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Abstract: 

In the past decade, the field of LC-MS based metabolomics has transformed from an obscure 

specialty into a major “-omics” platform for studying metabolic processes and biomolecular 

characterization. However, as a whole the field is still very fractured, as the nature of the 

instrumentation and of the information produced by the platform essentially creates incompatible 

“islands” of datasets. This lack of data coherency results in the inability to accumulate a critical 

mass of metabolomics data that has enabled other –omics platforms to make impactful 

discoveries and meaningful advances. As such, we have developed a novel algorithm, called 



Disparate Metabolomics Data Reassembler (DIMEDR), which attempts to bridge the 

inconsistencies between incongruent LC-MS metabolomics datasets of the same biological 

sample type. A single “primary” dataset is postprocessed via traditional means of peak 

identification, alignment, and grouping. DIMEDR utilizes this primary dataset as a progenitor 

template by which data from subsequent disparate datasets are reassembled and integrated into a 

unified framework that maximizes spectral feature similarity across all samples. This is 

accomplished by a novel procedure for universal retention time correction and comparison via 

identification of ubiquitous features in the initial primary dataset, which are subsequently utilized 

as endogenous internal standards during integration. For demonstration purposes, two human and 

two mouse urine metabolomics datasets from four unrelated studies acquired over 4 years were 

unified via DIMEDR, which enabled meaningful analysis across otherwise incomparable and 

unrelated datasets. 

 

Introduction: 

 In the past decade, metabolomics has risen to become a crucial platform for in-depth 

analysis of metabolic processes and small molecule characterization in biological systems. The 

US National Institutes of Health’s establishment of six Regional Comprehensive Metabolomics 

Resource Cores, the UK Medical Research Council’s National Phenome Center, as well as 

investments in metabolomics core facilities by countries all over the world 1 attests to the 

immense potential of the field for making transformative discoveries in biological research. 

However, little progress has been made towards building the critical mass of harmonized data 

that has enabled other “-omics” platforms, namely genomics and the GenBank database, to make 

truly meaningful discoveries and impactful advances.  This is largely due to the nature of the 



instrumentation and of the information produced by the platform resulting in “islands” of 

datasets that are often incomparable to one another. Bridging these islands to create more 

harmonized data frameworks is an essential step towards the field’s maturation. 

 Much of the field’s growth can be attributed to advances in high performance liquid 

chromatography (LC) coupled with high resolution mass spectrometry (MS). The proliferation of 

these new technologies has enabled the development of high-throughput analytical workflows 

that offer an unprecedented level of comprehensive quantitative insight into the metabolome. 

However, these new analytical techniques, and the rapid pace of technological progress itself, 

has drawbacks with respect to data coherence. While liquid chromatography has vastly 

simplified sample preparation procedures (to the point where “dilute-and-shoot” methods have 

been advocated) 2, especially in comparison to established separation technologies such as gas 

chromatography, fundamental properties of LC make retention times highly variable. This 

variability is so great, even within the same laboratory, that retention time values are effectively 

irreproducible when considered as a means for aiding compound identification 3. This, coupled 

with a lack of best practice standards for LC method development, makes quantitatively 

meaningful intra- and inter-laboratory comparisons of retention times nearly impossible. While 

inter-instrument data coherence for mass spectrometers is less of an issue, the plethora of 

technologies promulgated by mass spectrometry manufacturers in recent years (MSALL, SWATH, 

MMDF, MSn) 4 further muddies the water in regard to data standardization and compatibility. 

Thus, the rapid pace of development in both the instrumentation and methodologies creates a 

moving target for standardization and impedes data coherency. 

 The rapid pace of development in LC-MS based metabolomics has also resulted in a 

dearth of informatics tools and workflows for data standardization and coherence. Efforts thus 



far have focused on analysis of single batches of experimental data for the purposes of 

identifying statistically significant analytes that may serve as biomarkers or elucidating 

biologically relevant outcomes via metabolic pathway analysis. The vast majority of existing 

bioinformatics tools and workflows for metabolomics, which include XCMS 5, MZmine 6, 

MetaboAnalyst 7, Workflow4metabolomics 8, and MetaboLyzer 9, are geared towards this single 

batch oriented analysis. Several data repositories have also been developed for storing, 

organizing, and curating metabolomics datasets such as the EBI MetaboLights 10 and NIH 

Metabolomics Workbench 11 resources. However, none of these efforts attempt to tackle the 

problem of integrating multiple batches of data from numerous experiments to form a single 

coherent dataset. While such an endeavor may initially seem to have limited use cases, it has 

profound implications when considering the “big picture” of metabolomics and its ultimate goal 

of studying the totality of information contained within the metabolome, which necessitates an 

integrated database consisting of mutually coherent datasets. Such an endeavor exceeds the 

scope and resources of any single laboratory or institution, requiring a concerted and 

collaborative effort by the metabolomics community as a whole, which includes developing tools 

for increased data standardization and coherency. 

With these goals in mind, Disparate Metabolomics Data Reassembler (DIMEDR) was 

developed. DIMEDR reassembles incongruent datasets that have been acquired across multiple 

unrelated experiments into a single coherent data matrix. To do so, DIMEDR prioritizes the 

identification of mutual spectral features across all datasets that are being reassembled, and 

accomplishes this by inspecting features at the individual chromatogram level within each 

dataset. In doing so, both intra- and inter-dataset biases and irregularities can be taken into 

account, which can include intra-set retention time drifts and inter-set shifts, and systematic 



inter-set m/z value biases. Initially, a user-defined primary sample set is selected from the sets 

that are being reassembled. This primary set undergoes a standard feature selection workflow, 

which includes peak picking and retention time correction. This is the basis for the unified data 

matrix template that data from all subsequent sets will be integrated into. Ultimately, the path 

towards universal harmonized metabolomics databases is a challenge that can only be solved 

through concerted community driven efforts that involve both logistical and informatics 

solutions. DIMEDR is an initial step towards bridging these “islands” of incompatible datasets 

through novel informatics methodologies, which will hopefully spur the field to further these 

goals. 

 

Methods and Tools: 

 DIMEDR was written in Python utilizing a variety of open source libraries and tools. 

These include Matplotlib 12, NumPy 13, and the R statistical computing environment 14 via Rpy2 

15. DIMEDR relies on the XCMS CentWave algorithm 16 to conduct peak picking and peak 

integration via R. All code was developed in a Unix environment via Ubuntu 18.04 LTS, and is 

freely available at https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:dimedr along with 

detailed installation instructions.  

 

General Workflow Overview: 

 DIMEDR’s strategy for bridging the inconsistencies between two or more incongruent 

LC-MS metabolomics datasets relies on the use of persistent spectral features that are utilized as 

reference points, called endogenous anchors, for data correction and adjustment procedures. 

Initially, the user chooses a “primary” dataset, which may possess the largest sample size or is 



determined to be of the highest quality. All other datasets are designated as “target” sets whose 

data will be integrated into the unified matrix template, creating a unified matrix. This 

integration is facilitated by endogenous anchors that are initially derived from the primary 

dataset, and subsequently identified in each target set, which act as reference points that enable 

the target spectral features to be assimilated into the primary set. Figure 1 presents an overview 

of this workflow. 

 Data extraction procedures on the primary dataset are initially conducted, which involves 

peak extraction, retention time correction, grouping, and endogenous anchor elucidation. Peak 

picking and integration is independently conducted for each sample in the set via the XCMS 

CentWave algorithm, a widely used and well documented peak extraction algorithm in 

metabolomics. The set of peaks extracted for each sample is then sequentially analyzed by run 

order, examining for the most commonly recurrent matching peaks. This matching is conducted 

via user-defined ppm based m/z error window (e.g. 20 ppm), and a percentage error per unit time 

based retention time window (detailed in the next section). The sequential nature of this 

procedure enables retention time drift and sudden shifts (that may be the result of external factors 

that interrupt the run) to be detected and corrected for. The subset of matched peaks that are 

found to be present in a high percentage of the samples in the primary set (e.g. 90%) are utilized 

as endogenous anchors for retention time correction of all other peaks. These corrected peaks 

subsequently undergo peak grouping via a bottom-up consensus clustering method wherein all 

potential peak groups are calculated utilizing the same peak matching parameters for endogenous 

anchor elucidation, with final groups selected based on a voting schema (detailed in Supporting 

Information). The results are outputted into a data matrix consisting of grouped spectral features, 

defined by its averaged m/z value coupled with a corrected retention time, and their abundance 



values for each sample in the set. This matrix serves as the primary data template by which data 

extracted from every subsequent target dataset is integrated into. 

 Data extraction of subsequent target datasets is conducted independently for each set, and 

is reliant on the endogenous anchors elucidated from the primary dataset extraction. Similar to 

the previous workflow, XCMS CentWave based peak picking and integration is first conducted 

for each sample in a target set. The extracted peak set for each sample is analyzed for the 

presence of endogenous anchors (via m/z value and retention time matching procedures identical 

to the previous workflow), and retention time corrections are made utilizing the subset of 

endogenous anchors found in each sample. All corrected peaks are then matched to the primary 

dataset spectral feature list, and its data incorporated into the unified matrix template. As with 

the primary extraction workflow, this procedure is conducted sequentially for the purposes of 

correcting for retention time drifts and shifts. Once all samples in the target set have been 

analyzed, the subset of peaks that were matched to a primary spectral feature are re-analyzed for 

systemic data errors such as m/z value biasing and post-correction retention time shifts that are 

endemic to the target set as a whole. These results are utilized to make additional corrections to 

the target data to maximize the identification of matching features. 

 The final step of analysis is the incorporation of novel spectral features not found in the 

primary dataset into the unified data matrix. The unmatched corrected peaks that remain after 

analysis of each target set are pooled, and undergo peak grouping identical to the initial 

formation of the primary spectral feature groups. These novel features are then appended to the 

unified matrix. The final result, illustrated in Figure 2, is a unified matrix that incorporates data 

from multiple disjoint metabolomics datasets, enabling analysis across biological samples from 

independent experiments.  



 

Endogenous Anchor Elucidation and Retention Time Correction: 

 The most difficult hurdle in disparate dataset integration is overcoming the high degree of 

variability and fluctuation exhibited by retention time measurements. 17 DIMEDR attempts to 

address this challenge by identifying persistent spectral features in the primary dataset that are 

utilized as endogenous anchors. These endogenous anchors facilitate universal retention time 

correction both within the primary set as well as in all target sets and enables the datasets to be 

unified in a coherent manner. Initial endogenous anchor elucidation in the primary dataset 

involves robust methodologies for calculating retention time error windows and identifying and 

correcting for retention time drifts and shifts. Subsequent retention time correction procedures 

utilizing relative retention times based on these endogenous anchors is conducted on both 

primary and target datasets. 

 Endogenous anchor elucidation begins with identifying persistent spectral features in the 

primary dataset. Extracted peaks for each sample are analyzed sequentially according to their run 

order. In the first sample, all extracted peaks are initially treated as progenitor endogenous 

anchors. An attempt is then made to find a matching peak in the second sample for each 

progenitor anchor, forming endogenous anchors that consist of matched peak sets. Peak 

matching relies on user defined thresholds for determining similar m/z values (e.g. < 20 ppm), 

and retention times as determined by the time differential as a function of the current 

chromatographic run time. For two given retention times, a maximum error per unit run time 

threshold (eR), and a maximum allowable retention time differential (Rmax), the error per unit run 

time calculated between two retention times (RX, RY) must fulfill: 

𝑒! >
|𝑅" − 𝑅#|

𝐶𝐹  



𝐶𝐹 = )
4/𝑒! , max(𝑅" , 𝑅#) < 4/𝑒!

max(𝑅" , 𝑅#) , max(𝑅" , 𝑅#) 	> 4/𝑒! 	𝑎𝑛𝑑	min(𝑅" , 𝑅#) < 	𝑅$%&
𝑅$%&/𝑒! , min(𝑅" , 𝑅#) > 	𝑅$%& 	

 

The correction factor (CF) for the calculation includes an adjustment term at the very beginning 

of the chromatographic run time, but also prevents the absolute retention time difference from 

exceeding a user defined threshold (Rmax). Nonmatching peaks in the second sample are also 

treated as progenitor endogenous anchors. This procedure is sequentially repeated for the 

extracted peaks in each subsequent sample, resulting in the expansion of existing endogenous 

anchor matched peak sets and the formation of new ones. However, a matched peak set is 

discarded if the maximum threshold for missingness is exceeded. For instance, if the minimum 

threshold for a matched peak set to be considered as an endogenous anchor is 90%, and the 

primary dataset consists of 100 samples, then the missingness threshold is 10 samples, i.e. the 

spectral feature can be missing from no more than 10 samples.  

 The sequential nature of the endogenous anchor elucidation procedure allows for 

systemic errors to be detected and corrected for. These errors may result from retention time drift 

which is endemic to liquid chromatography. An attempt is made to account for drift by utilizing 

the most recent retention time in the matched peak set according to the run order when matching 

an extracted peak in the current sample. Errors may also be due to non-ideal runtime conditions 

such as mid-run column cleaning or switching, which can cause sudden retention time shifts. 

Shifts are accounted for by simultaneously utilizing the retention time from the earliest extracted 

peak added to the spectral group to elucidate a potential match for the current sample. While drift 

based matching takes precedence, if a shift based match occurs when a drift based match fails, all 

subsequent drift based matching will reset to the original retention time from the earliest peak 

added to the group. This non-parametric methodology, illustrated in Figure 3, is utilized during 



initial endogenous anchor discovery in the primary dataset, as well as for anchor searching in the 

target datasets.  

 Once endogenous anchors have been acquired from the primary dataset, retention time 

correction can be conducted on all extracted peaks. The endogenous anchors identified in each 

sample act as internal standards by which retention times are calibrated to.  While each member 

peak in an endogenous anchor group A will have a localized retention time for a given sample X 

(𝑅'()%',+!), the endogenous anchor will be represented by the mean retention time (𝑅9+) in the 

final unified matrix. For a raw extracted peak P in sample X, its retention time (𝑅'()%',,!) is 

reinterpreted as the signed difference of a nearby endogenous anchor (via its localized retention 

time), and then recalculated using the endogenous anchor’s mean retention time: 

𝑅)(--.)/.0,,! = 𝑅9+ + (𝑅'()%',+! − 𝑅'()%',,!) 

Corrected retention times are calculated for the n closest endogenous anchors for peak P, with n 

calculated as half the total number of available endogenous anchors available for sample X. The 

final corrected retention time for peak P is the mean of these calculated retention times after 

excluding outliers via 1.5 interquartile range based filtering. This procedure is conducted for 

each extracted peak in every sample in the primary set, as well as in each sample for target sets 

once endogenous anchors have been identified. 

 

Inter-Set Systemic Error Correction Procedures: 

 Inherent to any experimental metabolomics dataset are systemic errors that result from 

real-world factors that cannot be accounted, much less controlled for. These errors, which may 

arise from a combination of factors such as instrument miscalibration and human error, can vary 

in intensity and prevalence from experiment to experiment, even when conducted by the same 



laboratory. Though the result of these errors can be profound and immediately noticeable, its 

effects to the data may be subtle. However, even these subtleties can have a major impact when 

considering the high sensitivity nature of the metabolomics platform, contributing to the inter-

experimental incompatibility of the resulting data. When integrating data from target datasets 

into the unified matrix, DIMEDR attempts to identify set specific systemic errors in the m/z 

values and retention times and correct for them to maximize the number of shared inter-set 

spectral features in the final unified data. Figure 4 illustrates this integration procedure. 

  Systemic errors are characterized for a target dataset after an initial analysis of its 

extracted peaks for matches to primary spectral feature groups. These first-pass matches, which 

are conducted on extracted peaks that have already undergone endogenous anchor based 

retention time correction, are matched based on primary dataset derived m/z and retention time 

parameters. For a given primary feature (F), its n matches for the target set (ti) are re-examined 

to derive an averaged m/z value (𝑀<1,/%-2./) and retention time (𝑅91,/%-2./) that is more 

representative for the set being analyzed: 

𝑀<1,/%-2./ =
∑ 𝑀/"
3
456

𝑛 , 𝑅91,/%-2./ =
∑ 𝑅/"
3
456

𝑛  

These localized parameters, which are derived for each primary dataset spectral feature group, 

are used to find second-pass matches in the remaining unmatched peaks in the target set. In 

doing so, set-specific biases in the m/z values and retention times can be accounted for. 

 These aggregate matches undergo additional analysis to extrapolate localized m/z biases 

for unmatched primary spectral feature groups. Initially, the m/z bias offset for each primary 

spectral feature (F) with target matches is calculated (in ppm) as a function of the primary 

averaged m/z value (𝑀<1,7-4$%-8) and the target averaged m/z value (𝑀<1,/%-2./) which now 

includes the second-pass matches: 



𝑀94%:,1 =
𝑀<1,7-4$%-8 −𝑀<1,/%-2./

𝑀<1,7-4$%-8
∙ 10; 

In considering m/z bias as a function of the m/z value itself, the localization procedure involves 

calculating an inferenced bias offset for an unmatched primary spectral feature (U) by averaging 

the m/z biases for the subset of w existing matched primary spectral features (𝑀94%:,1") within a 

small range  (e.g. +/-10 m/z) of the unmatched primary spectral feature: 

𝑀A94%:,< =
∑ 𝑀94%:,1"
=
456

𝑤  

This extrapolated bias (𝑀A94%:,<) is then utilized to find de novo first-pass matches for the primary 

spectral feature. Second-pass matches are subsequently found via averaging of the first-pass 

match m/z values and retention times as described previously. 

 As a final measure of maximizing coherency between the target and primary datasets, all 

remaining unmatched peaks undergo m/z bias correction utilizing the totality of target peaks that 

have been matched to primary spectral features. This correction procedure is identical to the de 

novo matching procedure as previously described, wherein existing matches are utilized to 

extrapolate potential bias in the m/z values of unmatched peaks, and is calculated utilizing 

matched features that are within a 10 m/z range of the peak being corrected. This m/z bias 

detection and adjustment procedure is crucial for the final stage of the DIMEDR workflow, 

wherein unmatched peaks across all target sets undergo peak grouping to form novel spectral 

features that were not found in the primary dataset.  

 

Analysis of Experimental Data: 

 For demonstration purposes, DIMEDR was used to integrate data from four unrelated 

studies consisting of two human and two mouse urine metabolomics datasets acquired over 4 



years. The human datasets originate from a radiobiology study consisting of 304 human urine 

samples collected from 95 patients undergoing total body irradiation (TBI) at the Memorial 

Sloan Kettering Cancer Center, NYC18 and a colorectal cancer (CRC) recurrence study 

consisting of 40 human urine samples collected from 40 patients at the Georgetown Lombardi 

Cancer Center, DC19. The mouse datasets originate from a radiobiology study consisting of 21 

urine samples collected from C57BL/6N 8-10 week old male mice, and a lipopolysaccharide 

(LPS) exposure study consisting of 24 urine samples from C57BL/6N 8-10 week old male mice, 

both conducted at the Georgetown University Medical Center20. All 389 samples were stored, 

prepared, and analyzed at the Georgetown Lombardi Cancer Center Proteomics and 

Metabolomics Shared Resource between 2010 to 2014. All urine samples were stored at -80°C 

and analyzed utilizing Ultra Performance Liquid Chromatography coupled to time-of-flight mass 

spectrometry utilizing a Waters Corporation QTOF Premier. Samples were run in both positive 

and negative ionization modes, however only the positive mode data was analyzed. 

 DIMEDR was able to integrate data from all datasets into a single unified matrix 

consisting of 35091 spectral features across 389 biological samples. The TBI dataset was 

designated as primary due to its high sample count, and an endogenous anchor threshold of 90% 

(i.e. a spectral feature found in at least 274 of the 304 TBI samples) was used, resulting in 108 

elucidated anchors. An average of 62 anchors per sample were found in the human CRC dataset, 

but only 20 anchors per sample in the mouse LPS and radiation datasets. A total of 23,066 

spectral features were extracted from the initial primary dataset analysis and unified matrix 

template construction, with an additional 12,025 novel features found in the 3 target datasets. 

Figure 5 is a visual representation of the unified matrix, with each feature represented as either a 

red (primary) or a blue (novel) marker, and plotted according to its m/z value and retention time. 



The intensity and size of each marker is a function of the fraction of all samples in which it was 

found to be present. The scale for novel feature presence for this analysis is limited to a 

maximum of 0.2185 as this represents the fraction of samples that are from target sets.  

 Approximately 63% of spectral features in the CRC dataset were matched to the primary 

feature set, while roughly 30% of the features in either of the mouse datasets matched. Table 1 

provides summary statistics of the analysis. DIMEDR provides a visual representation of the 

breakdown of the unified matrix by each of its constituent datasets, as shown in Figure 6. As in 

Figure 5, each marker represents a spectral feature, however in this representation the color 

intensity is normalized to the sample size for each dataset. This breakdown representation 

enables quick visual comparisons to be made between all constituent datasets. From this it is 

easy to identify the largest contributor of novel spectral features (blue markers) as being from the 

two mouse datasets. Furthermore, by examining the distribution of the features it is apparent that 

there are qualitative similarities between the two human datasets, and the two mouse datasets. 

Overall, these results indicate a greater degree of concordance between the two human datasets 

in comparison to the two mouse sets, with the greatest differentiator being the high number of 

novel features originating from the mouse sets. This unified matrix can be used to explore a wide 

range of research topics that extends far beyond the scope of the original experiments that 

generated the constituent datasets.  

 

Discussion: 

 By incorporating pragmatic approaches into a logical framework for data integration, 

DIMEDR can unify otherwise incomparable metabolomics datasets from multiple experiments 

into a single coherent data matrix. In doing so, DIMEDR extends the utility of metabolomics 



datasets beyond their original experimental design, enabling new avenues of research to be 

pursued with existing resources. This is not the first attempt at metabolomics data harmonization, 

with MetMatch 21 having many of the same m/z and retention time correction capabilities and 

even incorporating adduct deconvolution capabilities that DIMEDR lacks. However, DIMEDR’s 

scope is far broader, emphasizing the harmonization of large numbers of potentially disparate 

experimental datasets, accounting for bias at multiple levels of granularity (e.g. individual 

sample versus dataset specific). 

More importantly, taking such an expansive approach can eventually lead to greater 

applications than merely the improved utilization of existing datasets. Data harmonization is a 

critical evolution of the metabolomics platform that will enable large-scale, multi-institutional 

studies with heterogenous data acquisition platforms yielding fully unified datasets, which is 

currently not feasible. DIMEDR is a purely informatics driven approach to data integration, 

focusing on the reduction of confounding factors originating primarily from the instrumentation 

and intrinsic limitations of the technology. But these goals cannot ultimately be achieved through 

technical solutions alone, and they necessitate coordinated efforts by the metabolomics 

community to develop standard protocols, methodologies, and shared resources that work in 

tandem with informatics tools. 

 As DIMEDR represents only an initial step towards metabolomics data harmonization, 

there are indeed significant limitations to its capabilities. The most substantial shortcoming stems 

from the lack of standardization in the field, especially regarding sample preparation and LC 

separation methods. As such, DIMEDR cannot accommodate datasets that have been acquired 

using different LC methods and/or sample preparation procedures. For example, a dataset 

acquired with 30-minute LC runs cannot be compared to data with 10-minute runs due to 



potential differences in operating pressure, nor can DIMEDR handle datasets with different 

gradient elution methods, or different LC techniques such as reverse phase versus hydrophilic 

interaction chromatography (HILIC). Furthermore, reliance on endogenous spectral feature 

anchors for universal data correction requires at least some degree of baseline similarity between 

the constituent datasets, and thus the best results are achieved when all sets originate from the 

same biofluid type, e.g. all urine or all blood serum samples, though it is not a critical restriction 

of the algorithm. Differences in mass accuracy and sensitivity between QTOF and Orbitrap 

instruments also restricts DIMEDR to processing datasets from the same instrument type, 

preferably the same make and model. In its current version, DIMEDR cannot take advantage of 

biological/technical replicates, or diagnostic samples (e.g. QC, pooled, blank) to enhance 

harmonization, though internal standards would necessarily be incorporated as endogenous 

anchors if present in the primary dataset. However, these enhancements can be incorporated in 

future releases. 

A significant aspect of data harmonization that DIMEDR ignores are any batch effects 

that are exhibited in the abundance values of the spectral features when comparing different 

experimental sample sets. For a given sample and spectral feature, DIMEDR outputs the raw 

abundance as extracted by the XCMS CentWave algorithm. No attempt is made to normalize or 

fill in missing values. It was a deliberate design choice during DIMEDR’s development to focus 

solely on maximizing m/z and retention time coherency. Any attempt to “normalize” abundance 

was deemed to have too many pitfalls, as the inherent nature of the metabolomics platform and 

its extreme sensitivity blurs the line between what can be safely deemed “batch effects” and 

biological significance. As such, abundance normalization must be conducted during statistical 

analysis, which many informatics workflows are already capable of.  



 Despite these shortcomings, DIMEDR is nonetheless an enormously capable tool for data 

integration and harmonization. DIMEDR has immediate applications in metabolomics core 

facilities and other shared resource environments where standardized procedures for sample 

preparation and instrument operation are in place. Integrating the high volume of data that is 

produced by a core facility into unified frameworks enables critical insight to be provided on a 

customer’s individual dataset that would otherwise be impossible to glean from isolated analysis. 

DIMEDR expedites this evaluation by providing summary statistics on the average number of 

novel versus incorporated primary features per sample for each target dataset, as well as graphs 

that visualize the entire dataset either as a unified matrix or broken down into its constituent sets. 

Furthermore, meta-data from this unified framework can be utilized by the core for quality 

control purposes, protocol improvement, and even expediting method development for recurrent 

spectral feature identification. This integrated approach can potentially accelerate intra- and 

inter-institutional collaborations as well by identifying correlations between unrelated 

experimental datasets from different labs.  

 Thus far, data harmonization has been an overlooked issue in metabolomics, with far 

more attention given to the pursuit of biologically meaningful results in individual datasets. 

Indeed, the rich datasets that are produced by the platform from even modest experiments 

provide enough “low hanging fruit” to satiate most investigators, and thus the vast majority of 

informatics tools have been designed to analyze data only at the level of a single experiment. 

While the diversity of these solutions indicates that many of the difficulties in analyzing 

individual datasets are by no means completely solved, it is nonetheless vital to look at the 

bigger picture. The ability to bridge these “islands” of datasets was the impetus behind 

DIMEDR’s development, and thereby advances a critical but often unnoticed aspect of the field. 



 

Conclusion: 

 One of the greatest shortcomings of metabolomics is its inability to harmonize 

metabolomics datasets into coherent unified frameworks. While not a comprehensive solution, 

DIMEDR nonetheless makes significant strides in the pursuit of this goal. DIMEDR can 

incorporate multiple experimental datasets, while taking into account the biases and 

idiosyncrasies of each set, to create a single coherent data matrix that maximizes the number of 

shared spectral features. In doing so, DIMEDR permits the exploration of data originating from 

multiple experiments at a far deeper level than traditional meta-analysis techniques and lays the 

groundwork for more ambitious goals of large-scale unified metabolomics data frameworks. 
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Figure 1. An overview of the Disparate Metabolomics Data Reassembler (DIMEDR) workflow for 
integrating potentially incongruent datasets originating from multiple experiments. The 
algorithm relies on an initial selection of a “primary” dataset, with all other datasets designated 
as “target” sets. The primary dataset can be the largest or, what is determined to be the highest 
quality, and serves as the template for creating the unified matrix that data from all other 
target sets will be integrated into. This is facilitated by extracting persistent spectral features 
from the primary dataset, called endogenous anchors, that are utilized as reference points for 
universal data correction. Endogenous anchors are initially identified in each target dataset, 
and subsequently used to align, identify, and integrate mutual spectral features that are shared 
with the primary dataset into the unified matrix. Novel features, for which retention times have 
also been corrected via this process, are collected across all target datasets, grouped, and 
appended to the unified matrix as well. 
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Figure 2. The topology of a unified matrix that has been created by DIMEDR from the 
integration of disjoint datasets from multiple experiments. The template for the unified matrix 
is initially constructed from the primary dataset (Experiment 1), from which all primary spectral 
features originate. Data from all target datasets (Experiments 2-4) are integrated into this 
template, with emphasis placed on maximizing the identification of primary features in each 
sample of a target dataset. Features that do not match any of the primary spectral features are 
considered novel. These novel spectral features are pooled across all target datasets, analyzed, 
and integrated into the unified matrix as well. 
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Figure 3. An illustrative example of DIMEDR’s endogenous anchor elucidation. Spectral features 
that have been identified to be present in a high percentage (e.g. 90%) of the samples in the 
primary dataset are utilized as endogenous anchors (A). Features that are missing in too many 
samples are not considered (B). Retention time drift is compensated for by comparing feature 
retention times sequentially according to sample run order, even if the feature is missing in a 
sample (C). Even retention time shifts, which may be caused by mid-run interruptions, can be 
accounted for by comparing to the retention time from the earliest sample that the feature was 
detected in (D).  
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Figure 4. The workflow for primary spectral feature matching that is conducted for all target 
datasets. A first-pass matching of target spectral features is conducted based on the original 
m/z and retention time values from the primary feature set. These initial matches are then used 
to derive localized values for first-pass matched primary features that better reflect biases in 
the current target dataset, and are used to find second-pass matches. These first and second-
pass matches are both used to make further localizations to unmatched primary spectral 
features to find de novo matches. These localization procedures are also utilized to correct 
novel target spectral features for improved coherency with the primary spectral feature set and 
eventual integration into the unified matrix. 
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Table 1. Summary statistics for the integration of 2 human and 2 mouse datasets via DIMEDR. 
The human TBI dataset was designated as primary due to its large sample size, with all other 
sets designated as targets. Based on the number of endogenous anchors found in the samples 
of the target sets coupled with the percentage of matched primary features, the human CRC 
dataset unsurprisingly bore the greatest similarity with the primary set, while the 2 mouse 
datasets yielded the largest number of unmatched novel features. 
  

Primary Target 1 Target 2 Target 3
Description TBI CRC Radiation LPS

Sample count 304 40 21 24

Sample type Human 
Urine

Human 
Urine

Mouse 
Urine

Mouse 
Urine

Endogenous 
anchors

108 total 
anchors

62.4 
anchors/
sample 

(avg)

20.4 
anchors/
sample 

(avg)

20.8 
anchors/
sample 

(avg)

% matched to 
primary features - 62.7% 31.8% 29.5%

Unmatched novel 
features (avg. 

features/sample)
- 502.25 1918.95 2335.83

Total extracted 
features (avg. 

features/sample)
1358.82 1348.30 2815.24 3309.92



 
Figure 5. A visual representation of the unified matrix created from the integration of 4 
datasets by DIMEDR. Each marker represents a spectral feature, plotted by its m/z value (X-axis) 
and retention time (Y-axis). Markers shaded in red represent primary features that were 
originally found in the primary TBI dataset. Blue shaded markers represent novel features that 
were found to be present only in the 3 target sets. The size and hue of each marker is a function 
of the fraction of the total sample count the spectral feature was found to be present in. As 
such, the upper limit of the novel feature fraction is 85 out of 389 (0.2185), which is reflected in 
the novel feature color bar.   
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Figure 6. A visual representation breaking down the unified matrix into its 4 constituent 
datasets. Each graph consists of spectral features, represented by square markers plotted by 
their m/z (X-axis) and retention times (Y-axis), that are present for the specified dataset. As 
with Figure 5 the markers are colorized as either red (primary features) or blue (novel features), 
however the size and hue are determined by the fraction of samples contained in each 
constituent dataset, rather than the total sample count. Visual inspection reveals obvious 
similarities in both the distribution and presence of spectral features between the two human 
sets (Primary and Target 1) and also the two mouse sets (Target 2 and 3). Furthermore, it is 
apparent the vast majority of novel features originate from the mouse datasets.  
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