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We investigate protocols for optimal molecular detection with electromechanical nanoscale sensors in ambient
conditions. Our models are representative of suspended graphene nanoribbons, which due to their piezoelectric
and electronic properties, provide responsive and versatile sensors. In particular, we analytically account for
the corrections in the electronic transmission function and signal-to-noise ratio originating in environmental
perturbations, such as thermal fluctuations and solvation effects. We also investigate the role of the sampling
time in the current statistics. As a result, we formulate a protocol for optimal sensing based on the modulation
of the Fermi level at fixed bias, and provide approximate forms for the current, linear susceptibility, and
current fluctuations. We show how the algebraic tails in the thermally broadened transmission function affect
the behavior of the signal-to-noise ratio and optimal sensing. These results provide further insights into the
operation of graphene deflectometers and other techniques for electromechanical sensing.
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I. INTRODUCTION
Nanoscale devices that integrate two-dimensional

piezoelectric materials – such as graphene nanoribbons
(GNR) – are feasible alternatives for electromechanical
molecular detection1–8 at room temperature, and in com-
plex environments. This in turn will provide new venues
for electronic-based biomolecular analysis9–21. In this
setting, molecular sensing is possible as a result of the
modifications in the transport properties of the GNR
due to interactions with the analyte, and is limited by
noise originating in environmental fluctuations. The lat-
ter may significantly alter the performance of the device
at room temperature and in wet ionic solutions. Indeed,
we recently showed that the electronic transmission func-
tion turns into a generalized Voigt profile under the in-
fluence of inhomogeneous conditions22. Numerical inves-
tigations in graphene deflectometry23,24 – a proposed de-
tection technique for single molecules that correlates the
local deflection of the graphene nanoribbon with the cur-
rent – illustrate that thermally-induced mechanical fluc-
tuations increase the noise and affect the conditions for
optimal detection.

The electronic conductance through nanoconfined sys-
tems, such as in molecular break junctions25,26, is in-
fluenced by the local structure, variations of which are
sampled during repeated formation of the junction. This
variation is fitted to Gaussian26 and other distributions.
In this case, the complexity in the histograms is of struc-
tural origin, such as the heterogeneity in the orientation
of the molecule at the junction. The histogram of cur-
rents takes a particular form in the presence of exter-
nal mechanical forces27–29, with the structural fluctua-
tions affecting both force and conductance. In the off-
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resonance regime and under elastic conditions, the con-
ductance histogram is an indirect map of the values taken
by the transmission function.

In this paper, we investigate optimal protocols for elec-
tromechanical sensing at room temperature. We demon-
strate that one must account for the environmental ef-
fects imprinted in the Voigt (or generalized Voigt) line-
shape of the transmission function to design optimal sens-
ing protocols. To see this, we consider three cases: a fully
Gaussian picture, exact numerical solution, and an ap-
proximate form for the Voigt distribution. Under ambi-
ent conditions, the current distribution can take complex
forms that vary with the experimental sampling time.
For large sampling times, every distribution approaches
to its Gaussian limit, by the law of large numbers. We
identify for a representative Langevin model the short-
est sampling time, in terms of friction coefficient and re-
duced mass, for which fluctuations decrease as the inverse
of the square root of sampling. When the bias window
– the difference in the electron distribution between the
contacts – is larger than the energy fluctuations induced
by environment, we provide accurate analytical estimates
for the current, fluctuations, and SNR (in the absence
of noise due to the readout electronics) for electrome-
chanical sensing, and demonstrate that it is necessary to
account for the algebraic tails in the Voigt transmission
function for fast sampling times and far away from the
molecular level.

The organization of the paper is as follows. In sec-
tion II, we consider an approximate Gaussian fit for the
transmission function of a single level and investigate op-
timal detection in a protocol that modulates the Fermi
level at fixed bias. This gives a fully analytical – al-
beit approximate – approach to understanding some of
the basic aspects of the optimization problem. Next, in
Sec. III, we analyze the effect of the sampling time in
the current distribution and show that for large enough
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sampling times, the current distribution converges to a
Gaussian form. Finally, in Sec. IV, we revisit the optimal
protocol for sensing accounting for the full Voigt profile
in the Gaussian limit for the current distribution. We
summarize in Sec. V.

II. GAUSSIAN MODEL
Transport properties in the characteristic regimes of

molecular structures can be analyzed by representing the
system with a single level30–33, even when the distribu-
tion of the transmission function deviates from a simple
Lorentzian26,34. This approach can be used to investi-
gate non-interacting tight-binding models, which in the
case of graphene itself, are accurate35–38. For a single
level, we start with the fully Gaussian problem due to its
tractability and to illustrate some of the expected general
principles. As an implication of the central limit theo-
rem, current distributions should converge to a Gaussian
form for long sampling times. Thus, a Gaussian model
should be representative, with corrections dependent on
the sampling time and also the Gaussian approximation
to the bias window (discussed in the Supplementary Ma-
terial). We consider a Gaussian fit to the transmission
function T of a single level εp with homogeneous broad-
ening σT

T = Ae
− (ε−εp)2

2σ2
T , (1)

and investigate modifications in T resulting from the in-
homogeneous fluctuations in the level energy εp due to
the noisy environment. In Eq. (1), A is a normalization
constant independent of the level energy. We assume
that the source of inhomogeneous broadening modifies εp
around its equilibrium value ε̄p according to the Gaussian
distribution

g(εp − ε̄p) = 1√
2πσ2

S
e
− (εp−ε̄p)2

2σ2
S . (2)

For some systems22,24, σ2
S is proportional to the environ-

mental temperature. In particular, for sensors made of
graphene nanoribbons, the most important fluctuations
are on the order of nanoseconds and are well-separated
from the timescale for electron transport. Moreover,
we assume that the length of the suspended structure
is shorter than the mean-free-path for an electron in
graphene. The average thermally broadened form of the
transmission function is

〈T 〉 =
∫
dεpT (ε− εp)g(εp − ε̄p) (3)

= AσT√
σ2
T + σ2

S
e
− (ε−ε̄p)2

2(σ2
T

+σ2
S) . (4)

As a result, thermal broadening of a Gaussian transmis-
sion function does not change the qualitative form of the

transmission function, but modifies its spread as the con-
tribution of two independent mechanisms. The station-
ary current is given by the Landauer-Büttiker formula

〈I〉 = 2e
~

∫
dε

2π 〈T (ε− ε̄p)〉 [fL(ε)− fR(ε)] , (5)

in terms of 〈T 〉, and where f denotes the Fermi func-
tion fL/R(ε) = [exp(β(ε − µL/R) + 1]−1, µL/R is the
chemical potential at the left/right contact and β is the
inverse temperature. This form of the current depends
on the separation of the timescales between electronic
and atomic dynamics, and the fact that environmental
fluctuations ensure that atomic coherences are rapidly
suppressed. In the discussion below, we consider that a
symmetric bias of magnitude ∆µ is applied to the sys-
tem, such that µL = µ + ∆µ/2 and µR = µ − ∆µ/2,
with Fermi energy µ. At room temperature and under
small bias, an accurate approximation to the bias window
(BW) is given by the form

fL(ε)− fR(ε) ≈ tanh
(
β∆µ

4

)
e
− (ε−µ)2

2σ2
BW , (6)

where σ2
BW is a measure of the bias window broad-

ening determined by the full-width at half maximum
σBWβ

√
2 ln 2 = arccosh(2 + cosh(∆µβ/4)). From

Eqs. (4), (5), and (6) we obtain a closed form for the
inhomogeneous average of the current 〈I〉

〈I〉 = IGe
− (ε̄p−µ)2

2σ2 , (7)

where IG is given by

IG = 2e
h

AσTσBW√
2πσ

tanh
(
β∆µ

4

)
, (8)

and σ2 = σ2
T + σ2

S + σ2
BW. A closed form for the

thermally-broadened linear susceptibility χε also follows
from Eq. (6)

χε = 2e
~

∫
dε

2π 〈∂ε̄pT 〉 [fL(ε)− fR(ε)] , (9)

= 1
σ2 (ε̄p − µ)〈I〉, (10)

which indicates that for a Gaussian fit to the transmission
function the linear response is proportional to the average
current.

Next we account for fluctuations in the current 〈I〉 orig-
inating in the inhomogeneous environment, and consider
the variance in the current distribution σ2

I = 〈I2〉− 〈I〉2.
For a given realization of the energy level εp, the instant
current through the level is

I(εp) = 2e
~

∫
dε

2πT (ε− εp) [fL(ε)− fR(ε)] , (11)

= IG σ√
σ2
T + σ2

BW
e
− (εp−µ)2

2(σ2
T

+σ2
BW) . (12)
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This allows us to compute 〈I2〉 and σ2
I , and obtain

〈I2〉 =
∫
dεpI(εp)2g(εp − ε̄p) (13)

= I2
Gσ

2√
(σ2 − σ2

S)(σ2 + σ2
S)
e
− (ε̄p−µ)2

σ2+σ2
S (14)

and

σ2
I = I2

G σ
2

 e
− (ε̄p−µ)2

σ2+σ2
S√

σ4 − σ4
S
− e−

(ε̄p−µ)2

σ2

σ2

 . (15)

This is always positive39 and, in the absence of thermal
fluctuations (σS = 0), it vanishes. The quantity σI cap-
tures the excess fluctuations in the current induced by
the local environment.

A protocol for electromechanical detection that records
the current – or more precisely changes in the current – at
a fixed bias ∆µ, can be optimized in terms of the Fermi
level µ. The results in Eqs. (10) and (15) provide the
following analytical estimates for optimal detection.

For a given shift in the equilibrium energy level
∆ε = εp −ε̄p, the maximal change in the current magni-
tude, |∆〈I〉| = |〈I(ε̄p)〉−〈I(ε̄p+∆εp)〉|, is obtained from
|∂µχε| = 0. In terms of the Fermi level µ, this maximum
is achieved at

µ∗∆I = ε̄p ± σ. (16)

This result is natural for the Gaussian form for 〈I〉 found
in Eq. (7). The maximum change in the current for
a small change in peak position (ε̄p) occurs when the
derivative with respect to ε̄p is maximal. This happens
at ±σ from the peak for a Gaussian.

Current fluctuations, as accounted for by σI , have a
local minimum when µ = ε̄p, and are maximal at40

µ∗σI = ε̄p ±
σ

σS

√
(σ2 + σ2

S)×√√√√ln
[

(σ2 + σ2
S)
√
σ4 − σ4

S
σ4

]
, (17)

when the ratio σ2
S/σ

2 is between zero and
approximately41 0.839. Beyond this range, thermal
fluctuations dominate and σI is maximal at the current
maximum (µ = ε̄p). On the other hand, the result in
Eq. (17) simplifies substantially when the bias window
is large compared to the thermal fluctuations (i.e.,
σS < σBW)

µ∗σI (σS < σBW) ≈ ε̄p ± σ
(

1− σ4
S

2σ4

)
, (18)

and in the limit of weak thermal fluctuations σS � σ,
µ∗σI and µ∗∆I coincide.

An optimal protocol for sensing must maximize the
signal-to-noise ratio SNR defined by

SNR = |∆I|
σI

= |χε∆ε|
σI

, (19)

For the proposed sensing protocol and when the bias win-
dow is large (i.e., σS < σBW), optimal values are approx-
imately achieved at42

µ∗SNR ≈ ε̄p ±
σ

σS

√√√√(σ2 + σ2
S) ln

[
σ√

σ2 − σ2
S

]
. (20)

Again, we can provide a simpler form in the case of a
large bias window

µ∗SNR ≈ ε̄p ±
σ√
2

(
1 + 3

2
σ2

S
σ2 + 1

4
σ4

S
σ4

)
. (21)

Notice that when thermal fluctuations are small
(i.e., σS � σ), the maximum in the SNR occurs at
µ∗SNR = ε̄p ± σ/

√
2, that is, closer to the current max-

imum than the maximal response µ∗∆I in Eq. (16). We
note that some of these considerations depend on the bias
window approximation. However, the Gaussian bias win-
dow approximation works well near the Fermi level (i.e.,
within ±σ) and thus the expressions are accurate for the
important cases.

III. SAMPLING TIME AND NORMAL DISTRIBUTION

The statistical properties in the current are also deter-
mined by the sampling time τ . Different mechanisms of
electronic and structural relaxation, and electron transfer
(intramolecular and to the contacts) contribute at differ-
ent timescales to the total noise and broadening. For
large enough sampling times, structurally induced fluc-
tuations in the current naturally converge to a Gaussian
distribution. We emphasize that the sources of random-
ness in the current that we investigate here originate in
thermal and environmental fluctuations, and are different
from those due to geometric factors, such as device-to-
device structural variations and randomness in the bind-
ing strength to the contacts. The latter histograms treat
the structure as static, in which mechanical fluctuations
are averaged over during a current measurement.

We start by considering a simple model, in which the
energy of the level varies as a function of a structural pa-
rameter Y , which we assume follows a Langevin equation
of motion. We are interested in sensing protocols at room
temperature and complex environments where the atomic
dynamics dephase rapidly. Moreover, for short nanorib-
bons, an electron injected at the Fermi energy should
cross in the 10’s of femtoseconds, allowing for multiple
reflection at the electrode interfaces (the transit across
one length of the nanoribbon is even less). These condi-
tions are sufficient for a classical description of the atomic



4

motion and fluctuations, while electron dynamics are cal-
culated from quantum mechanical principles. Thus, en-
ergy oscillations originate on random forces acting on Y ,
subject to a relaxation process with characteristic fric-
tion coefficient η and spring constant κ. For this model,
fluctuations in the current are determined by those in Y
around the equilibrium value Ȳ (i.e., δY = Y − Ȳ ). To
first order in this parameter σ2

I ≈ σ2
Y

(
∂Y I(Ȳ )

)2. We
obtain σ2

Y from the time correlation function for the pa-
rameter Y (see Appendix A), and find that

σ2
I ∝ σ2

Y = η

τκ2β
, (first order) (22)

for sampling times τ > η−1m, where m is the mass of
the oscillator. Next, we investigate the linear mechanical
susceptibility χY . By considering linear deviations from
equilibrium interatomic distances ∆Y in Eq. (5), we ob-
tain the linear response in the stationary current in the
form ∆I = χY ∆Y , and we notice that χY is independent
of the sampling time43. Consequently, we also show that

SNR ∝

√
κ2βτ

η
. (23)

Thus, as usual, the SNR improves as one increases the
sampling time as the square root of the sampling time
and deteriorates when one increases the temperature or
the mechanical friction. This is a standard result for
sampling, which is relevant to deflectometry in hot, wet
environments.

The above discussion followed from the observation
that for large sampling times, as compared to internal
relaxation processes, the correlation between sequential
events (i.e., the memory of the system) diminishes (Ap-
pendix A). More generally, we can consider that the ac-
tive material in the electromechanical sensor system has
a characteristic time τo, for which two sequential read-
ings in the current are independent. For a suspended
graphene nanoribbon, this time is given by the relaxation
time to a new independent configuration. In other words,
the current read over a timescale τo gives one indepen-
dent sample from the energy space for εp. Measuring at
time τ > τo must therefore provide τ/τo = n independent
reads44. For a family of n current readings, let us define
a new random variable Iτ = 1

n

∑n
i=1 Ii, corresponding

to the measured current for a sampling time τ = τon.
Then the first three central moments for the distribution
of Iτ are (Appendix B)

〈Iτ − Ī〉o = 0, (24)

〈(Iτ − Ī)2〉o = τo
τ
σ2
I , (25)

〈(Iτ − Ī)3〉o =
(τo
τ

)2
s3, (26)

where s3 is the third moment (skewness) for the current
distribution, and 〈〉o is the arithmetic mean. In the usual

a b

dc

FIG. 1. (Color online) Current histograms for different sam-
pling times τ = nτo, where τo is the minimum time for which
two sequential readings in the current are independent. A
random sequence in the current is generated by sampling
{ε(i)
p } according to Eq. (2), and for each value ε(i)

p we com-
pute the current I(ε(i)

p ), as in Eq. (11). (a) n = 1 (b) n = 2
(c) n = 4 (d) n = 8. Parameters for this model are taken
from Ref. 22 and are chosen to reproduce the first peak in
the transmission function for a suspended graphene nanorib-
bon: εp = 0.153 eV, w = 1.3 meV, σS = 14 meV (such that,
σ2

S = 7.57 meV/β), µ = 0.07 eV, ∆µ = 50 meV and 300 K.
These results are for an initial sample size of 40000, represent-
ing measurements at τ = τo, and that we rescale proportion-
ally for larger sampling times. Thus, the number of points
used in each histogram is (a) 40000, (b) 20000, (c) 10000, and
(d) 5000. The standard deviation for each bin is less than 6
counts, and it is smaller than the thickness of bin borderline.

way, the variance decreases as the inverse of the number
of independent measurements while the expectation value
does not change.

Another important remark resulting from Eq. (26) is
that the current distribution should quickly converge to
a Gaussian distribution. In Fig. 1 we numerically ob-
serve this convergence by following the evolution of the
histograms for the current for several sampling time ra-
tios n. Significantly, Fig. 1 shows that at room temper-
ature the current distribution for our model system is
already quite close to a normal distribution in its bulk
when τ = 8τo – which otherwise is asymmetric following
the detailed form of the fluctuations in the transmission
function encoded in the Voigt profile (see Ref. 22)45. In
Fig. 2, we show the SNR as a function of the Fermi en-
ergy and for several sampling times. The enhancement
in the SNR observed for larger sampling times, follows
the trend anticipated in Eq. (23), i.e., it is proportional
to
√
τ/τo. As we will find in the next section, the tails

approach to a limit value proportional to 1/σS, with a
proportionality constant increasing with sampling time.
The position at the maximum in the SNR, already iden-
tified in the Gaussian model Eqs. (20) and (21), does
not significantly change with the sampling time for this
model. This result follows from the observation that the
location of the maxima depends on the total broadening,
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FIG. 2. (Color online) SNR as a function of the Fermi energy
µ for different sampling times τ = nτo. (black) n = 1 (blue)
n = 2 (green) n = 4 (red) n = 8. Parameters for this model
are the same than those in Fig. 1.

which also includes the effect of the bias window, and the
latter is not modified by rescaling. For the model and the
sensing protocol investigated here, σBW � σS such that
total broadening σ ≈ σBW.

More generally, the sampling time will progressively
washout the influence of the algebraic tails46 in the cur-
rent distribution. Thus, the Gaussian model in Sec. II
is a good representation of the current distribution near
its average value and for large sampling times relative to
τo. For a suspended graphene nanoribbon, τo is given by
the relaxation time to a new independent configuration.
In Ref. 24, such time is found to vary between 80 ps and
190 ps for a nanoribbon of 15 nm × 10 nm immersed in a
water solution. We will further verify that the Gaussian
model provides a good qualitative description of the pro-
posed sensing protocol in the next section, but will also
find that this approximation fails to accurately predict
the form of the SNR.

IV. APPROXIMATE VOIGT FORMS

In this section we examine optimal protocols for sens-
ing energy shifts on a single level, taking into account the
algebraic expression for the transmission function and its
thermally broadened Voigt form22,24. Complementary to
our previous work in Ref. 22, here we provide approx-
imate analytical expressions for the current, noise, and
electromechanical susceptibility.

The Taylor series of the current functional I(εp)
around the equilibrium energy ε̄p can be used to approx-
imate 〈I〉 as well as σI (see Ref. 22). Importantly, this
approach leads to improved results as we include more
terms in the expansion. In the case that εp is normally
distributed as in Eq. (2), the moments of the distribution
Eq. (2) are entirely determined by σS (n ≥ 1):

〈(εp − ε̄p)(2n−1)〉g = 0 (27)
〈(εp − ε̄p)2n〉g = (2n− 1)!!σ2n

S . (28)

It follows that up to second order in σS

〈I〉 = I(ε̄p) + σ2
S

2 ∂2
εpI(ε̄p), (29)

σ2
I = σ2

S

[(
∂εpI(ε̄p)

)2 + 1
2

(
∂2
εpI(ε̄p)

)2
σ2

S

]
(30)

= σ2
S

[(
∂εpI(ε̄p)

)2 + 2(〈I〉 − I(ε̄p))2
]
. (31)

We also observe that 〈I〉 → I(ε̄p), and σ2
I → 0 as

σ2
S → 0. This shows that this variance captures the ex-

cess current noise due to mechanical fluctuations. We
calculate I(εp) from the exact form of the transmission
function

T (ε− εp) = w2

(ε− εp)2 + w2 , (32)

for a single level coupled to two reservoirs with strength
w. Utilizing the Gaussian approximation to the bias win-
dow, Eq. (6), and writing T in Eq. (32) as a partial frac-
tion expansion (see Ref. 22), we obtain

I(εp) = IVσBWRe
[(√

π

2σ2
BW
− J(E, σBW)

)
e

E2
2σ2

BW

]
,

(33)

with

IV = 2e
h

w√
2π

tanh
(
β∆µ

4

)
, (34)

E = w + i(εp − µ) , Ē = w + i(ε̄p − µ), and

J(E, σ) = E

σ2

∫ 1

0
dαe−

α2E2
2σ2 =

√
π

2 erf
(

E√
2σ

)
. (35)

The current in Eq. (33) takes the form of a Voigt profile
in terms of the Fermi energy µ, and consequently, should
decay algebraically far from the peak maximum µ = ε̄p.
This is in contrast with the result for the model in Sec. II
in Eq. (12), in which case the decay is Gaussian. In
terms of the bias window ∆µ, the currents in Eqs. (12)
and (33) qualitatively agree, as the current amplitudes
IG and IV have the same functional form. In particular,
IG and IV coincide when the bias window dominates the
fluctuations (i.e., σ ≈ σBW) and if σT = w.

To compute 〈I〉 from (33), utilizing Eq. (29), we notice
that47

∂I(εp)
∂εp

= 1
σ2

BW
Σ2(εp) (36)

∂2I(εp)
∂ε2
p

= 1
σ4

BW
Σ4(εp), (37)
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a c e

b fd

FIG. 3. (Color online) Sensing protocol for energy level shifts, analyzed with a Gaussian (a,b), numerically exact (c,d) and
Voigt (e,f) estimates, for the system in Fig. 1. (a,c,e) Current (blue) and SNR (red) as a function of the Fermi level µ at a fixed
symmetric bias of ∆µ = 50 meV. (b,d,f) Current variance (orange) and electromechanical susceptibility (purple) as a function
of Fermi level µ. Parameters for this model are taken from Ref. 22 and Fig. 1, and are representative of suspended graphene
nanoribbons. ε̄p = 0.153 eV, w = 1.3 meV, and 300 K. For the Gaussian model we use the parameters that fit the maximum
and width at half maximum of the transmission function, i.e., A = 1 and σT = w/

√
2 ln 2 ≈ 0.85w (other parameters for the

Gaussian model can be used depending on what properties one wants to reproduce, such as using σT = w to match the current
fluctuations).

where we have introduced the coefficients Σ2n, which are
proportional to the nth derivative of the current with
respect to εp, with proportionality constant 1/σ2n

BW. Ex-
plicitly

Σ2(εp) = (εp − µ)I(εp)− wK(εp) (38)
Σ4(εp) = w σBW IV + 2w(εp − µ)K(εp)

− (σ2
BW + Re[Ē2])I(εp), (39)

with the auxiliary function K(εp) defined as the imagi-
nary counterpart48 of I(εp) in Eq. (33). Therefore, the
stationary current under thermal fluctuations is

〈I〉 = I(ε̄p) + 1
2
σ2
S

σ4
BW

Σ4(ε̄p). (40)

Likewise, the contribution to the current variance due to
environmental noise, Eq. (31), is

σ2
I = σ2

S
σ4

BW
Σ2

2(εp) + 1
2
σ4

S
σ8

BW
Σ2

4(εp). (41)

We must emphasize that in the derivation of Eqs. (40)
and (41) we utilized only two approximations: the Gaus-
sian form for the bias window in Eq. (6), and the trun-
cated Taylor series Eqs. (29)-(31). These expansions for
the thermally broadened current and variance up to sec-
ond order in σ2

S are accurate whenever thermal fluctu-
ations are small compared with the bias window, i.e.,

σS < σBW, as is the case for the system investigated in
Fig. 1.

Next we provide an analytic expression for the suscep-
tibility χε that we find by considering linear deviations
in the current in Eqs. (33) and (40), due to a controlled
level shift ∆ε. The details of this derivation are presented
in Appendix C, and the resulting approximate form is

χε ≈
Σ2(ε̄p)
σ2

BW

+ σ2
S

2σ4
BW

[(
Re[Ē2]
σ2

BW
+ 1
)

Σ2 + 2w(ε̄p − µ)
σ2

BW
ξ2

]
εp=ε̄p

,

(42)

where ξ2 is defined by

ξ2 = wI(εp)− (εp − µ)K(εp). (43)

The expressions in Eqs. (41) and (42) for the current
noise and susceptibility indicate that the SNR for the pro-
tocol here investigated reaches the limit value |∆ε|/σS,
when the bias window dominates the fluctuations49 (i.e.,
σS � σBW). We note that readout noise will have a more
substantial effect when the Fermi level and the transmit-
ting mode are well separated in energy, but this is far
from the optimum setup that we find below. We also note
that the variance σ2

I in Eq. (41) has an amplitude pro-
portional to I2

V, while for the Gaussian model in Sec. II,
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Eq. (15) is proportional to I2
G. It follows that current

fluctuations due to the noisy environment agree for both
models when σT = w, and when the bias window is large.

We can now identify the signatures of inhomogeneous
broadening in the current, current fluctuations and the
SNR for the protocol investigated in Sec. II. In Fig. 3,
we compare these magnitudes for the model in Fig. 1, as
obtained by numerical integration and with the analytical
predictions for the fully Gaussian and the approximate
Voigt forms for the transmission function. We observe
that for this system σS < σBW. The approximate Voigt
forms obtained in this section are valid in this regime.

We also observe that most qualitative properties in the
current, the linear response and the fluctuations near the
main peak are captured already by the Gaussian approx-
imation to the transmission function (Figs. 3b,d,f) dis-
cussed in Sec. II. Deviations are due to the impossibility
of fitting a Gaussian to a Lorentzian distribution with
full accuracy, and because they have different decays far
from its center ε̄p. This difference is manifested in the
qualitative behavior predicted for the SNR: the correct
decay of the SNR from the main peak is only captured
by the Voigt profile. Indeed, in the Gaussian picture χε
and σI decay far from the point of current maximum as
e−µ

2/(2σ2) and e−µ
2/(2(σ2+σ2

S)), respectively. As a conse-
quence, the SNR also decays as e−µ2σ2

S/(σ
2(σ2+σ2

S)). On
the contrary, the Voigt forms derived above decay alge-
braically and the SNR approaches asymptotically to a
constant value proportional to 1/σS. This difference in
the tails is shown in Fig. 4a, where both analytic forms
for the SNR are contrasted with the exact result. The
approximate Voigt forms decay faster than the numeri-
cally exact tails to the asymptotic value. This difference
is due to the Gaussian approximation to the bias win-
dow: when the overlap between the bias window and the
transmission function is small, this approximation under-
estimates the current and its response as we modulate µ.
Figure 4a shows two maxima near the main depth for the
SNR calculated from the approximate Voigt expressions.
We can understand the main characteristics in the SNR
from the approximate Voigt form by writing

SNR ≈ 1
σS

(
1 + 1

2
σ2

S
σ4

BW

Σ2
4

Σ2
2

)−1/2

. (44)

First, we notice that a maximum in the SNR occurs when
the ratio |Σ4/Σ2| is minimal, and that this observation
leads to the estimate µmax = εp ± σBW

50. The SNR
ratio then decays as the Gaussian component of the Voigt
form and reaches a minimum value near the turnover
point, where the algebraic decay determined by the error
distribution dominates the decay. This is illustrated in
Fig. 4b.

In summary, while qualitatively for the parameters in
Fig. 3, either the Gaussian model or the approximate
Voigt forms are reasonable, but the latter captures the
SNR and current better, however, in other parameter
regimes, in particular when the Fermi level is far from

a

b

FIG. 4. (Color online) Signal-to-noise ratio SNR far from the
peak. (a) SNR for a the fully Gaussian (blue, dashed) and
the Voigt (red, solid), and numerical integration (black, dots)
for the model system investigated in Fig. 3. Notice that the
SNR obtained from the Gaussian approximation to the trans-
mission function decays to zero far from the main feature. In
the case of the approximate Voigt forms the SNR achieves
a constant nonzero value proportional to 1/σS, in agreement
with the numerical result, albeit with a more rapid rise to
the large µ SNR. This is due to the Gaussian approximation
to the bias window in Eq. (6). (b) SNR from the approxi-
mate Voigt forms and the ratio between the second and first
derivatives of the current, showing that the maximum in the
SNR occurs near µ = εp ± σBW, and the minima in the tails
correspond to local maxima in the derivative ratio near the
point where the Voigt profile decays only algebraically.

the transmitting mode, only the Voigt form captures the
behavior of the SNR.

V. CONCLUSIONS
We studied the electric current and fluctuations un-

der inhomogeneous environmental conditions, providing
analytical expressions for these quantities in two limit-
ing cases. When the electronic transmission function is
approximated by a Gaussian form, these magnitudes are
Gaussian as well, with variance determined by the inde-
pendent contribution of the coupling to the metal, the
bias, and inhomogeneous conditions. On the contrary,
starting from the exact rational form of the transmis-
sion function, the current takes a Voigt form. The Voigt
lineshape is also imprinted in the behavior of the fluc-
tuations. We also derived expressions for the electrical
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susceptibility and SNR in both cases and analyzed a pro-
tocol for optimal sensing. These results indicate that the
algebraic decay in the Voigt forms, due to the inhomoge-
neous conditions, generally must be incorporated in the
description and design of optimal sensing protocols, al-
though approximations such as the Gaussian model can
capture the proper behavior in particular parameter re-
gions.

VI. SUPPLEMENTARY MATERIAL
See supplementary material for an extended analysis of

the Gaussian approximation to the bias window, current
histograms as well as additional details on the derivation
of the approximate Voigt forms.
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Appendix A: Derivation of SNR in Eq. (23)
For a Brownian particle Y in a quadratic potential with

mass m, Ȳ = 0, spring constant κ, and frequency ωo, the
correlation function CY (t) is given by51

CY (t) = 1
κβ

e−
η

2m t

(
cosω1t+ η

2mω1
sinω1t

)
, (A1)

with ω2
1 = ω2

o − (η/2m)2. Defining y = (1/τ)
∫ τ

0 dtY (t)
and utilizing Eq. (A1) one can evaluate

〈
δy2〉 as follows.

First notice that 〈y〉 = (1/τ)
∫ τ

0 dt〈Y (t)〉 = 0, such that
〈δy2〉 = 〈y2〉 and

〈y2〉 = 1
τ2

∫ τ

0
dt

∫ τ

o

dt′〈Y (t)Y (t′)〉, (A2)

which can be written in terms of the variables s = t− t′
and α = (t+ t′)/2 such that 〈Y (t)Y (t′)〉 = CY (s). After
integration with respect to the new variables we obtain

〈y2〉 = η

τκ2β

+ e−
η

2m τ

τω1κβ

[
sin(ω1τ) + η

m
Re
(

eiω1τ

ω + iη/2m

)]
,

(A3)

and we can disregard the second term in the case τ >
η−1m.

Appendix B: Sampling time, variance and skewness
Here we show that the third moment, decays as the

inverse of the square of the sampling time. First, for the

variance

〈
(Iτ − Ī)2〉 = 1

n2

〈(
n∑
i

Ii − Ī

)2〉
(B1)

= 1
n2

〈
n∑
i

(Ii − Ī)2

〉

+ 2
n2

〈∑
i

∑
j>i

(Ii − Ī)(Ij − Ī)
〉

(B2)

= 1
n2

n∑
i

σ2 = 1
n
σ2. (B3)

For the skewness, we notice that(
n∑
i

Ii − Ī

)3

=
n∑
i

(Ii − Ī)3 + 2
n∑
i

(Ii − Ī)2
∑
j>i

(Ij − Ī)

+ 6
n∑
i

∑
j>i

∑
k>j

(Ii − Ī)(Ij − Ī)(Ik − Ī)

(B4)

The result in Eq. (26) follows from this result, and the
fact the expectation 〈〉 is a linear function.

Appendix C: Electromechanical susceptibility χε
In this section we derive the electrochemical suscepti-

bility χε. We begin by writing the instantaneous current
in Eq. (33) for a shifted energy level εp + ∆ε

I(εp + ∆ε) = wσBW√
2π

tanh
(
β∆µ

4

)
×

Re
[(√

π

2σ2
BW
− J(E + i∆ε, σBW)

)
e

(E+i∆ε)2

2σ2
BW

]
,

(C1)

perform expansions in terms ∆ε, and recover the linear
terms in the level shift. For this, we utilize the approxi-
mations

(E + i∆ε)2 ≈ E2 + 2iE∆ε (C2)

e
(E+i∆ε)2

2σ2
BW ≈ e

E2
2σ2

BW

(
1 + i

E∆ε
σ2

BW

)
(C3)

J(E + i∆ε, σBW) ≈ J(E, σBW) + i∆ε ∂

∂E
J(E, σBW),

(C4)

which hold for small shifts. As a result, we linear form
of Eq. (C1) is

I(1)(εp + ∆ε) = I(εp) + ∆ε Σ2

σ2
BW

. (C5)

In a similar fashion we find

K(1)(εp + ∆ε) = K(εp) + ∆εξ2(ε̄)
σ2

BW
. (C6)
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with ξ2 given by Eq. (43). Substituting Eqs. (C5) and
(C6) in Eq. (40), and collecting only terms that are linear
in ∆ε we obtain the expression in Eq. (42).
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I. TRANSMISSION FUNCTION, VOIGT PROFILE, AND
BIAS WINDOW

As a result of the environmental fluctuations, the elec-
tronic transmission properties of suspended graphene
nanoribbons experience inhomogeneous broadening, in
addition to the smearing imprinted by the metallic con-
tacts. In case the fluctuations are slow relative to the

b

a

FIG. S1. Transmission electronic function and Bias window
for a single level coupled to two fermionic reservoirs.(a) The
Lorentzian transmission function T (black, dashed) and the
normal distribution of eigenvalues εp (red, solid). (b) The
Voigt profile 〈T 〉 (Red, solid) resulting from the convolution of
T and g, and the bias window (brown, solid) for a symmetric
bias at 300 K. Parameters for this model are ε̄p = 0.153 eV,
w = 1.3 meV, σS = 14 meV, µ = 0.14 eV and ∆µ = 50 meV.

a)Electronic mail: mpz@nist.gov

time scale for electron transport, a separation of nu-
clear and electronic degrees of freedom is possible in
the form of the Born-Oppenheimer approximation (see
Ref. 18). The effective transmission function 〈T 〉 is there-
fore the thermal average of the electronic transmission
function T over the multiple configurations accessible to
the graphene matrix. If the fluctuations follow a Gaus-
sian distribution such as in Eq. (2), 〈T 〉 takes the form
of a Voigt and Generalized Voigt profile, whenever T is
a Lorentzian or rational form, respectively. In Fig. S1,
we compare the static T (ε, ε̄p) and thermally broadened
(Voigt) transmission functions 〈T (ε)〉 for the particular
case of a single level εp coupled to two fermionic reser-
voirs. We also show the profile for the bias window,
fL(ε)−fR(ε), and the normal distribution for the energy
level εp at 300 K, with a standard deviation of 14 meV
and centered at ε̄p = 0.153 eV.

II. GAUSSIAN APPROXIMATION TO THE BIAS
WINDOW.

Electron transport through suspended graphene
nanoribbons is possible due to the coupling between the
graphene electronic modes and those of the metals, and
is driven by the drop in potential energy experienced
by an electron transferred between the contacts. This
driving force is determined by bias window: the dif-
ference in equilibrium electron distribution between the
contacts fL(ε) − fR(ε), where fL/R denotes the Fermi
function for the left/right metal. A bias window can be
induced by, for example, the difference in chemical po-
tential ∆µ = µL−µR. Figure S1b shows a particular re-
alization of the bias window near room temperature with
∆µ = 50 meV. The Fermi function f varies smoothly near
the Fermi energy µ, and the difference in the electron dis-
tribution in the contacts has a bell shape. We introduce
a Gaussian approximation GBW to the bias window and
assess the accuracy of this approximation. A Gaussian
function is defined to match the maximum and the width
at half maximum of fL− fR. The resulting expression is
Eq. (6). In Fig. S2 we compare the exact and approxi-
mate forms, and show how the Gaussian approximation
to the bias window performs at different temperatures
and gradient in chemical potential.

In order to quantify the accuracy of the approximation,



2

a

b

c

d

FIG. S2. Bias Window fL(ε) − fR(ε) and the Gaussian ap-
proximation Eq. (6). (a) A numerical comparison of the ex-
act (red, solid) and the approximate (blued, dashed) forms at
300 K, ∆µ = 50 meV and µ = 0.153 eV. (b) Normalized differ-
ence δBW as a function of the difference in chemical potential
∆µ at 100 K (blue, solid) and 300 K (red, dashed). (c) δBW
as a function of the contact temperature for ∆µ = 0.1 eV
(Black, solid) and ∆µ = 0.05 eV. d) Contour plot for δBW.
These figures suggests that the Gaussian approximation to
the Bias Window in Eq. (6) on the main text provides a good
estimate of the bias window near the Fermi energy µ, for small
∆µ and large Temperature.

we introduce the factor δBW

δBW = ||fL − fR −GBW||
||fL − fR||+ ||GBW||

(S1)

where GBW(ε) is the Gaussian function in Eq. (6), and

a

b

FIG. S3. Normalized current histograms for sampling times
(a) τo and (b) 8τo for a sample size of 80000 points. The
number of bins and with is determined by the Scott’s normal
reference rule and corresponds to 0.1 nA. The solid line is the
normal density function with variance and mean value of the
corresponding histogram. The standard deviation for each
bin is of the size of the thickness of bin borderline.

|| · || is the L2(R) norm defined by

||φ|| =
(∫ ∞
−∞

dε φ(ε)2
)1/2

(S2)

for an L2 function φ. The factor δBW defined in Eq. (S1)
varies from zero to one for rapidly decaying functions,
and vanishes in the ideal case that our approximation
GBW equals at every point the actual form of the Bias
window. Thus, this factor provides a quantitative mea-
sure of the accuracy of the Gaussian approximation to
the bias window. In Fig. S2b-d, we investigate δBW as
a function of ∆µ and temperature. We observe that the
approximation GBW introduced in Eq. (6) is accurate at
high temperatures and small gradients in chemical po-
tential. In particular, for the protocol investigated in
this manuscript δBW ≈ 0.063. It is possible to intro-
duce other measures to account for the accuracy of this
approximation in terms of other norms for the space of
density functions.
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III. HISTOGRAMS AND THE GAUSSIAN MODEL

In this section we illustrate how coarse graining in
time brings the current distribution into a Gaussian
form. This observation was already discussed in Fig. 1
in the main text, and we provide a more quantitative
account of this here. Figure S3 shows the normalized
current histogram for a sample size of 80000 points, with
µ = 0.08 eV, for two different sampling times τ , defined
relative to the intrinsic time τo. The histogram normal-
ization guarantees that the sum over the histogram fre-
quency multiplied by the bin size equals unity. This per-
mits a direct comparison with the normal distribution of
identical mean value and variance. The number of bins
and width are determined by the Scott’s normal reference
rule that minimizes the integrated mean squared error.
We observe in Fig. S3 that the normalized histogram fol-
lows closely the corresponding normal distribution when
τ = 8τo, and fails to reproduce the asymmetric form of
the current histogram for a sampling time τ = τo. In
fact, utilizing the approach described in the Ref. [36], we
obtain a fit factor q of 0.7 % in the case of τ = 8τo, while
for τ = τo we obtain a q = 6.3 %.
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FIG. S4. Standard deviation in the counts per bin for the four
current histograms in Fig. 1. Each histogram in Fig. 1 differs
in the sampling time τ , and their corresponding counting error
are (black) τ = τo, (red) τ = 2τo, (blue) τ = 4τo, and (brown)
τ = 8τo.

Current histograms constructed from a sample of size
n and consisting of k bins, carry an uncertainty in the
counts per bin that we quantify with the standard error
σi, i = 1, . . . , k. If n is large enough, the standard error
in the counts per bin can be calculated by the follow-
ing method. First, we partition the original sample into
10 subsamples of equal size ( n/10 ). For each subsam-
ple we generate a histogram with k bins, and evaluate
for each bin the standard deviation in the counts from
these 10 histograms. Then, we rescale the standard devi-
ation and obtain its corresponding value for the original
histogram by dividing each σi by

√
10. This renormal-

ization assumes that the variance in the counts per bin is

inversely proportional to the sample size, which requires
that n is large. In this form, we obtained the standard
deviation for the histograms in Fig. 1, which are shown
independently in Fig. S4.

IV. APPROXIMATE VOIGT FORM IN EQ. (33)

The approximate Voigt forms in Sec. IV result from
the analytic integration of the static current integral uti-
lizing the Gaussian approximation to the bias window in
Eq. (6). The general procedure is essentially described
in Ref. [18], and we repeat the argument for the case
of the instant current in Eq. (33). First we write the
transmission function T as

T (ε, εp) = w

2

(
1
E

+ 1
E∗

)
(S3)

where E = i(ε − ε̄p) + w. Then, we write each fraction
as an integral of an exponential

1
E

=
∫ ∞

0
da e−aE . (S4)

In this form the Landauer-B uttiker formula for the in-
stant current reads

I(εp) =w

2

∫ ∞
0

da

∫
dε

2π

(
e−aE + e−aE∗

)
(fL(ε)− fR(ε)),

(S5)

which can be integrated with the aid of the Gaussian
approximation to the Bias window in Eq. (6).

FIG. S5. Signal-to-noise ratio, near the local maximum µmax
for three different gradients in chemical potential ∆µ. Param-
eters for this model are the same as in Fig. 4, with (black)
∆µ = 100 meV, (red) ∆µ = 50 meV, and (blue) ∆µ = 25
meV.

V. LOCAL MAXIMA IN THE SNR, FIG. 4.

The approximate form for the SNR in Eq. (44) and
Fig. 4, reveals two local maxima at µmax = ε̄p ± σBW,
with σBW functionally dependent on the gradient in
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chemical potential ∆µ (see Eq. (6)). When the prod-
uct ∆µβ is bigger than 16, σBW is well approximated by
σBW ≈ ∆µ/(4

√
2 ln 2). In such regime, σBW and µmax

are independent of the temperature. However, at room
temperature (300 K) such conditions will be satisfied if

∆µ ≥ 400 meV, and the Gaussian approximation to the
bias window Eq. (6) breaks as indicated by the Fig. S2d.
The maximum in SNR as a function of the Fermi energy
can be modulated by the varying ∆µ, but the change, as
illustrated in Fig. S5, is very small.


