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et al. and the new relation between the dimension and MC, we identify all
1277 equivalence classes having MC 4. We also provide a closed formula for
the number of n-variable functions with MC 3 and 4. These results allow us
to construct AND-optimal circuits for Boolean functions that have MC 4 or
less, independent of the number of variables they are defined on.

Keywords Affine equivalence · Boolean functions ·Multiplicative complexity.

Mathematics Subject Classification (2010) 94A60 · 06E30
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René Peralta
NIST Computer Security Division, 100 Bureau Dr, Gaithersburg, MD 20899
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1 Introduction

In cryptographic protocols such as fully-homomorphic encryption (e.g., [1]),
zero-knowledge proofs (e.g., [2]), and secure multi-party computation (e.g. [3]),
Boolean circuits using fewer nonlinear gates are preferred for efficiency. This
promoted the design of symmetric primitives (e.g., Rasta [4], LowMC [5]),
which are inherently designed to use only a small number of AND gates.

Multiplicative Complexity (MC) is defined as the minimum number of AND
gates required to implement a given function by a circuit over the basis (AND,
XOR, NOT). The MC of a random n-variable Boolean function f , denoted
C∧(f), is at least 2n/2−O(n) with high probability [6]. The MC of a random
Boolean function is hard to calculate even for a small number of variables. For
up to 6 variables, the MC of each Boolean function has been established in [7,
8]. For arbitrary n, it is known that under standard cryptographic assumptions,
computing the MC in polynomial time in the length of the truth table [9] is not
possible. There are, however, results for special classes of Boolean functions. In
[10], Mirwald and Schnorr studied the MC of quadratic functions and showed

that C∧(f) = k, iff f is isomorphic to the canonical form
⊕k

i=1 x2i−1x2i.
In [11], Brandão et al. studied the MC of symmetric Boolean functions and
constructed circuits for all such functions with up to 25 variables.

A particular value of interest is the number of n-variable Boolean functions
with MC k, denoted λ(n, k). In [6], it is shown that λ(n, k) ≤ 2k

2+2k+2kn+n+1.

In 2002, Fischer and Peralta [12] showed that λ(n, 1) is equal to 2
(
2n

3

)
. In 2017,

Find et al. [13] characterized the Boolean functions with MC 2 by using the
fact that MC is invariant with respect to affine transformations and showed
that

λ(n, 2) = 2n(2n − 1)(2n − 2)(2n − 4)

(
2

21
+

2n − 8

12
+

2n − 8

360

)
. (1)

In this work, we focus on Boolean functions with MC 3 and 4. We uti-
lize the notion of the dimension dim(f) of a Boolean function in relation to
its linearity dimension [14], and provide a new lower bound suggesting that
C∧(f) ≥ ddim(f)/2e. For MC 3, this implies that there are no other equiva-
lence classes other than those 24 identified in [8]. For MC 4, using the tech-
niques from [8] and the new relation between dimension and MC, we identify
1277 equivalence classes. We also provide a closed formula for the number of
n-variable functions with MC 3 and 4, i.e., λ(n, 3) and λ(n, 4).

The techniques allow us to construct AND-optimal circuits for Boolean
functions that have MC 4 or less, independent of the number of variables they
are defined on. Knowledge of all equivalence classes with MC 4 or less can also
be used to determine that a function has MC greater than 4, if it does not
belong to any of those classes.

The organization of the paper is as follows. Section 2 gives definitions and
preliminary information about Boolean functions and Boolean circuits. Section
3 explains the relation between dimension and MC, and presents the new lower
bound. Section 4 provides the affine equivalence classes of Boolean functions
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with MC 3 and 4. Section 5 concludes the paper with discussion of future
research directions.

2 Preliminaries

2.1 Boolean Functions

Let F2 be the binary field with 2 elements and Fn2 be the n-dimensional
vector space over F2. There is a one-to-one mapping between the elements of
Fn2 and the integers modulo 2n so that a = (an−1, . . . , a0) ∈ Fn2 maps to the

integer
∑n−1
i=0 ai2

i. For simplicity, we will occasionally use an integer when an
element of Fn2 is expected. The unit vectors ei ∈ Fn2 are defined to be vectors
whose ith entry is 1 and the remaining entries are zeros.

An n-variable Boolean function f is a mapping from Fn2 to F2. Let Bn be
the set of n-variable Boolean functions. The truth table Tf of a function f ∈ Bn
is the ordered list of output values:

Tf = (f(0), f(1), . . . , f(2n − 1)). (2)

The algebraic normal form (ANF) of f is the multivariate polynomial

f(x1, . . . , xn) =
∑
u∈Fn

2

aux
u, (3)

where au ∈ F2 and xu = xu1
1 xu2

2 · · ·xun
n is a monomial containing the variables

xi where ui = 1. The degree of the monomial xu is the number of variables
appearing in xu. The degree of a Boolean function, denoted deg(f), is the
highest degree among the monomials appearing in its ANF.

The Walsh-Hadamard transform of a Boolean function f is the integer-
valued function defined as

Wf (α) =
∑
x∈Fn

2

(−1)f(x)+α·x, α ∈ Fn2 . (4)

The vector [Wf (0), . . . ,Wf (2n − 1)] is called the Walsh spectrum of f . The
autocorrelation function of a Boolean function f is defined as

Cf (α) =
∑
x∈Fn

2

(−1)f(x)+f(x+α), α ∈ Fn2 . (5)

The vector [Cf (0), . . . , Cf (2n− 1)] is called the autocorrelation spectrum of f .
The vector α ∈ Fn2 is a linear structure of f , if f(x)+f(x+α) is a constant

function [14]. In this case, the autocorrelation value Cf (α) becomes either −2n

or 2n. The set of linear structures of a Boolean function forms a vector space,
whose dimension dl(f) is called the linearity dimension of f . The linearity
dimension can be computed from the autocorrelation function as follows:

dl(f) = log2 #{|Cf (α)| = 2n, α ∈ Fn2}. (6)
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Two functions f, g ∈ Bn are affine equivalent if f can be written as

f(x) = g(Ax + a) + b>x + c, for all x, (7)

where A is a non-singular n × n matrix over F2; a,b are column vectors in
Fn2 and c ∈ F2. The parameters T = (A, a, b, c) above constitute an affine
transformation that maps g to f . We use [f ] to denote the affine equivalence
class of the function f .

Some of the relevant cryptographic properties of Boolean functions such
as degree, multiplicative complexity, linearity dimension, distribution of the
absolute values in the Walsh spectrum and in the autocorrelation spectrum
are invariant under affine transformations. A method for determining whether
two functions are affine equivalent is given in [15].

In 1972, Berlekamp and Welch showed that B5 has 48 equivalence classes
[16]. For n = 6, Maiorana [17] proved that there are 150 357 equivalence classes,
which was later independently verified by Fuller [15] and by Braeken et al. [18].
Hou [19] showed that B7 has approximately 265.78 classes.

The effect of an affine transformation on a Boolean functions autocorrela-
tion spectrum is known and explained in the following proposition.

Proposition 1 [20] If g ∈ Bn can be transformed to f ∈ Bn using the trans-
formation T = (A, a, b, c), then their autocorrelation spectrums are related in
the following way:

Cf (α) = (−1)α(A
−1)>bCg(Aα). (8)

Corollary 1 Let f ∈ Bn, and let A be an invertible nxn matrix. If {αi}ki=1

are linear structures of f , then {Aαi}ki=1 are linear structures of f(Ax).

Proposition 2 Let f ∈ Bn and ei is the all-zero unit vector except the ith bit.
If ei ∈ Fn2 is a linear structure of f , then f can be written as

f(x) = g(x) + cxi, (9)

where g ∈ Bn does not depend on xi and c ∈ F2 satisfies

c =

{
0, if Cf (ei) = 2n,

1, if Cf (ei) = −2n.

Proof Any Boolean function f ∈ Bn can be expressed as

f(x) = xig1(x) + g2(x), (10)

where g1, g2 ∈ Bn do not depend on the variable xi. Then, one can obtain
f(x + ei) = (xi + 1)g1(x) + g2(x), which leads f(x) + f(x + ei) = g1(x). The
vector ei being a linear structure of f implies that g1(x) is constant. From
(10), g1(x) = 0 implies f(x) = g2(x) and xi does not appear in the ANF of f ,
and g1(x) = 1 implies f(x) = xi + g2(x) and xi appears as a linear term in
the ANF.
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2.2 Boolean Circuits

A Boolean circuit C with n inputs and m outputs is a directed acyclic
graph, where the inputs and the gates are the nodes, and the edges correspond
to the Boolean-valued wires. The fanin and fanout of a node is the number
of wires going in and out of the node, respectively. The nodes with fanin
zero are called the input nodes and are labeled with an input variable from
{x1, . . . , xn}. The circuits considered in this study only contain gates from the
complete basis (AND, XOR, NOT) and have exactly one node with fanout zero
(i.e., m = 1), which is called the output node. For our purposes, we assume
AND gates have fan-in two, but XOR gates have arbitrary fan-in > 0.

Boolean functions can be partitioned into those f for which f(0) = 0 and
those f for which f(0) = 1. One set can be mapped bijectively into the other
by the transformation g(x) = f(x)+1. A function f(x) for which f(0) = 0 can
be computed by a circuit which is both optimal with respect to multiplicative
complexity and has no negations. Thus, without loss of generality, we will only
consider circuits that do not have the constant 1 as input.

Each Boolean circuit C with n input nodes computes a Boolean function
f ∈ Bn. When a Boolean vector x ∈ {0, 1}n is fed to the input nodes, the
logic gates compute the function where the output node gets the value f(x).

We use the following notation from [8]:
A: the set of AND gates
B: the set of XOR gates
ai: ith AND gate of the circuit, 1 ≤ i ≤ k
bi: ith XOR gate of the circuit, 1 ≤ i ≤ 2k + 1
Si: the set of AND gates that are inputs to the bi
Li the set of input nodes to bi

The canonical form of a circuit [8] has the following properties:

1. The circuit output is always an XOR gate.
2. The output of AND gate is always an input to an XOR gate.
3. The two inputs of an AND gate are outputs of XOR gates.
4. The inputs of XOR gates are either inputs to the circuit or outputs of AND

gates.
5. There are no negation gates.
6. The AND gates are numbered topologically, with no gate being an ancestor

of a lower-numbered gate.
7. XOR gates have fanout 1 or zero (for the output gate).
8. The AND gate ai has inputs b2i−1 and b2i.

It is easy to verify that any Boolean circuit with k AND gates can be converted
into the canonical form with k AND gates and 2k + 1 XOR gates.

Given a set V of nodes, let XV denote the Boolean function computed as⊕
v∈V v. 1 The output of the i-th XOR gate is Fbi = XLi⊕XSi , and the output

of the i-th AND gate is

Fai = (XL2i−1 ⊕XS2i−1) ∧ (XL2i ⊕XS2i). (11)

1 We abuse notation here, identifying a node with the function it computes.
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Given a circuit, the ordered list (L1, . . . , L2k+1, S1, . . . , S2k+1) is called the
trace of the circuit. The ordered list [(S1, S2), (S3, S4) . . . , (S2k−1, S2k)] shows
the relations between the AND gates, and is called the topology of the circuit.
The ordered list (L1, . . . , L2k+1) shows the linear inputs to the XOR gates,
and is called the input to the topology. For readability, we will be depicting
topologies through diagrams rather than as lists of sets.

Example 1 Let f ∈ B4 be f = x1x2x3 + x1x3 + x1x4 + x2x3 + x4. A circuit
computing f , with its canonical form and topology is shown in Figure 1. The
trace for that circuit is ({x3}, {x2}, {x3, x4}, {x1}, {x4}, ∅, ∅, {a1}, ∅, {a1, a2}).
The topology of the circuit is [(∅, ∅), ({a1}, ∅)]. The input to the topology is
({x3}, {x2}, {x3, x4}, {x1}, {x4}).

∧

x2 x3 x4x1

∧

(a) Circuit

x2 x3

∧

∧

x1 x3 x4

x4

a1

a2

b1b2

b3b4

b5

(b) Canonical form

∧
∧

(c) Topology

Fig. 1: Circuit and topology computing f .

Using a topology [(S1, S2), (S3, S4) . . . , (S2k−1, S2k)] with k AND gates,
22k+2 new topologies with k + 1 AND gates can be constructed by append-
ing (S2k+1, S2k+2) ⊆ {a1, ..., ak} to the original topology. Details of topology
construction, and identification of isomorphic topologies are described in [8].

3 A New Lower Bound on Multiplicative Complexity

A general lower bound on the multiplicative complexity of Boolean func-
tions is the degree bound, which states that the multiplicative complexity of
a Boolean function f is at least deg(f) − 1 [21]. In this section, we provide a
new lower bound on the multiplicative complexity based on the dimension of
the Boolean function.

Definition 1 [13] Let Nf be the number of distinct input variables appearing
in the ANF of f ∈ Bn. The dimension of f , denoted dim(f) is defined as the
smallest number of variables that appear in the ANFs of functions that are
affine equivalent to f ;

dim(f) = min
g∈[f ]

Ng. (12)
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We can now relate the dimension of a function to its linearity dimension,
at the same time providing an efficient way to compute it.

Lemma 1 Let f ∈ Bn. If dim(f) = n, dl(f) = 0.

Proof Let dim(f) = n. If dl(f) > 0, then f has a non-zero linear structure
α. From linear algebra, we know there exists an invertible nxn matrix A that
satisfies Aα = en. By Corollary 1, en is a linear structure of f(Ax), and by
Proposition 2, f(Ax) is independent of xn or xn only appears linearly in the
ANF of f(Ax). Then one of f(Ax) or f(Ax) + xn does not depend on xn.
This contradicts dim(f) = n. Thus dl(f) = 0.

Theorem 1 Let f ∈ Bn. Then dim(f) + dl(f) = n.

Proof If dim(f) = n the result follows from Lemma 1. If δ = dim(f) < n, then
f is affine equivalent to a function g ∈ Bn with exactly δ variables appearing
in its ANF. Without loss of generality, assume the variables x1, . . . , xδ appear
in the ANF of g. Let g′ ∈ Bδ satisfying g′(x1, . . . , xδ) = g(x1, . . . , xn) for
all x ∈ Fn2 . Since dim(g′) = δ, Lemma 1 implies dl(g

′) = 0 (i.e., there are
no linear structures of g′). Since the output of g ∈ Bn is independent of the
values of the variables xδ+1, xδ+2, . . . , and xn, and there are no other linear
structures of g based on the first δ variables, {ei}ni=δ+1 is a basis for the linear
structures of g. Then the linearity dimension is n− δ and dim(f) + dl(f) = n
holds.

Theorem 2 The MC of a Boolean function f ∈ Bn is at least ddim(f)/2e.

Proof Let f be an arbitrary Boolean function and C∧(f) = k. There exists
a circuit implementing f with k AND gates. The topology of the circuit with
k AND gates has 2k linear inputs. Any set of 2k linear functions on n >
2k variables can be mapped to functions having at most 2k variables by an
affine transformation. Therefore, dim(f) ≤ 2C∧(f), which implies that the
multiplicative complexity of f is greater than or equal to ddim(f)/2e.

Note that the dimension bound is tighter than the degree bound for mul-
tiplicative complexity when deg(f) ≤ ddim(f)/2e.

Example 2 Let f be the symmetric Boolean function Σ8
4 , i.e., f = x1x2x3x4 +

. . . + x5x6x7x8. According to the degree bound, the C∧(f) ≥ 3. By Theorem
2, C∧(f) ≥ 4.

4 Boolean Functions with Multiplicative Complexity k

The characterization of Boolean functions with respect to MC can be re-
alized by working on the equivalence classes rather than examining functions
individually, since MC is invariant under affine transformation. In this section,
we propose an iterative method to construct the list of all affine equivalence
classes of Boolean functions with a given MC k.
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The method first constructs topologies with i = 1, . . . , k AND gates in an
iterative manner. At ith step, topologies with i AND gates are constructed
as described in [8]. Then, the topologies are evaluated by supplying linear
function inputs X = (L1, . . . , L2i), with dimension at most 2i. This process
generates a set of Boolean functions with MC at most i. The functions whose
MC is less than i are omitted from the list, by checking whether they belong to
the equivalence classes with MC less than i. The remaining set of functions are
processed to make sure that exactly one function from each equivalence class
remains in the set. These functions become the representatives of their classes,
and are stored with an associated MC value of i. The method is repeated until
i = k. The choice of the representatives is arbitrary and does not have any
affect on the results.

4.1 Equivalence Classes with MC 1 and 2

As previously shown in [12,13], Boolean functions with MC 1 are affine
equivalent to x1x2 and can be generated using the topology given in Fig 2.

∧

Fig. 2: Topology with 1 AND gate

There are two topologies with 2 AND gates as illustrated in Figure 3.
Find et al. [13] showed that a Boolean function with MC 2 is affine equivalent
to exactly one of these following three functions x1x2x3, x1x2x3 + x1x4 and
x1x2 + x3x4.

∧ ∧
(a) Topology 1

∧
∧

(b) Topology 2

Fig. 3: Topologies with 2 AND gates.

4.2 Equivalence Classes with MC 3

According to Theorem 2, Boolean functions with MC 3 can have up to 6 in-
dependent inputs. The MC distribution of all 150 357 affine equivalence classes
on 6-variables is given in [8]. Figure 4 shows the graphical representations of
the topologies with 3 AND gates.

Evaluating topologies with linear inputs having dimension up to 6 gives
the exhaustive list of equivalence classes having MC 3 as shown in Table 1.
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∧ ∧ ∧
∧ ∧

∧

∧ ∧

∧
∧ ∧

∧
Topology T1 Topology T2 Topology T3 Topology T4

∧ ∧
∧

∧
∧

∧

∧
∧

∧

∧
∧

∧
Topology T5 Topology T6 Topology T7 Topology T8

Fig. 4: Topologies with 3 AND gates

There are three equivalence classes with dimension 4, and all of these classes
can be generated by either of the topologies T4, T6, T7 and T8. For dimension
5 and 6, there are 14 and 7 classes, respectively.

4.3 Equivalence Classes with MC 4

According to Theorem 2, Boolean functions with MC 4 can have up to 8
independent inputs. Different from the MC 3 case, it is not feasible to exhaus-
tively list the equivalence classes for Boolean functions with 7 and 8 inputs.
This makes it less efficient sometimes to decide whether two functions are in
the same equivalence class or not for those cases.

After evaluating 84 topologies with 4 AND gates, 26 classes with dimension
5, 888 classes with dimension 6, 321 classes with dimension 7, and 42 classes
with dimension 8 were obtained. The complete list of affine equivalence classes
with MC 4 is published on [22].

4.4 Number of Boolean functions with MC ≤ 4

Let λ(n, k) be the number of n-variable Boolean functions with MC k.

Boyar et al. [6] showed that λ(n, k) ≤ 2k
2+2k+2kn+n+1. The exact formulas for

k = 1, 2 are given in [12] and [13], respectively.
The size of an equivalence class for a given f ∈ Bn is calculated using the

techniques provided in Corollary 4.8 in [23]. Table 1 provides the size of the
equivalence classes with MC 3, defined in Bdim(f). For example, the size 512
of the equivalence class x1x2x3x4 is defined in B4.

Definition 2 Let f ∈ B`. The embedding of f in Bn, n ≥ ` is defined as
the n-variable Boolean function that satisfies fn(x1, . . . , x`, x`+1, . . . , xn) =
f(x1, . . . , x`).

The following theorem proved in [13] determines the size of equivalence classes
when a Boolean function is embedded in higher number of variables.
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Dimension = 4
Representative Size of the class Generated by
x1x2x3x4 512 T4,T6,T7,T8

x1x2+x1x2x3x4 17 920 T4,T6,T7,T8

x2x3+x1x4+x1x2x3x4 14 336 T4,T6,T7,T8

Dimension = 5
Representative Size of the class Generated by
x1x2x3x4+x1x2x5 2 222 080 T4,T6,T7,T8

x1x3x4+x1x2x5 1 777 664 T3

x2x3+x1x2x3x4+x2x3x5+x1x4x5 28 442 624 T4,T8

x1x2x3x4+x1x5 3 809 280 T6,T7

x3x4+x1x2x3x4+x1x5+x1x2x5 106 659 840 T6,T7

x1x2x3+x4x5 5 079 040 T2,T5

x1x2x3x4+x1x5+x1x2x5 26 664 960 T6,T7

x1x3+x1x2x3x4+x1x2x5 19 998 720 T6,T7

x3x4+x1x3x4+x1x2x5 17 776 640 T3,T4,T8

x1x2x3+x2x4+x1x5 3 333 120 T2,T3,T5,T6,T7

x2x3+x1x2x3x4+x1x5 26 664 960 T6,T7

x1x2x3x4+x2x3x5+x1x4x5 284 426 240 T4,T8

x1x2x3x4+x1x2x5+x3x5 213 319 680 T4,T8

x3x4+x1x2x3x4+x1x2x5 35 553 280 T4,T6,T7,T8

Dimension = 6
Representative Size of the class Generated by
x1x2x3x4+x3x4x5+x1x2x6+x5x6 143 350 824 960 T4,T8

x3x4+x1x2x3x4+x1x2x5+x1x6 26 878 279 680 T6,T7

x3x4+x1x3x4+x1x2x5+x1x6 2 239 856 640 T3

x1x3x4+x1x2x5+x1x6 223 985 664 T3

x3x4+x2x5+x1x6 1 777 664 T1

x1x2x3x4+x1x2x5+x1x6 6 719 569 920 T6,T7

x1x2x3+x4x5+x1x6 4 479 713 280 T2,T5

Table 1: The list of affine equivalence classes with MC 3. The size of each
class (i.e., the number of functions in the class) is given for the dimension it
belongs to.

Theorem 3 [13] Let f ∈ B`, with dim(f) = `. Let fn be the embedding of f
in Bn, n ≥ `. The size of the equivalence class [fn] is

|[fn]| = 2n−`|[f`]|
`−1∏
i=0

2n − 2i

2` − 2i
. (13)

Let β(d, k) be the sum of sizes of equivalence classes with multiplica-
tive complexity k and dimension d. For example, β(3, 4) = 32 768 is the
total of the size of the equivalence classes [x1x2x3x4], [x1x2+x1x2x3x4] and
[x2x3+x1x4+x1x2x3x4]. Then, using the Theorem 3, the number of Boolean
functions with MC 3 in Bn is equal to the sum of the sizes of each equivalence
class embedded in Bn. This number can be calculated as

λ(n, 3) =

6∑
d=4

(
2n−d

d−1∏
i=0

2n − 2i

2d − 2i
β(d, 3)

)
(14)
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where

β(4, 3) = 32 768,

β(5, 3) = 775 728 128,

β(6, 3) = 183 894 007 808.

Similarly, the number of Boolean functions with MC 4 can be calculated
as

λ(n, 4) =

8∑
d=5

(
2n−d

d−1∏
i=0

2n − 2i

2d − 2i
β(d, 4)

)
(15)

where

β(5, 4) = 3 515 396 096,

β(6, 4) = 7 944 313 921 970 176,

β(7, 4) = 8 217 135 092 528 316 416,

β(8, 4) = 5 502 415 308 673 798 144.

5 Constructing circuits for Boolean functions with MC 4 or less

The techniques defined in [8] and the exhaustive list of affine equivalence
classes having MC up to 4 allow us to construct AND-optimal circuits for
Boolean functions that have MC up to 4, independent of the number of vari-
ables they are defined on.

Given a Boolean function f ∈ Bn, we first compute dim(f). If dim(f) > 8,
we conclude that f does not belong to any of the equivalence classes with
MC less than or equal to 4, hence C∧(f) > 4. Otherwise, we determine the
equivalence class that it belongs to among the 1305 equivalence classes having
MC up to 4. Next, we find the affine transformation between the representative
of the class and f . Applying the same transformation to the linear inputs of the
topology implementing the representative, a circuit that implements f with a
minimal number of AND gates can be obtained.

As an optimization, instead of working on Bn, the number of variables in f
can be reduced to dim(f) by an affine transformation. Then, the algorithms for
identifying the equivalence class of f and finding the transformation between f
and the representative of its class can be performed in Bdim(f) more efficiently.

6 Conclusion and Future Work

The relation between dimension and multiplicative complexity of Boolean
functions enabled us to exhaustively list all affine equivalence classes with
MC 3 and 4. The MC distribution of Boolean functions with dimension up
to 6 were provided in [8]. In this work, we showed that there are exactly 24
equivalence classes for MC 3. For MC 4, in addition to the classes found in
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[8], we determined the equivalences classes having dimension 7 and 8, which
makes a total of 1277 equivalence classes. Table 2 provides the number of affine
equivalence classes with respect to MC and dimension. The contributions of
this paper were written in bold. Note that it is easy to see that for the shaded
cells the number of affine equivalence classes is zero. We also provide a closed
formula for the number of n-variable functions with MC 3 and 4.

MC
Dimension

2 3 4 5 6 7 8 9 10 11 12 Total

1 1 1
2 1 2 3
3 3 14 7 24
4 26 888 321 42 1277

5 148483 ? ? ? 575 ?
6 931 ? ? ? ? ? ? ?

Table 2: The number of affine equivalence classes with respect to MC and
dimension.

For each equivalence class representative, an AND-optimal circuit has been
constructed. This allows us to construct optimal circuits for any Boolean func-
tion with MC up to 4 independent of the number of variables the functions
are defined on. The method can also be used to determine that a function has
MC greater than 4, if it does not belong to any of the equivalence classes with
MC 4 or less.

The table also includes the known cases for n = 5, 6. The identification
of classes with MC 5 is still in progress. The techniques require more com-
putation resources as the dimension and MC increase. Different techniques or
optimizations may be necessary to find the missing values in the table.
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