. Identifying these tactics may help understand attack-
ers’ potential intent, objectives and strategies, and even help with
identification of specific attacker(s) or attack communities. How-
ever, the adversary groups often constantly update their tools and
tactics to make detection and analysis more difficult. For instance,
the DragonOK group, a well-known adversary group, has been
evolving their tactics in targeted APT attacks across Asia Pacific
and Japan. They began to use multiple new variants of malware
“FormerFirstRAT” along with malware “IsSpace” and “Tidepool” in
their 2017 tactics [1].

The emergence of new APT tactics has introduced daunting
challenges to APT detection. The attackers can leverage a care-
fully designed combination of various APT techniques (e.g., spear
phishing, drive by download, buffer overflow, pass the hash) to
strategically achieve a goal. Hence, the detection of individual APT
techniques is no longer adequate to identify the attacker’s intents,
objectives and strategies. That is, individual APT techniques can-
not tell the "whole story" of the attacks. This inability has put
real-world Cyber Security Operation Centers (CSOCs) into a highly
undesired dilemma: (a) on one hand, without knowing the “whole
story”, CSOCs are more likely to take ineffective intrusion response
actions; (b) on the other hand, correlating the detected individual
APT techniques to generate the “whole story" requires significant
amount of time and manual efforts.

A number of research works have explored the problem of de-
tecting APT attacks from different angles. 1) Since APT may remain

stealthy for a long time span, capturing all stages of its life cy-
cle is not an easy task. Hence, some research works propose to
detect a specific technique that is used in a stage of APT. For ex-
ample, [11, 17] detect the network connections during the stage
of malware command and control (C&C) communication. [17] ap-
plies supervised learning towards the web proxy logs to identify
and prioritize the enterprise malicious activities, while [11] pro-
poses unsupervised detection of C&C communications based on
the web request graphs. [21] detects the APT malware infection
by analyzing malicious DNS and network traffic. 2) Some other
works aim to detect APT attack as a whole. For example, [7, 20] use
classification models for APT detection; [9, 10, 19] reconstruct the
attack by combining past security events. HOLMES [16] also lever-
ages the correlation between suspicious information flows for APT
detection. 3) Another angle of detecting APT attacks is through
provenance tracking. A provenance tracking system captures the
causality relationship between system objects such as processes
and files. Security analysts can find the root cause of attacks by
tracking system object dependencies generated by the provenance
data. Because most existing provenance tracking techniques are
at low system level and usually suffer from dependence explosion
problem, some research works propose to partition execution to
units [12, 14]. [13] further proposes to leverage the annotated ap-
plication specific high level task structures to partition execution.
4) Mining logs is another technique that is commonly used for
APT attack detection, although the purposes and approaches of
mining may be different. [18] proposes an automated multi-stage
intrusion analysis system that is based on mining various logs.
The proposed system discovers the “attack communities” from the
weighted graphs that are built from multiple logs. [8] proposes to
use a deep neural network model, DeepLog, to detect anomaly log
sequences. It models a system log as a natural language sequence,
learns the log patterns from normal system execution, and reports
anomaly when the log patterns deviate from the trained model.

Although extensive researches have been conducted towards
detecting APT, few of them emphasize the detection of commonly
used APT tactics. For approaches that focus on specific steps or
techniques such as C&C communication, or that focus on log min-
ing, the detected anomaly may or may not be relevant to APT. Other
approaches, that focus on provenance tracking, event correlation
or clustering, are not tactic-centric.

However, identifying tactics is essential to reveal attackers’ po-
tential objectives and strategies, and may even help to identify
specific adversary groups. Therefore, this paper seeks to propose a
framework that can detect APT tactics with high accuracy and gen-
eral applicability. If successful, the framework is able to: (a) identify
the APT techniques that are not easily detected with traditional
approaches; (b) match the APT techniques to the tactics they belong
to with the help of system object dependencies; (c) make the APT
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Figure 1: Two example APT tactics.

tactic and APT technique identifiers extensible and adaptive to new
tactics and techniques.

The significance of this research is three-folds: 1) it is, to the
best of our knowledge, the first framework which could simulta-
neously achieve accuracy and general applicability in detecting
multiple APT tactics; 2) implementations of the framework could
help CSOCs and analysts identify the attacker’s intents, objectives
and strategies, and provide a “whole story” of the attacks; 3) the au-
tomated APT tactic identifier could significantly reduce the manual
efforts involved in detecting APT techniques.

The remaining of this paper is structured as follows. Section 2
will discuss the APT tactic with two examples, and also the differ-
ences from attack graph, which is a well-known graphical method
in cyber security. Section 3 will discuss our proposed framework.
Section 4 will briefly introduce our design and implementation. In
Section 5, a simple five-step APT tactic is presented and used to
demonstrate how our framework works. Section 6 presents our
evaluation experiments results. Section 7 is the conclusion.

2 PRELIMINARY
TheMITRE adversarial tactics and techniques knowledge repository
[5] provides a comprehensive review of the real-world adversarial
tactics and techniques. In this work, we adopt definitions for tactic
and technique different from those in [5]. We define:
• APT technique: A specific implementation such as a hacking
tool, attack script, and/or malware payload.
• System object dependency: The relationships among system
objects, such as processes, files and user accounts.
• APT tactic: A sequence of APT techniques chained by system
object dependencies.

Therefore, APT tactics represent attackers’ strategies; and APT tech-
niques represent the specific steps that attackers take to implement
the strategies.

In this paper, we present an APT tactic as a connected graph
showing the chain of techniques in a multi-step cyber attack. APT
techniques are basic building blocks of an APT tactic. All the APT
tactic presented in this paper are crafted based on our observation
on different attack scenarios. Figure 1 presents two example APT
tactics as directed graphs that consist of multiple APT techniques.

Each technique in a tactic has its post-conditions and pre-requisites.
Post-conditions are the results of the technique, such as malicious
processes being created, files being accessed and user account being
modified. Pre-requisites describe the requirements for the technique
to be matched into tactic.

In Figure 1(a) and Table 1, an APT tactic about data destruction
is presented. This tactic starts from drive by download. In this tech-
nique, the download is requested by the user, but the downloaded
item include functionalities that user does not expect. The user
downloads the program and executes it, without knowing that the
program has a trojan built in. The trojan allows a remote attacker to
connect and execute malicious commands on the victim computer.
With the remote access, the attacker can then escalate the privilege
to the system level by process injection. Afterwards, the attacker
can destruct all documents by deleting or encrypting them.

In Figure 1(b) and Table 2, an APT tactic about data exfiltration is
presented. The first three techniques are launched againstWindows
Domain Controller (DC), whereas the last two are against another
user machine in the domain. This tactic starts with supply chain
compromise. For privilege escalation, the attacker bypasses the User
Account Control (UAC). UAC prompts user for confirmation when
a process requests for system-level privileges. By bypassing UAC,
the attacker can escalate privileges without being noticed. After
that, the attacker dumps users’ credentials such as password hashes.
These credentials can be used to launch pass the hash attacks to
access other machines. In the end, the attacker downloads sensitive
files from target machines.

APT tactics are fundamentally different from attack graphs. Some
important differences include: (a) attack graphs represent the causal-
ity relationship between vulnerabilities and exploits, whereas APT
tactics represent the strategies, techniques and procedures used
by attackers; (b) attack graphs show all the possible attack routes
from the attacker’s machine to the target machine, whereas APT
tactics focus on the attackers’ chosen techniques and procedures,
rather than the attack paths; (c) attack graphs are not being used by
CSOCs on a daily basis, whereas APT tactics are frequently referred
to by security analysts, though in an implicit and informal way
according to our observation.

3 PROPOSED FRAMEWORK
To serve the validity of the proposed framework, we assume that:
• Each APT technique used in the APT tactic is identifiable
through automated, semi-automated, or manual effort. In the
worst case, the CSOC may have to resort to manual effort to
identify a particular APT technique, we have no assumption
on the maximum time used to identify an APT technique.
• The whole framework is kept safe from the attacker. All the
input data is genuine, which means that the attackers cannot
modify or delete them; and the attackers have no access to
the framework itself in any way.

The framework presented above needs to address the following
challenges:
• Accurate identification of various adversary techniques. Al-
though we assume every APT technique is identifiable, some
APT techniques, such as pass the hash, are hard to accurately
identify with traditional methods like pattern matching and
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Table 1: Detailed description of a 3-step APT tactic with system object dependency included.

Technique
Name

Post-condition Pre-requisites Description Identification Method

Drive by
download

Process P1 is cre-
ated.

(None) Initial intrusion by drive by down-
load attack, resulting to a malicious
process P1 being created.

The downloaded item has some kind of back-
door built-in. Some backdoors are detectable
using signature-based IDS.

Process injec-
tion

Process P2 is cre-
ated; Process P3 is af-
fected.

Process P2 is a child pro-
cess of or the same as P1.

Privilege escalation by process in-
jection. Process P2 is the process
which initiates the injection, and P3
is the victim process. P3 is usually a
process running with system-level
privilege.

Detectable by monitoring critical system pro-
cesses.

Data destruc-
tion

Process P4 is cre-
ated; File F1 is ac-
cessed.

Process P4 is a child pro-
cess of or the same as P3.

Malicious process P4 accesses file
F1 and makes it inaccessible to the
user.

Detectable by monitoring disk I/O on sensi-
tive files/directories.

Table 2: Detailed description of a 5-step APT tactic with system object dependency included.

Technique
Name

Post-condition Pre-requisites Description Identification Method

Supply chain
compromise

Process P1 is cre-
ated.

(None) Initial intrusion by supply
chain compromise, result-
ing to a malicious process
P1 being created.

Some software distribution or update channels get
infected and backdoor gets inserted to the products.
Some backdoors are detectable using signature-based
IDS.

Bypass User
Account Con-
trol (UAC)

Process P2 is cre-
ated; Process P3 is
created.

Process P2 is a child pro-
cess of or the same as P1.

The attacker bypass the
Windows UAC to esca-
late its privilege to system
level.

Many procedures of bypassing UAC needs to mod-
ify the Windows registry. Such procedures can be
detected by monitoring the registry for specific key
creation and modification.

Credential
dumping

Process P4 is cre-
ated.

Process P4 is a child pro-
cess of or the same as P3.

The attacker leverages es-
calated privilege to dump
user credentials like pass-
word hashes.

In a Windows Domain, the DC stores the users’ cre-
dentials as a database file, and very few processes are
allowed to interact with this file. Dumping users’ cre-
dentials can be detected by monitoring the disk I/O
on this file and activities of those special processes.

Pass the hash Process P5 is cre-
ated; User U1 is im-
personated.

(None) The attacker leverages the
password hashes to get
into other machines in this
domain.

Directly using hashes for authentication relies on
certain authentication mechanism, which will leave
traces in the network packets. Thus, it is detectable
by monitoring the network traffic and inspecting the
network packets.

Data exfiltra-
tion

Process P6 is cre-
ated; File F1 is read.

Process P6 is a child pro-
cess of or the same as P5.

The attacker, pretending to
be user U1, downloads file
F1 to his/her ownmachine.

Detectable bymonitoring disk I/O on sensitive files/di-
rectories.

anomaly detection. Pattern matching suffers from low accu-
racy, and anomaly detection suffers from high false positive
rate.
• Correct match of the adversary techniques to the tactics they
belong to. Assuming that each technique can be accurately
identified, the APT tactic matcher needs to match those
techniques into tactics. For receiving inputs, the matcher
needs to deal with the diversity of technique identifiers, such
as different identification delay; for matching, the matcher
needs to deal with multiple cases, namely (a) one attacker is
using one tactic, (b) multiple attackers are using one same
tactic, and (c) multiple attackers are using different tactics.
The framework should address those problems.

For the first challenge, we propose to apply machine learning
method for those APT techniques that cannot be accurately iden-
tified with traditional methods. Pass the hash is one of such tech-
niques. It is difficult to identify with traditional methods because it
leverages legitimate authentication mechanism. To apply machine
learning method, a huge amount of data is needed to train an accu-
rate neural network. Because we didn’t find any open network log
data sets for identifying pass the hash, we generate our own data
set. Details are described in section 5. The evaluation of our trained
neural network is presented in subsection 6.1.

For the second challenge, we design a framework as shown
in Figure 2. It comprises three concurrent workflows, the data
processing workflow, the tactic knowledge processing workflow,
and system object dependency discovering workflow, to address
the tactic matching problem.

The data processing workflow is as follows:
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Figure 2: Proposed architecture.

(1) Data Parsing. The collected data sources are first fed to the
corresponding data parsers.

(2) Technique Identifying. Based on parsed data, the APT
technique identifiers determine whether certain adversary
techniques exist or not.

The tactic knowledge processing workflow is as follows:
• Tactic Parsing. The previously seen APT tactics, which are
stored in the APT tactic repository, are fed to the APT tactic
parser.

The system object dependency discovering workflow is as fol-
lows:
• Discovering system object dependencies. A number of
system logs, such as process and file I/O monitoring logs,
are used to discover system object dependencies.

Finally, the results from above three workflows are taken as
input for the following procedures:

(1) Tactic Matching. The APT tactic matcher uses the parsed
tactics to match the identified adversary techniques. The
matched tactics are stored as tactic instances, no matter it is
fully matched or partially matched.

(2) Tactic Ranking. All APT tactic instances are ranked based
on completeness of tactic matching.

4 DESIGN AND IMPLEMENTATION
The framework is implemented in a Ubuntu 18.04 virtual machine
(referred to as detector). To isolate the detector from the IT sys-
tem being monitored, it is setup as an HTTP server to receive file
upload. On receiving files upload, the files are put to specific di-
rectories based on its type, such as APT tactic files, network log
files or windows event log files. Other daemon programs, which are
configured to monitor those directories, will trigger the framework
to run once the directories’ contents are changed. It is also possible

to set the triggering to manual if the contents are changed at a
high frequency. In this case, the daemon program monitoring the
contents can raise alerts to notify the security analysts about the
arrival of new input files. The analysts can then run the program
at a preferred time point.

Data parser. On receiving system information, each file (e.g. a
log file or configuration file) is assigned to the corresponding data
parser for processing. Different data parsers are designed to deal
with different types of input system files based on their syntaxes.
Therefore, the number of data parser types is the same as the num-
ber of input system file types. The data parsers can work in parallel
for faster processing speed.

APT technique identifier. The APT technique identifiers re-
ceive parsed data from data parsers and determine whether cer-
tain APT techniques are used. Each identifier is responsible for
checking one technique. Based on different APT techniques, the
identifiers may need data from different sources (i.e., different
types of system information files). Hence, identifiers may take data
from different sets of data parsers. The identifiers can be signa-
ture based, anomaly detection based, machine learning based, or
other types. The output of the identifiers is data tuples made up
of technique name and its post-conditions. Take the "Data exfil-
tration" technique in Table 2 as an example, the result output can
be ("Data exfiltration", 23619, "D:\Documents\customer-
list.xlsx"), in which 23619 is the process ID (PID) on the user
machine, and "D:\Documents\customer-list.xlsx" is the file.
The malicious process with ID 23619 reads the sensitive file "D:
\Documents\customer-list.xlsx" in this technique.

APT tactic repository. The APT tactic repository is a directory
where all APT tactic files are stored. All the previously seen APT
tactics are stored in the APT tactic repository in the same syntax.
We use the graph description language DOT to describe these APT
tactics. In APT tactic graphs, every adversary technique is defined
as a box-shaped node, and directed edges denote the attack order.
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Each DOT file can be easily visualized into directed graphs by tools
like Graphviz [3]. In cases where other syntax (e.g. STIX [6]) are
needed, a new APT tactic parser should be added correspondingly
to parse tactic files in the new syntax.

Listing 1 is the DOT description of the APT tactic shown in
Figure 1 (a) and Table 1. The example graph contains 3 technique
nodes, 5 post-condition nodes, and 3 pre-requisite nodes. Each
node definition starts with a node ID, and follows by node attributes
such as label (the text to show in graph), shape (the node shape in
graph) and style (the node style in graph). We use rounded boxes
to denote the start and end nodes of the graph, boxes for APT
techniques, triangles for post-conditions, and inverted triangles for
pre-requisites. Post-conditions are presented as result system ob-
jects, and pre-requisites are presented as the relationships between
system objects, such as "P1=>P2" stands for process P2 is a child
process of or the same as P1, "P2->F1" stands for process P2 writes
file F1, and that "F1->P3" stands for process P3 reads file F1.

Listing 1: DOT codes example.
d ig raph e x amp l e _ t a c t i c {

/ / nodes
1 [ l a b e l =" s t a r t " , shape=box , s t y l e =rounded ] ;
2 [ l a b e l =" Dr ive by download " , shape=box ] ;
21 [ l a b e l =" P1 " , shape= t r i a n g l e ] ;
3 [ l a b e l =" P r o c e s s i n j e c t i o n " , shape=box ] ;
31 [ l a b e l =" P2 " , shape= t r i a n g l e ] ;
3 2 [ l a b e l =" P3 " , shape= t r i a n g l e ] ;
3 3 [ l a b e l =" P1=>P2 " , shape= i n v t r i a n g l e ] ;
4 [ l a b e l =" Data d e s t r u c t i o n " , shape=box ] ;
41 [ l a b e l =" P4 " , shape= t r i a n g l e ] ;
4 2 [ l a b e l =" P5 " , shape= t r i a n g l e ] ;
4 3 [ l a b e l =" P4=>P5 " , shape= i n v t r i a n g l e ] ;
4 4 [ l a b e l =" P5−>F1 " , shape= i n v t r i a n g l e ] ;
5 [ l a b e l =" end " , shape=box , s t y l e =rounded ] ;

/ / edges
1−>2−>3−>4−>5;
21− >2;
31− >3;32− >3;33− >3;
41− >4;42− >4;43− >4;44− >4;

}

APT tactic parser. From APT tactic DOT files, the APT tactic
parser extracts information including: (a) the number of nodes in
the tactics; (b) the types of these nodes; (c) the way that the nodes
are connected; (d) the post-conditions and pre-requisites for each
technique in this tactic. The information is used to create the initial
“template” APT tactics. They are “templates” because no identified
techniques have been matched into them at this time. We store the
tactic templates in a multi-layer JSON-like data structure, which
features pairs of name and values. The first layer presents tech-
nique node IDs in the DOT file, and the second layer presents node
properties such as node name, post-conditions and pre-requisites.
For example, the parsed APT tactic for the tactic in Figure 1(a) and
Table 1 is presented below.

Listing 2: Parsed APT tactic example
{ ' 1 ' : { ' name ' : ' s t a r t ' ,

' post −c ond i t i o n s ' : ' none ' ,
' pre− r e q u i s i t e s ' : ' none ' } ,

' 2 ' : { ' name ' : ' Drive by download ' ,
' post −c ond i t i o n s ' : ' P1 ' ,
' pre− r e q u i s i t e s ' : ' none ' } ,

' 3 ' : { ' name ' : ' P ro c e s s i n j e c t i o n ' ,
' post −c ond i t i o n s ' : ' P2 ; P3 ' ,
' pre− r e q u i s i t e s ' : ' P1=>P2 ' } ,

' 4 ' : { ' name ' : ' Data d e s t r u c t i o n ' ,
' post −c ond i t i o n s ' : ' P4 ; F1 ' ,
' pre− r e q u i s i t e s ' : ' P3=>P4 ' } ,

' 5 ' : { ' name ' : ' end ' ,
' post −c ond i t i o n s ' : ' none ' ,
' pre− r e q u i s i t e s ' : ' none ' } }

System object dependency discovering. Some logs, such as
process and file I/O monitoring logs, are used to discover system
object dependencies, which are used for chaining APT techniques
in tactic matching. For example, in Figure 3, there are three edges
showing a process forks to create a child process, a process writes
a file, and that a process reads a file. We use triple-element tuples
to present these dependencies. The first and last element each
represents a system object, such as a file or a process; and the middle
element represents the operation, such as process forking or file
reading/writing. Each system object element is a tuple which starts
with a system object indicator that represents its type, followed
by other items that vary according to the system object’s type. For
example, file writing in Figure 3 is presented as (("P", 5414),
"write", ("F", "D:\apt.dll")). The first element indicates a
process with PID 5414, the second element indicates file writing
operation, and the third element indicates the file "D:\apt.dll".
Therefore, this whole entry of system object dependency means
that a process with PID 5414 writes the file "D:\apt.dll".

Process
5414

File
D:\apt.dll

Process
5415

Write

Fork Read

Figure 3: A simple system object dependency graph (SODG).

APT tactic matcher. The matcher takes five inputs: (a) initial
“template” APT tactics from APT tactic parser; (b) APT tactic in-
stances; (c) results from APT technique identifiers; (d) a pool of
APT techniques that are identified; (e) system object dependencies.
Inputs (b) and (d) are from previous run of the matcher.

Once a new APT technique is identified, the matcher will try
to match it to an APT tactic if the technique is part of the tactic.
Specifically, the technique can be matched to either APT tactic tem-
plate(s) or partially matched APT tactic instance(s). 1) If there were
partially matched APT tactic instances expecting this technique,
the matcher will check the pre-requisites of the identified technique
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to see if they are satisfied. The pre-requisites are checked through
system object dependencies. If all pre-requisites are satisfied, the
newAPT technique is matched into the tactic instance, and the post-
conditions are confirmed in the instance. If not, the unmatched new
technique is saved to the pool and the post-conditions are discarded.
2) In many times, a given APT technique may not be matched to
any partially matched APT tactic instances, but can be matched
to a APT template. In this case, a new APT tactic instance is cre-
ated from the template, the technique is matched into this instance,
and system object(s) in the instance regarding this technique is
confirmed. Otherwise, the technique is put to the pool.

Whenever an APT technique is matched into an APT tactic
template/instance, the matcher goes through all techniques in the
pool and start another iteration of the matching process, but this
time, the matcher only tries to match the technique into partially
matched tactic instances, because those techniques have already
been checked against templates before put into the pool. In this
way, even if a technique is not matched at the time of identification,
it will still be matched once all the conditions are met afterwards.

To illustrate the algorithm, we present two examples of matching
based on the tactic presented in Figure 1(a) and Table 1. Firstly,
consider the case where no techniques are matched into the tactic.
Assuming the identifier first reports that drive by download and
the corresponding process are identified. The matcher first assumes
that the post-condition P1 is the process reported, and then checks
the pre-requisites. The matcher finds out that this technique has
no pre-requisites, so the technique gets matched immediately. An
APT tactic instance gets created from this template, the drive by
download technique in it is marked as matched, and P1 is confirmed
to be the process reported in this APT tactic instance.

In the second example, consider the case where no techniques
are matched into the tactic. However, technique process injection
gets identified first. Similarly, the matcher assumes the system
objects reported are correct, and then checks the pre-requisites
against system object dependencies. The matcher finds out that it
needs P1 and P2, but P1 from the previous technique is not matched
yet. Therefore, the matcher decides that this technique cannot be
matched and put it in the pool of unmatched techniques. After
drive by download is matched, during the going through of the
pool, this previously unmatched technique, process injection, will
be matched if it meets the pre-requisites.

In real world, defense against APT tactics generally needs to
tackle three scenarios: one attacker is using one tactic; multiple
attackers are using one same tactic; multiple attackers are using
different tactics. Our matcher can handle all these scenarios prop-
erly. (a) If one attacker is using one tactic, the algorithm shown in
Algorithm 1 can detect it by matching every step. (b) If multiple
attackers are using one same tactic, they can be differentiated by
system object dependencies, such as different process ID, which
is presented as pre-requisites (Table 1) used in line 6 of the algo-
rithm. (c) If multiple attackers are using different tactics, they can
be differentiated by matching different techniques as shown in line
2 of the algorithm. A more complicated situation is that multiple
attackers are using different APT tactics, but these tactics share
some techniques in common. At the defender’s side, it is unknown
which attacker is using which APT tactic, so the best practice is to
list all the possible combinations. In light of this, the matcher will

create APT tactic instances for all combinations while preserving
the system object dependencies.

Algorithm 1 APT tactic matching algorithm
1: Input: APT tactic templates; APT tactic instances; one newly

identified adversary technique new_at ; a pool of identified
techniques.

2: all_candidates ← same techniques as new_at found in APT
tactic templates and instances.

3: if there exists at least one technique in all_candidates then
4: for all candidate ∈ all_candidates do
5: Assuming post-conditions are right, examine pre-

requisites for each candidate .
6: if All pre-requisites are met for the candidate then
7: if candidate is in a template then
8: Create a new instance from this template, and match

new_at into the position of candidate .
9: else if candidate is in an instance then
10: Create a copy of candidate .
11: Match new_at into the position of the copy of

candidate .
12: end if
13: In the instance where new_at is matched into, identify

the next adversary technique next_at .
14: all_next_step_candidates ← same techniques as

next_at found in the pool of not matched adversary
techniques.

15: for all next_step_candidate ∈

all_next_step_candidates do
16: Call APT tactic matching algorithm.
17: end for
18: end if
19: Put new_at into the pool
20: end for
21: else
22: Save new_at to the pool of not matched adversary tech-

niques.
23: end if

APT tactic ranker. The ranker takes the APT tactic instances
from matcher as input. The ranking is based on the percentage of
APT tactic instances’ completeness. The more completely an APT
tactic instance is matched, the higher it will appear on the list. Fully
matched APT tactic instances are put on top of the list.

The ranker ranks both fully matched and partially matched APT
tactic instances. Assuming that the technique identifiers can cor-
rectly identify APT techniques, the existence of partially matched
APT tactic instances means that either the attacker gives up this
campaign, or that the attacker just decides to wait before launching
remaining techniques. Therefore, partially matched APT tactics
should be kept and ranked but not discarded.

In a word, the framework’s workflow can be summarized as input
parsing, technique identifying, tactic matching and tactic ranking.
Except input parsing phase, the other three phases generate new
findings at three time points respectively, and new findings at a
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previous time point should lead to new findings at the next time
point.
• The first time point is when a technique is identified at
technique identifying phase. The new findings here are the
identified techniques and their post-conditions.
• The second time point is at the end of tactic matching phase.
The new findings here are are new and/or updated APT tactic
instances.
• The third time point is at the end of tactic ranking phase.
The new findings here are updated APT tactic instances’
completeness and ranking results.

Thus, at the end of technique identification phase, if new tech-
nique(s) is identified, the tactic matcher should be automatically
triggered; and at the end of tactic matching phase, if new APT tactic
instance(s) is created or previous instance(s) is updated, the tactic
ranker should be automatically triggered.

5 CASE STUDY
The APT tactic shown in Figure 1(b) and Table 2 contains five
different APT techniques. In this section, we use this tactic as a
case study and describe how each APT technique can be identified,
following the order they appear. We will discuss the identification
of Pass the Hash in detail, as it is an example APT technique that
we can apply machine learning for its identification.

Supply Chain Compromise. This technique can be identified
by scanning downloaded item with Anti-Virus (AV) products. Al-
ternatively, network intrusion detection products like Snort [4] can
also detect it when the downloaded item tries to establish com-
munication with the attacker’s machine. Windows Defender can
identify this technique and leave one entry in Windows event logs.
The post-condition of this step is a malicious process P1 is created
due to attackers’ communication with the victim machine. As an
initial intrusion step, it has no pre-requisites.

Bypassing Windows User Account Control (UAC). Bypass-
ing Windows UAC is a common privilege escalation technique
towards Windows machines. Many procedures have been discov-
ered to bypass UAC. An extensive list of available procedures can be
found in the UACMe project [2]. Some procedures rely onmodifying
specific, user-accessible Registry entries. Therefore, by monitoring
accesses to the Registry with process monitor, especially entry cre-
ation and modification, this APT technique can be identified. The
post-conditions are that processes P2 and P3 are created, with P3
running at system-level privilege. P2 may act as a middle stage. In
this case, P2 may be the actual process modifying the Registry. After
that, a system service reads the modified Registry and created the
process P3 with system-level privilege. Therefore, P2 and P3 may
not have direct relation, and the pre-requisite only has requirement
on P2.

Credential Dumping. Credential dumping is the process of
obtaining account credentials, normally in the form of account
names and password hashes. On a Domain Controller (DC), Active
Directory (AD) service maintains all the users’ account names and
password hashes in the domain. They are stored in a database file
locked by AD. Only some specific processes are allowed to access
the contents of this file. Local Security Authority Subsystem Service
(LSASS) is one of such special processes. It is given the right to read
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Figure 4: Our LSTM neural network.

the database file because its role in a DC is to provide an interface for
managing local security, domain authentication, and AD processes.
With escalated privilege, attackers can craft queries, send them
to LSASS, and get domain user account names and corresponding
hashes. Therefore, we can monitor the LSASS process to detect this
APT technique. We can either match some signatures in malicious
queries or detect anomaly behaviors of LSASS. The post-condition
is that process P4 that runs with system-level privilege and interacts
with LSASS is created. The pre-requisite is that P4 is a child process
of or the same as P3, because a process needs system-level privilege
to interact with LSASS.

Pass the Hash. Pass the hash is a well-known technique for
lateral movement. In remote login, plain-text passwords are usu-
ally converted to hashes for authentication. Some authentication
mechanisms only check if hashes are matched. Pass-the-hash tech-
nique relies on these vulnerable mechanisms to impersonate a
normal user with dumped hashes. We assume that a) normal users
use benign client programs that are usually authenticated through
other mechanisms, and that b) attackers cannot get the plain-text
passwords and have to rely on hashes to impersonate a normal
user. We can capture the network packets and find out which kind
of authentication mechanism is used. The login session that uses
those vulnerable authentication mechanisms can then be identi-
fied as pass the hash attack. The post-condition is that a malicious
process P5 with user U1’s credential is created. This step has no
pre-requisites.

There are three stages during the remote login session. Each
stage contains multiple network packets. For example, the second
stage, authentication, can be viewed as a sequence made up of
client’s authentication request, server’s challenge, client’s challenge
response and server’s authentication response, as shown in Figure 5.
The client first sends a session setup request to the server; then
the server responds to the client with a challenge; on receiving
the challenge, the client uses the challenge and credentials to do
calculations and sends back the result in challenge response packet;
finally, the server verifies the result and sends back authentication
response indicating whether authentication succeeds or not.



Anon.

Figure 5: A subset of network packets during pass the hash attack.

Pass the Hash Data Generation. The raw data (network packets)
are automatically generated by protocol fuzzing. During a pass the
hash attack, before a packet is sent to the server, we fuzz certain
fields in the application layer (SMB/SMB2 for pass the hash) of the
network packets. In this way, (a) the packet structure remains intact,
so that the server will not discard the packet; (b) the authentication
of pass the hash can be affected; (c) we can get a variety of network
packets, and possibly, a variety of network packet sequences so we
can get enough diversity in the data for machine learning. The same
fuzzing method has also been applied in the generation of benign
data from normal network traffic. All the network packets from
malicious and benign network traffic are captured using Wireshark.
Because of fuzzing, we cannot assure every pass the hash attempt
or normal access attempt is successful. For failed pass the hash
attempts, we remove them from malicious data. The reason is that,
if it fails, the attempt does not generate any impact, so it is not
really malicious. For failed normal access, we keep it in benign data,
because normal user can also have typos or forget passwords.

Though the raw network logs contain network packets from both
malicious and benign network traffic, there are too much redundant
data that do not carry useful information for identifying pass the
hash, such as timestamp. There are also fields that have fixed values,
such as the header length for SMB/SMB2. Values of these two types
of fields cannot help identifying pass the hash. Therefore, in the
data parser for network logs, such information is removed. Only
those that can help identify pass the hash are kept.

Pass the Hash Identification. To identify pass the hash with ma-
chine learning, we have two key insights:
• Network communications consist of lots of network packets
sent in certain order. What happens at a previous time point
can affect what happens afterwards. For example, the first
several packets may be a server and a client communicat-
ing the protocol to use, and packets afterwards will use the
protocol decided;
• Pass the hash relies on certain authentication mechanism to
work. Therefore, there must be some differences in certain
values in at least one network packet during the network
communication.

With these two insights, we decide to build an LSTM neural net-
work that takes a sequence of network packets’ types, and outputs
the binary label representing whether this sequence is pass the
hash network traffic. We have trained a long short-term memory
(LSTM) neural network for pass-the-hash identification based on
network packets sent between the server (victim) and the client
(attacker) during remote logins. Our neural network is presented
in Figure 4. M stands for input; H stands for each LSTM block’s
output; and C stands for each LSTM block’s state output. Subscripts
stand for the time points, in which h stands for the window size.
The network packets’ types are defined by the values of fields of

interest. If two packets have the same values in all those fields, then
the two packets are presented as the same packet type number.
Otherwise, different numbers are assigned. In this way, a sequence
of network packets can be presented as a sequence of numbers,
each standing for a packet of its corresponding packet type.

Now that each network packet is represented as a packet type
number, the whole network log can be represented as a whole
sequence of packet type numbers. By identifying the start packet
for each benign/malicious network communication, we chomp
the whole sequence into many variate-length sequences, and the
beginning of every sequence is a start packet. Then, we chomp each
of those variate-length sequences into one or more fixed-length
sequences according to the window size and window shift step size.
Depending on whether the sequence comes from a benign traffic
or malicious traffic, we assign every fixed-length sequence with
the corresponding binary label and get one data sample for our
LSTM neural network. If a fixed-length sequence appear in both
the benign and malicious data, this sequence is removed from both
of them because it cannot help the classification. We then remove
duplicate sequences in both the benign data and malicious data.
After these two removal processes, all data samples are finally ready
to be used.

Data Exfiltration. This technique can be very confidential. It
can be encrypted and done through very common protocols like
HTTP/HTTPS. As a result, data exfiltration is hard to be identified
at the network level. Supposing that attackers are interested in sen-
sitive data, system administrators can enforce disk I/O monitoring
with process monitor on sensitive files/folders on a machine. In this
way, data exfiltration can be identified at disk level.

6 EVALUATION
At high level, the framework presented can be separated into four
phases:

• Input parsing. The raw input files are parsed by APT tactic
parser, data parsers and system object dependency.
• APT technique identifying. APT identifiers use parsed
inputs to identify APT techniques.
• APT tactic matching. With the help of system object de-
pendencies, the APT tactic matcher matches identified APT
techniques into APT tactics.
• APT tactic ranking. After tactic matching, the APT tactic
ranker ranks all APT tactic instances based on completeness.

We have evaluated each phases and the results show that our frame-
work can correctly detect APT tactics and pick out the one(s) that
is fully matched. Specifically, we answer the following questions:

• RQ1. How accurately can technique identifiers identify APT
techniques?
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Table 3: 384 APT tactics in the repository.

Initial intrusion Privilege escalation Credential access Lateral movement Impact
Supply chain compromise Bypass User Account Con-

trol
Credential dumping Pass the hash Data exfiltration

Exploit public-facing appli-
cation

DLL search order hijacking Account manipulation Logon scripts Data manipulation

External remote services New service Private keys Data destruction
Spearphishing link Process injection Endpoint denial of service

• RQ2. Given identified APT techniques, how correctly can
the matcher match them into APT tactics and generate in-
stances?
• RQ3. Given matched APT tactic instances, can the ranker
rank the fully matched APT tactic instances higher than
others in the ranked list?
• RQ4.Howmuch time andmemory does the framework need
for each phase?

For evaluation experiments, we first prepared 385 APT tactics
in the APT tactic repository. One is a 4-step tactic referred to as
tactic001 in Table 4. The other 384 are 5-step tactics presented in
Table 3. Each tactic can take any one process belonging to the same
technique (column). Therefore, Table 3 provides 4∗4∗3∗2∗4 = 384
APT tactics. Some APT tactics may be very similar at high level.
For example, replace one technique in tactic A and get tactic B. The
old technique and the new technique are for the same purpose, but
done in different ways (e.g. lateral movement by logon scripts or
pass the hash). We treat A and B as different APT tactics because
different techniques need different technique identifiers to identify
them, and those identifiers may use different method and/or system
object dependency for identifying.

Out of the 385 APT tactics in the repository, we launched 7 of
them in evaluation experiments, presented in Table 4. 3 kinds of logs
from those 7 APT tactics are collected, which are network logs (cap-
tured by Wireshark), process monitor logs (exported from Prcess
Monitor [15]), and windows event logs (exported from Windows
Event Viewer). Our test bed, towards which attacks are launched,
consists of one Windows AD DC (Windows Server 2012 R2) virtual
matching hosting a Windows domain, joined by another Windows
7 virtual machine. The raw input files include 385 APT tactic DOT
files, 5.84GB of network logs, 12.6GB of process monitor logs, and
141MB of Windows event logs.

6.1 APT technique identifying
For APT technique identifying, we focus on evaluating one specific
technique, which is pass the hash identification. We choose this be-
cause other identifiers involve commercial IDS or manually crafted
patterns, which have little point in evaluating.

For pass the hash identification, we build an LSTM based neural
network. It takes parsed network log files of packets sent between
hosts as input, and produce binary results showing whether pass
the hash attack is presented in a packet sequence.

With different parameters such as training batch size, LSTM
window size and window shift step size, we have trained a total of
144 neural networks. Of all the data fed to the neural network, about
60% are used for training, about 20% are used for validation, and the

rest about 20% are used for testing. Every trained neural network
is evaluated by false positive rate, false negative rate and F1 score.
With different parameters, the number of benign data samples and
malicious data samples can also change accordingly. As a result,
whether the final dataset is balanced or not is kind of unpredictable,
so accuracy is not very helpful. What is more, the true negative
samples, which are noises, are not of interest for us, and F1 score
does not take true negatives into calculation. Therefore, we choose
F1 score as the main criteria.

The best-performing neural network, which has the highest F1
score of 0.9763 on test set, is fed with 2085 benign data samples
and 2830 malicious data samples. The false positive rate and false
negative rate on the test set of this neural network are 4.437% and
0.252%, respectively. Though the false positive rate is not ideal,
we will show that, in tactic matching phase, those false positives
cannot produce fully matched APT tactic instance.
Result 1: The LSTM-based APT technique identifier for pass the
hash, which is hard to detect via traditional methods, can identify
the technique with low false negative rate, but the false positive rate
is not ideal.

6.2 APT tactic matching
As stated earlier, the number of launched APT tactics in our exper-
iments is small. However, even if there are very few APT tactics
happening, the CSOCs need to be aware of all possible APT tactics.
With this insight, we evaluated the APT tactic matcher with all
the 385 APT tactics in the repository. The goal of evaluating APT
tactic matcher is to see whether it can correctly and fully match
APT tactic that is actually launched in the following three cases:
(a) one attacker is using one APT tactic; (b) multiple attackers are
using one same APT tactic; (c) multiple attackers are using multiple
different APT tactics. There may be some partially matched APT
tactics. This is natural because some APT tactics share the same
technique at some point, but the APT tactic matcher just tries its
best to match an APT technique into tactic. How much importance
should be given to the tactic instance is not evaluated by the APT
tactic matcher, but the APT tactic ranker, which will be evaluated
in the next subsection.

Case A: One attacker using one APT tactic. In this scenario,
tactic001 presented in Table 4 is launched for once in our test bed.
The matcher successfully match the target tactic in full. The outputs
contains 1 fully matched APT tactic instance of the target tactic
and other 123 partially matched instances.

Case B: Multiple attackers using one same APT tactic. In
this scenario, tactic001 presented in Table 4 is launched for three
times with some different parameters, like PIDs and file names. The
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Table 4: A list of APT tactics that were launched.

APT tactic name 1st technique 2nd technique 3rd technique 4th technique 5th technique
tactic001 Supply chain attack DLL search order hijacking Logon scripts Data modification (None)
tactic002 Supply chain attack Bypass User Account Control Credential dumping Pass the hash Data exfiltration
tactic003 Supply chain attack Bypass User Account Control Credential dumping Pass the hash Data modification
tactic004 Supply chain attack Bypass User Account Control Credential dumping Pass the hash Data destruction
tactic005 Supply chain attack DLL search order hijacking Credential dumping Pass the hash Data exfiltration
tactic006 Supply chain attack DLL search order hijacking Credential dumping Pass the hash Data modification
tactic007 Supply chain attack DLL search order hijacking Credential dumping Pass the hash Data destruction

matcher outputs 9 fully matched APT tactic instances of the target
tactic and 375 partially matched instances.

The results show the existence of “duplicates” in fully matched
APT tactic instances. The reason behind is that some techniques
in the tactic instances can be replaced with others. In Case B, the
last two techniques of tactic001 are interchangeable among the 3
attacks. When we launched the 3 attacks, the vulnerable process for
DLL search order hijacking remains the same, which made the last
two techniques interchangeable. As a result, the final output of fully
matched APT tactic instances becomes 3 ∗ 3 = 9. This is reasonable
because at the defender’s side, CSOCs have no idea which attacker
is aiming for what in their IT system, so the best practice is to list
all possible combinations.

Case C: Multiple attackers using multiple different APT
tactics. In this scenario, the APT tactics presented in Table 4 are
each launched for once. Note that these APT tactics share some
common techniques. The matcher outputs 94 fully matched APT
tactic instances and 5468 partially matched instances. The 94 fully
matched APT tactic instances include 4 instances of tactic001, 6
of tactic002, 6 of tactic003, 6 of tactic004, 24 of tactic005, 24 of
tactic006, and 24 of tactic007.

The similar thing in Case B also happens to Case C. In Case B,
the interchangeability results from three attackers using one same
tactic; in Case C, the interchangeability results from shared APT
techniques among the 7 tactics. For tactic001, its first two tech-
niques (supply chain attack and DLL search order hijacking) are
interchangeable among tactic001, tactic005, tactic006, and tactic007,
so its fully matched instance number is 4. For tactic002, tactic003
and tactic004, their last two techniques (pass the hash and data
exfiltration/modification/destruction) are interchangeable between
tactic002 and tactic005, tactic003 and tactic006, and tactic004 and
tactic007 respectively. The reason is that pass the hash technique
has no prerequisites, so there is no way to chain the first three
techniques together with the last two. As a result, the numbers of
fully matched instances for tactic002, tactic003 and tactic004 are
all 3 ∗ 2 = 6. For tactic005, tactic006 and tactic007, the first two,
the middle one, and the last two techniques are all interchangeable.
How the first two and the last two techniques are interchangeable
have been discussed earlier; and the middle one technique (creden-
tial dumping) is interchangeable among tactic005, tactic006 and
tactic007 because they use the same vulnerable process for DLL
search order hijacking. Thus, their fully matched instance numbers
are all 4 ∗ 3 ∗ 2 = 24.

One thing worth noting is that after the technique identifying
phase, we blindly feed identification results to tactic matching phase.

This means that the false positives of pass the hash identification are
treated as true positives and used for tactic matching. CSOCs may
realize that some of those are false positives, but at the run time,
without further inspecting the data, they cannot know that whether
the outputs of pass the hash identifier contains false positives or
not. In spite of this, the number of fully matched APT tactics is still
in consistence with our expectations, which means that, during
tactic matching, those false positives cannot be used to produce
fully matched APT tactic instances because they do not meet the
pre-requisites of system object dependencies.

To further assure the matcher’s resilience to false positives from
technique identifying, we carry out an additional experiment. We
reproduce Case C, but, this time, we add a filter between the pass
the hash identifier and the APT tactic matcher, so that the matcher
only gets false positives from pass the hash identifier. Other parts
remain the same, and we find out that the matcher only outputs 4
fully matched APT tactic instances of tactic001, and 2126 not fully
matched APT tactic instances. Therefore, the APT tactic matcher is
resilient to the false positives from technique identifiers.
Result 2: The APT tactic matcher is resilient to false postives from
technique identifiers and can correctly match identified APT tech-
niques into tactics and create APT tactic instances in all three cases.

6.3 APT tactic ranking
After APT tactic matching, the matcher outputs APT tactic in-
stances, which can be partially of fully matched, to the APT tactic
ranker. The APT tactic ranker then ranks these APT tactic instances
by completeness. The goal of evaluating APT tactic ranker is to see
whether it can correctly pick out fully matched APT tactic instances
and put them to the top of the list.

The evaluation results show that, in all of the three Cases A, B
and C, the ranker successfully ranks the fully matched instance(s)
to the top. In Case B and C, because there are many “duplicate”
APT tactic instances with the same 100% completeness, there can
be many APT tactic instances, which are the same APT tactics with
different system objects, on the top of the ranking list.
Result 3: The APT tactic ranker can rank the fully matched APT
tactic instances on top of the ranked list.

6.4 Time and memory usage
To evaluate the efficiency of our framework, we have conducted
offline measurements of the time and max memory usage for each
of the four phases. The machine used for this experiment is a work-
station with Intel(R) Xeon(R) E5-2650 v3 processor and 62GB of
RAM. The results are presented in Table 5.
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Table 5: Max memory and time taken for each phase.

Phase Max memory
taken (MB)

Time taken (s)

Input parsing 38794 1366
APT technique iden-
tifying

3812 74

APT tactic
matching

Case A 19 1

Case B 20 1
Case C 51 13

APT tactic
ranking

Case A 16 1

Case B 17 1
Case C 49 1

It is shown that, the most resource-consuming phase is the input
parsing phase. In this phase, the memory usage can be as high
as about twice the size of input files. The memory usage is high
because in our Python implementation, we used the data structure
of lists a lot. In Python, lists have many redundancies between
adjacent elements. To make matters worse, Python does not have
any means for memory recycle, which means once some memories
are used, they will never be released, until the whole program
exits. Therefore, in our Python input parsing implementation, after
loading large files into the memories, the program cannot release
them after the files’ parsing have been finished. If the framework
is implemented with other programming languages, like Java, the
memory can be better managed.
Result 4: The most resource-consuming phase is input parsing.
Other phases consumes acceptable memories and short time. The
memory usage and time consumption have the potential to be further
reduced.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a framework for detecting APT tactics
from logs and configuration files. The framework takes previously
seen APT tactics, logs and system configuration files as input, and
generates a ranked list of APT tactics based on completeness. We
also present a detailed case study of a simple 5-step APT tactic,
describing how to identify each APT technique in the tactic. Finally,
we present the evaluation results of our framework, which clearly
shows that the framework can correctly detect APT tactics.

Currently, we implement the framework on one virtual machine.
To further improve the efficiency, we plan to implement, validate
and evaluate this framework in a cloud environment with multi-
ple virtual machines. Every virtual machine will be dedicated to
one task for efficiency. Manual work can be significantly reduced
because system administrators only need to care about feeding
data into the cloud. The other workloads, including file parsing,
technique identifying, and tactic matching will be all completed by
the framework automatically.

Our framework matches APT tactics from the repository. How-
ever, attackers may update their attack tactics. They may replace
old adversary techniques for new ones or add/remove techniques
according to their purposes. In the future, we plan to add another

component, APT tactic updater, to our framework to automatically
handle tactic updating. The updater will take tactic templates from
tactic parser, partially matched tactic instances and the pool of
unmatched adversary techniques from tactic matcher. Then it can
decide when some changes should be made in original tactics, how
it should be made, and finally update tactics in the repository.

Another thing worth noticing is that, we simply rank the APT
tactics instances based on the completeness. The ranking could be
based on more complicated algorithm. For example, CVSS scores
can be taken into consideration, and an “impact score” can be cal-
culated for each APT tactic instance. Or another model may be
proposed to assess how likely the APT tactic is being used by the
attacker. Because this is about APT impact assessment and is out of
the scope of our paper, here we do not dig deeper into the ranking
problem.
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