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Abstract.
Floquet engineering or coherent time periodic driving of quantum systems has been successfully

used to synthesize Hamiltonians with novel properties. In ultracold atomic systems, this has led
to experimental realizations of artificial gauge fields, topological band structures, and observation of
dynamical localization, to name just a few. Here we present a Floquet-based framework to stroboscopically
engineer Hamiltonians with spatial features and periodicity below the diffraction limit of light used to
create them, by time-averaging over various configurations of a 1D optical Kronig-Penney (KP) lattice.
The KP potential is a lattice of narrow subwavelength barriers spaced by half the optical wavelength
(λ/2) and arises from the nonlinear optical response of the atomic dark state. Stroboscopic control over
the strength and position of this lattice requires time-dependent adiabatic manipulation of the dark-state
spin composition. We investigate adiabaticity requirements, and shape our time-dependent light fields to
respect these requirements. We apply this framework to show that a λ/4-spaced lattice can be synthesized
using realistic experimental parameters. As an example, we discuss mechanisms that limit lifetimes in
these lattices, explore candidate systems with their limitations, and study adiabatic loading into the
ground band of these lattices.
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1. Introduction

Time-dependent forcing of quantum systems is ubiquitous in quantum mechanics. Small amplitude
driving of a quantum system probes its linear response [1] while strong driving allows for Hamiltonian
engineering [2, 3, 4, 5, 6]. Optical potentials and in particular optical lattices have proven to be a powerful
tool for manipulating ultracold atomic systems and are used in a wide range of experiments [7, 8, 9].
However, the spatial features and periodicity of these potentials (generally arising from the second order
ac-Stark shift) in the far field are constrained by the diffraction limit to be of order the wavelength of light
used to create them. In particular, the Fourier decomposition of the far-field optical potential cannot
have components with wavelength less than λ/2, and thus the minimum lattice spacing is λ/2. As the
lattice spacing determines many of the energy scales in cold-atom lattice systems, it has been of interest
to produce optical lattices with smaller spacings in order to increase relevant energy scales [10, 11].
Approaches to making subwavelength spaced optical lattices have been proposed [12] and realized [13, 14]
based on multiphoton effects, and on adiabatic dressing of different spin dependent lattices [15, 16].

Recently, optical lattices based on the nonlinear optical response of dark states [17, 18] were
realized [19] with λ/2 periodicity but strongly subwavelength structure within a unit cell, consisting
of a Kronig-Penny-like (KP) lattice of narrow repulsive barriers of width ' λ/50. Time averaging a
stroboscopically applied lattice potential with high spatial frequency Fourier components can give rise
to an average potential with periodicity and spatial features less than λ/2 [10]. Since the dark-state KP
lattice has high spatial frequency Fourier components, it is a candidate progenitor lattice with which
to realize such a time-averaged, subwavelength-featured lattice. Here, we explore the implementation
of a time-averaged dark-state KP lattice, taking into account realistic imperfections in the dark-state
system. After careful consideration of the adiabaticity requirements, we show that lattices with λ/4

period can be realized as an example, and discuss the prospects for lattices with smaller spacing and
features. Ref. [20] explores related ideas about painting arbitrary subwavelength optical potentials.

In the time-averaged approach, a time-periodic progenitor potential W0(x, t) is applied such that
the atoms experience the time-averaged potential Wavg(x):

Wavg(x) =
1

T

∫ T/2

−T/2
W0(x, t)dt, (1)

where T = 2π/ωT is the period of W0(x, t) and ωT is the Floquet frequency. In order to successfully
realize Wavg(x) while avoiding heating, ωT must be much faster than the timescale associated with
the motional degree of freedom in the lattice, which is set by the energy gaps between bands in the
lattice [21, 10]. This requirement suggests that ωT be as large as possible. As we discuss below, the
particular realization of W0(x, t) using a dark-state lattice [19] has an additional requirement of spin
adiabaticity that limits the maximum allowable ωT .

The dark-state lattice is an artificial scalar gauge potential [22, 23, 19, 18, 17] experienced by an atom
in the dark-state eigenfunction of a three-level Λ-system with a spatially dependent spin composition.
Dynamically manipulating the height, barrier width, and position of the lattice requires time-dependent
manipulation of the spin composition of the dark-state eigenfunction. This spin manipulation can be
seen as a Stimulated Raman Adiabatic Passage (STIRAP) process [24] and adiabaticity requirements
set an upper bound on the window for usable ωT within which the atoms are simultaneously motionally
diabatic and spin adiabatic. Understanding the practical limits of these constraints requires a detailed
consideration of the system dynamics, which we apply to the specific 171Yb system previously used to
demonstrate the dark-state lattice [19].
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Figure 1: (a) An ideal Λ-system with inverse lifetime Γ and single-photon detuning ∆. One leg of
the Λ-system is coupled by a spatially homogeneous and temporally varying probe light field Ωp(t) and
the other leg by a spatially inhomogeneous and temporally varying control light field Ωc(x, t). (b) The
geometry of the light fields with arbitrary control over the envelope, Ωc1(t), Ωc2(t), Ωp(t) and phase,
φ1(t), φ2(t) of each light field. (c) (i) The instantaneous (at t = 0) spatial dependence of the light fields
Ωc(t)| cos(kx+ φ(t))| and Ωp(t), (ii) the probability densities of the spin composition of the dark-state
eigenfunction |ψ(x, t)〉 i.e. |〈1|ψ(x, t)〉|2 and |〈2|ψ(x, t)〉|2, and (iii) the instantaneous shape ofWDS(x, t).
(d) Typical pulse shapes considered here for the control beams Ωc(i)(t) = 2Ωc1(i)(t) = 2Ωc2(i)(t), probe
beam Ωp(i)(t), and phase φi(t) for the ith sub-Floquet period where −Ti/2 ≤ t ≤ Ti/2 that determines
the time-averaged potential Wavg(x).

2. Time-dependent dark-state potentials

We consider the creation of time-periodic potentials for the dark-state channel, WDS(x, t) (which serves
as W0(x, t) in Eq. 1), by coupling the three atomic levels in a Λ-system with a spatially homogeneous
probe light field Ωp(t), and a spatially inhomogeneous control light field. The inhomogeneous control
light field is composed of two counter propagating fields with equal magnitudes driven simultaneously,
Ωc(x, t) = Ωc(t) cos(kx+ φ(t)) where k = 2π/λ, as shown in Fig. 1a. Working in the spatially and
temporally local dressed state basis of the Λ-system determined by the coupling fields Ωp(t) and Ωc(x, t),
the Hamiltonian is given by (Eq. A.5)

Ĥrot(x, t) =
p̂2

2m
+


WDS(x) 0 0

0 W−(x) 0

0 0 W+(x)

+ Ĥod(x, p, t), (2)

where WDS(x, t) and W±(x, t) are the dark-state and bright-state potentials in the three Born-
Oppenheimer (BO) channels and Ĥod(x, p, t) represents the off-diagonal couplings between these channels
(See Appendix A). WDS(x, t) and W±(x, t) include the BO potentials as well as the non-adiabatic
corrections to these potentials. The dressed state coupling induced by Ĥod(x, p, t) is detrimental, since
it mixes bare excited state |3〉 into the dark-state channel through the bright-state channels, inducing
photon scattering in the otherwise lossless dark state.



Floquet engineering of optical lattices with spatial features and periodicity below the diffraction limit 4

The spin-composition of the dark-state eigenfunction for the Λ-system in Fig. 1a is
|DS(x, t)〉 = − cosα(x, t)|1〉+ sinα(x, t)|2〉 where α(x, t) = tan−1[Ωp(t)/Ωc(x, t)]. The non-adiabatic
correction to the dark-state BO potential that gives rise to WDS(x, t) is determined by the spatial
gradient of the spin composition [17, 18] (Appendix A.1) (Fig. 1c),

WDS(x, t) =
h̄2

2m

(
∂

∂x
α(x, t)

)2

, (3)

which for the light field configuration considered here is a lattice of narrow repulsive barriers with
temporally modulated strength and position. We take here a stroboscopic approach, where WDS(x, t)

is repeatedly pulsed on and off in magnitude at N different positions for time Ti with the position of
WDS(x, t) being shifted in between the lattice pulses (Here T =

∑
Ti). In addition, WDS(x, t) can be

held on or off for ton,i and toff,i (Fig. 1d). Time averaging over the N different pulsed KP lattice potentials
with arbitrary strength and position can produce an arbitrary time-averaged potential Wavg(x) [20].

The ability to paint potentials requires real-time control over the position, strength and width of
the barriers (Eq. 3). The strength of the barriers can be controlled via the Rabi frequencies Ωp(t)

and Ωc(t) (Figs. 1b, 1c) with the height and width of the barriers being proportional to 1/ε2(t) and
ε(t) respectively [19, 18, 17] where ε(t) = Ωp(t)/Ωc(t) (for ε(t) � 1). The barriers are located at the
nodes/minimums of Ωc(x, t) (Fig. 1c), and their positions can be controlled by the differential control
beam phase φ(t) = φ1(t)−φ2(t) (Figs. 1b, 1c). Stitching N different sub-Floquet periods together (while
ensuring continuity in the Rabi pulses between the sub-Floquet periods) into one Floquet period allows
for versatility in the time-averaged potential Wavg(x) that can be generated. Each sub-Floquet period
of duration Ti pulses a KP potential at a different position x0i (determined by the phase φ0i) with a
strength and width determined by εi. Fig. 1d shows the pulses Ωp(i)(t), Ωc(i)(t) and φ(i)(t) for the ith
sub-Floquet period −Ti/2 ≤ t ≤ Ti/2.

3. Adiabaticity considerations

Without explicit time-dependence, Ĥod(x, p, t) has static, off-diagonal terms depending on the spatial
gradient of the dark-state spin composition that couple the dark-state channel to the lossy bright-state
channels. This loss mechanism was theoretically [17, 18] and experimentally [19] shown to limit lifetimes
in the KP lattice. Large energy gaps between the BO channels via large Rabi frequencies Ωc and Ωp

generally aid in suppressing this loss [19]. When explicit time dependence to the Rabi frequencies is
included i.e. Ωc(x, t) and Ωp(t), the spatially dependent loss mechanism has a trivial time dependence
due to the temporally periodic nature of the changing dressed states, and the loss is quantified by
averaging over one Floquet period. There is, however, an additional loss mechanism mediated via
an explicitly time-dependent term in Ĥod(x, p, t) (see Appendix A). This term mediates non-adiabatic
couplings between the dark-state channel and the bright-state channels, but can be suppressed by careful
pulse shaping.

Our goal is to design Ωp(t) and Ωc(x, t) to be simultaneously motionally diabatic and spin adiabatic.
In order to design pulses that are spin adiabatic, we consider the three inequalities that quantify the
sufficiency requirements for adiabaticity [25] defined at single photon resonance ∆ = 0 (see Appendix
A.2, Appendix B.2):∣∣∣∣ ∂∂tα(x, t)

∣∣∣∣� Ωrms(x, t), (4a)∫ π/ωT

−π/ωT

∣∣∣∣ ∂∂t
(
∂α(x, t)/∂t

Ωrms(x, t)

)∣∣∣∣ dt� 1, (4b)∫ π/ωT

−π/ωT

|∂α(x, t)/∂t|2

Ωrms(x, t)
dt� 1, (4c)
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Figure 2: The functional forms for Ωc(i)(t), Ωp(i)(t), and r(i)(t) for the ith sub-Floquet period
−Ti/2 ≤ t ≤ Ti/2. Control over the duty cycle of WDS(x, t) is provided by the hold times toff,i and
ton,i.

where Ωrms(x, t) =
√
|Ωc(x, t)|2 + |Ωp(t)|2. Eq. 4a, called the local adiabatic criterion [24], states that

to ensure adiabaticity during pulsing, the energy gap between the dark and bright eigenstates (set by
Ωrms(x, t)) must be much greater than the off-diagonal couplings between them (|∂α(x, t)/∂t|). Eq. 4b
forces the pulses to be smooth while both Eqs. 4b and 4c set bounds on their rise time and fall times.

To design pulse shapes that satisfy Eqs. 4a-4c, we parameterize the condition Eq. 4a through a
parameter r(t):

r(t) =
∂α(xh, t)/∂t

Ωrms(xh, t)
, (5)

evaluated at x = xh, the position where the inequality is the hardest to satisfy. The role of r(t)
is to quantify the spin adiabaticity during the rising and falling segments of the Ωc1(t), Ωc2(t) and
Ωp(t) pulses (Fig. 1d). Specifying r(t) determines the functional form for the Rabi frequencies and the
Floquet frequency. To satisfy Eq. 4 during the switching between the on (ton,i) and off times (toff,i),
|r(i)(t)| should satisfy the condition |r(i)(t)| � 1 (See Appendix B.2) and smoothly change from 0. We
consider a convenient analytic form for r(i)(t) that has a continuous first derivative (Fig. 2):

r(i)(t) =



0 −Ti/2 ≤ t ≤ −Ti/2 + toff,i/2

−r0i sin
2
(

2π(t+ton,i/2)

tSi

)
−Ti/2 + toff,i/2 ≤ t ≤ −ton,i/2

0 −ton,i/2 ≤ t ≤ ton,i/2

r0i sin
2
(

2π(t−ton,i/2)

tSi

)
ton,i/2 ≤ t ≤ Ti/2− toff,i/2

0 Ti/2− toff,i/2 ≤ t ≤ Ti/2

(6)

where Ti = tSi + toff,i + ton,i and tSi/2 is the rise or fall time.
Generally, it is easiest to be spin adiabatic for large energy separation between the dark and bright-

state channels. However at the nodes of Ωc(x, t), this energy gap is the smallest with a value of h̄Ωp(t)/2

for ∆ = 0. Therefore we consider pulse schemes that change the positions of the nodes only when the
energy gap at the nodes is large and the spin composition is essentially homogeneous (ε(t) � 1). We
consider two ways to achieve the homogeneous condition in between pulses:

(1) Ωp(t)� Ωc(x, t) achieved by turning up Ωp while turning off both control beams,

(2) Ωc1 � Ωp � Ωc2(t) achieved by turning off Ωc2(t) while Ωp and Ωc1 are kept constant.
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Figure 3: (a) Recipe to stroboscopically realize a Wavg(x) that is a λ/4-spaced lattice: Pulse WDS(x, t)

with φ(i)(t) = 0 for −T/2 ≤ t ≤ 0 and φ(i)(t) = π/2 for 0 ≤ t ≤ T/2. For realistic dark-state lattices,
spin adiabaticity requires that the lattice cannot be turned on or off instantaneously. (b) Stroboscopic
realization of the Rice-Mele model.

We note that the pulsing schemes considered here are not unique. Control over Ωc1(t), Ωc2(t), Ωp(t),
φ1(t), and φ2(t) allows for multiple ways by which arbitrary potentials can be painted, and we refer the
reader to Ref. [20] for other variants.

For pulse scheme (1), the position where the local adiabatic criterion is the hardest to satisfy, xh,
occurs between the nodes. (Pulse scheme (2), for which only one of the two control beams is driven,
is treated in the Appendix.) We choose the rms average of the Rabi frequencies to be constant at
xh, Ωrms = Ω2

p(i)(t) + Ω2
c(i)(t) = β2

i = (Ω0
ci)

2 + (Ω0
pi)

2 = (Ω0
ci)

2(1 + ε2i ) where βi is a constant and
Ωc(i)(t) = 2Ωc1(i)(t) = 2Ωc2(i)(t). Solving Eqs. 5 and 6 simultaneously, the expressions for tSi, Ωc(i)(t) are
as follows (Fig. 2):

Ωc(i)(t) =



0 −Ti/2 ≤ t ≤ −Ti/2 + toff,i/2

βi sin[arctan(1/εi)G(t+ ton,i/2)/(2π)] −Ti/2 + toff,i/2 ≤ t ≤ −ton,i/2

Ω0
ci −ton,i/2 ≤ t ≤ ton,i/2

βi sin[arctan(1/εi)G(t− ton,i/2)/(2π)] ton,i/2 ≤ t ≤ Ti/2− toff,i/2

0 Ti/2− toff,i/2 ≤ t ≤ Ti/2

(7)

where G(t) = |4πt/tSi − sin(4πt/tSi)− 2π|t|/t| and

tSi = 4 arctan(1/εi)/(r0iβi). (8)

As a specific example, we explore creation of λ/(2N)-spaced lattices where N = 2, 3, 4 . . . . These
lattices are created by time-averaging N λ/2-spaced progenitor KP lattice potentials, each shifted in
position by iλ/(2N) for (i − 1)T/N ≤ t ≤ iT/N and pulsed for a period of Ti = T/N [10], where
i = 0, 1, ..., N − 1 (Fig. 3a). More flexibility is possible by pulsing the progenitor lattice with different
strengths and relative positions, realizing for example the Rice-Mele model [26, 27] as shown in Fig. 3b.

The goal to create λ/(2N)-spaced lattices that significantly confines the ground band sets constraints
on the lattice parameters. Without requirements of spin adiabaticity, time averaging the KP potential
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creates λ/(2N)-spaced lattices with barriers of maximum average height of (1/N)ER/ε
2. Due to the

reduction in the size of the unit cell by N , the characteristic energy increases to N2ER, which is also
approximately the energy of the lowest band in a KP lattice. Hence for the λ/(2N)-spaced lattice to
provide significant confinement,

N2ER <
ER
Nε2

=⇒ ε <
1

N3/2
. (9)

The barrier height for the λ/(2N)-spaced lattice is Wavg(x0i) =
∫ T/2
−T/2WDS(x0i, t)/Tdt, which can be

controlled by choosing ε (limited by requirements on spin adiabaticity) and toff,i and ton,i. Of course,
non-zero values for toff,i and ton,i decrease the Floquet frequency (ωT ) as

1

ωT
=
N

2π
(tSi + toff,i + ton,i) . (10)

Reducing ωT makes it more difficult to be fully motionally diabatic, so that the operational window
between the two constraints rapidly decreases with increasing N .

4. Solving for the Bloch-Floquet bandstructure

We solve the Bloch-Floquet bandstructure for our Hamiltonian,

Ĥ(x, t) =
p̂2

2m
+
h̄

2


0 0 Ωp(t)

0 0 Ωc(x, t)

Ωp(t) Ωc(x, t) −(2∆(t) + iΓ)

 ,

︸ ︷︷ ︸
Ω̂(x,t)

(11)

where Ω̂(x+ λ, t) = Ω̂(x, t+ T ) = Ω̂(x, t) with ∆(t) = 0 and Γ = 48.2ωR (for the (6s2)1S0 ↔ (6s6p)3P1

transition in 171Yb). We substitute the Bloch-Floquet ansatz, |ψ(x, t)〉 = eiqx−iEqt/h̄|uq,Eq(x, t)〉〉 [5, 28,
29, 3, 2, 30, 31] into the time-dependent Schrodinger equation Ĥ(x, t)|ψ(x, t)〉 = ih̄ ∂

∂t
|ψ(x, t)〉 to yield,

K̂q|uq,Eq(x, t)〉〉 = Eq|uq,Eq(x, t)〉〉, (12)

where q is the quasimomentum, Eq is the quasienergy, |uq,Eq(x, t)〉〉 is the Bloch-Floquet mode, and

K̂q =
(p̂+ h̄q)2

2m
− ih̄ ∂

∂t
+ Ω̂(x, t),

is the quasienergy operator defined in an extended Hilbert space where time is treated as a coordinate
with periodic boundary conditions [2, 3, 5]. The extension of the Hilbert space is symbolically represented
by the double ket notation of the Bloch-Floquet mode |uq,Eq(x, t)〉〉 [2, 3]. We solve the eigenvalue
problem in Eq. 12 to calculate the Bloch-Floquet bandstructure (Appendix C.1).

5. Results

The loss due to the off-diagonal coupling terms in Ĥod(x, t) that arises from the spatial gradient of the
dark-state spin composition increases with smaller ε [17, 19, 18]. This suggests that in order to generate
potentials that have reasonable lifetimes with realistic values for Rabi frequencies, it is desirable to work
at as large an ε as allowed by Eq. 9. In Fig. 4, we investigate the creation of a λ/4-spaced lattice
potential that significantly confines the ground band. With a choice of εi = 0.2, r0i = 0.01, Ω0

ci = 600Γ,
and tSi = 0.36Ti (Eq. 10) we use the pulse shape in Eq. 7 to create this potential (Fig. 4a). The green
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Figure 4: Stroboscopic creation of a λ/4-spaced lattice potential: (a) One Floquet period constituting
the Ωc(t) pulse (green trace) and phase pulse φ(t) (blue trace) for εi = 0.2, r0i = 0.01, Ω0

ci = 600Γ,
and tSi = 0.36Ti. The numbered red dots enumerate the different timeslices shown in Fig. 5. The two
sub-Floquet periods are labelled as I and II. (b) The time-averaged potential Wavg(x). (c) The Floquet
spectrum Eq at q = 0 as a function of ωT/ωR. The background of seemingly random points represent
Floquet states whose quasienergies are only defined up to modulo h̄ωT . The loss rate -Im(Eq) is given by
the colors of the points. (d) The ground band of the time averaged Hamiltonian p̂2/2m+Wavg(x). (e)
The Bloch-Floquet ground band of the dark-state channel Hamiltonian ĤDS(x, t) = p̂2/2m+WDS(x, t)

at ωT/ωR = 150. (f) The Bloch-Floquet ground band of Ĥ(x, t) at ωT/ωR = 150. The yellow region
at q = 0 represents the yellow vertical cut in subfigure (c). In (d), (e), (f) the bottom edge of the first
excited band is at ∼ 8ER. (g) The Bloch-Floquet ground band of the dark-state channel Hamiltonian
ĤDS(x, t) = p̂2/2m + WDS(x, t) at ωT/ωR = 50. (h) The Bloch-Floquet ground band of Ĥ(x, t) at
ωT/ωR = 50. The pink region at q = 0 represents the pink vertical cut in subfigure (c).

trace is the pulse profile for Ωc(t) (and therefore Ωp(t) =
√
β2 − Ω2

c(t)) while the blue trace is the
phase profile φ(t) during one Floquet period. The numbered red dots enumerate the different time slices
during the pulse. One Floquet period of pulsing involves stitching together two sub-Floquet periods
that have a relative phase φ(i)(t) differing by π/2. Note that the phase is suddenly switched during an
off period when there is no spatial variation to the dark state. The sub-Floquet periods are color coded
and labelled as I and II. This pulse yields an effective λ/4-spacedWavg(x) potential with ∼ 8ER barriers
as shown in Fig. 4b where Wavg(x) is plotted.

In Fig. 4c we search for the window of operational ωT within which the bands of an effective λ/4-
spaced lattice Hamiltonian are clearly defined by monitoring the Floquet spectrum Eq at q = 0 as a
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Figure 5: The dynamics of the wavefunction |ψ〉 = 〈x, t|uq,Eq(x, t)〉〉 of the (q, Eq) state indicated by the
brown star in Fig. 4f within one Floquet period, sampled at the times indicated in Fig. 4a.

function of ωT/ωR. As ωT is increased, the pulsing becomes more motionally diabatic, but at the cost
of increased r0i (Eq. 8). The increased r0i results in stronger admixing of the dark-state channel with
the bright-state channels. The loss rate -Im(Eq) is encoded in the color of the points in Fig. 4c. The
gray dots have loss (-Im(Eq)) much larger than the highest value in the color bar.

In Fig. 4d we plot the bandstructure in the Brillouin zone of Ĥ(x, t) for the time-averaged
Hamiltonian p̂2/(2m) + Wavg(x) where Wavg(x) is evaluated using Eq. 1 (Fig. 4b) for the chosen
pulse shape (Fig. 4a). The folded bandstructure is indicative of a λ/4-spaced lattice. The Bloch-
Floquet bandstructure for the dark-state channel (Fig. 4e) is obtained by solving the Hamiltonian
ĤDS(x, t) = p̂2/(2m) +WDS(x, t) for ωT = 150ωR (Eq. 3 and see Appendix C.2). The avoided crossings
enclosed in the red circles in Fig. 4e arise from couplings with high-lying dark-state eigenfunctions.
The bandstructures shown in Figs. 4d and 4e ignore Ĥod(x, t) and therefore exclude loss due to non-
adiabatic couplings with the bright states. In Fig. 4f, we show the Bloch-Floquet bandstructure of
Ĥ(x, t) (Eq. 11), which includes the non-adiabatic bright-state couplings. The avoided crossings exist in
the Bloch-Floquet bandstructure at the same place (q, Eq) for the same parameters in Fig. 4e, suggesting
that these crossings arise from couplings with high-lying dark-state eigenfunctions. The ground Bloch-
Floquet band for Ĥ(x, t) has the same shape as the static λ/4-spaced lattice (except near the avoided
crossings). The calculated average lifetime in the time-averaged potential for the ground band in Fig. 4f
is 1 ms, which can be substantially improved with a lower ωT . In general, lifetimes can be increased and
the avoided crossings can be removed by operating at larger Rabi frequencies.

We also calculate the Bloch-Floquet bandstructures at a lower Floquet frequency of ωT = 50 ωR
(pink vertical line in Fig. 4c). The Bloch-Floquet bandstructure of the dark-state channel Hamiltonian
ĤDS(x, t) is shown in Fig. 4g, and of Ĥ(x, t) in Fig. 4h. The average lifetime of the ground band is 32

ms (the colored regions in Fig. 4h) and is much longer than the lifetime of 1 ms for the Bloch-Floquet
bandstructure obtained at ωT = 150 ωR in Fig. 4f. The avoided crossings due to coupling to high-lying
dark states, however, are larger for the same Rabi frequencies.

In Fig. 5 we show the dynamics of the spatial probability densities of the dark-state Bloch-Floquet
mode and its spin composition at time slices 1 to 5 (Fig. 4a) in the (q, Eq) configuration labelled by the
brown star in Fig. 4f. The purple trace is the scaled probability density of the Bloch-Floquet dark-state
mode and it has λ/4 periodicity. It is roughly stationary except for the small wiggles that correspond
to micromotion. Meanwhile the spin composition (the black and red traces) of the Bloch-Floquet mode
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I II IIII

(a) (b) (c)

(d) (e) (f)

Figure 6: Stroboscopic creation of a λ/6-spaced lattice potential: (a) One Floquet period constituting
the Ωc(t) pulse (green trace) and phase pulse φ(t) (blue trace) for εi = 0.135, r0i = 0.01, Ω0

ci = 1800Γ, and
tSi = 0.59Ti. The three sub-Floquet periods are labelled as I, II, and III. (b) The time-averaged potential
Wavg(x). (c) The Floquet spectrum Eq at q = 0 as a function of ωT/ωR. The loss rate -Im(Eq) is given
by the colors of the points. (d) The ground band of the time averaged Hamiltonian p̂2/2m+Wavg(x). (e)
The Bloch-Floquet ground band of the dark-state channel Hamiltonian ĤDS(x, t) = p̂2/2m+WDS(x, t)

at ωT/ωR = 280. (f) The Bloch-Floquet ground band of Ĥ(x, t) at ωT/ωR = 280. The yellow region at
q = 0 represents the yellow vertical cut in subfigure (c).

changes dramatically as a function of time during the Floquet period. The population in |3〉 (yellow
trace) remains quite small.

To create subwavelength-spaced lattices with larger N , the window of operational ωT will be smaller
by N (Eq. 10). In addition, since larger N requires working with smaller ε (Eq. 9), the loss mechanisms
limiting lifetime in these lattices are more significant. However, higher Rabi frequencies can combat
both these limitations. Using larger Rabi frequencies, we show an example demonstrating the feasibility
of a λ/6-spaced lattice.

With increased Rabi frequency of Ω0
ci = 1800Γ, we use the pulse shape in Eq. 7 to design a

composite pulsing profile (Fig. 6a) to create a time-averaged λ/6-spaced lattice potential Wavg(x) that
has ∼ 9ER tall barriers (Fig. 6b). Here εi = 0.135, r0i = 0.01, and tSi = 0.59Ti. One Floquet period
of pulsing involves stitching together three sub-Floquet periods with the relative phase φ(i)(t) differing
by π/3 between adjacent sub-Floquet periods. For ωT = 280 ωR (yellow vertical line in Fig. 6c),
we plot the bandstructure of the time averaged Hamiltonian p̂2/(2m) + Wavg(x) in Fig. 6d, the Bloch-
Floquet bandstructure of the dark-state channel Hamiltonian ĤDS(x, t) in Fig. 6e, and the Bloch-Floquet
bandstructure of Ĥ(x, t) in Fig. 6f. The folded bandstructures are indicative of a λ/6-spaced lattice.
The particular phase sequence in Fig. 6a used to create the λ/6-spaced lattice breaks time-reversal
symmetry: the Bloch-Floquet bandstructures are therefore asymmetric about q = 0. The avoided
crossings enclosed in the red circles exist in both Bloch-Floquet bandstructures at the same place (q, Eq)
for the same parameters in Figs. 6e and 6f, suggesting that these particular crossings arise from couplings
with high-lying dark-state eigenfunctions. The avoided crossing enclosed in the green circle in 6f arises
due to couplings with bright-state eigenfunctions.
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6. Experimental considerations and limitations

While working with large Rabi frequencies reduces losses, a potential disadvantage is that the Λ-
system approximation may break down. Perfect Λ-systems are rare in nature, and Ωp(t) and Ωc(t)

can couple off-resonantly to states outside of the Λ-system. These off-resonant couplings manifest as
effective two-photon detunings for the bare ground states of the approximate Λ-system. Non-zero two-
photon detunings are detrimental to STIRAP [24, 32], although spatially homogeneous detuning could in
principle be compensated with time-dependent laser detuning. Two-photon detunings originating from
Ωc(x, t), however, are temporally and spatially modulated and may not be completely compensated
without significant experimental overhead of adding more spatially dependent compensating laser fields.
In addition to added two-photon detuning, the lifetime in the time-averaged lattices is further limited
due to admixing of the excited states outside the Λ-system. Hence there are trade-offs when increasing
the magnitude of the Rabi frequencies: while the dark state evolution is more adiabatic with less bright
state admixture, the off-resonant scattering from states outside the Λ-system also increases. Appendix
D presents calculations for a realistic system consisting of 171Yb atoms, which were used to create KP
lattices [19].

A number of techniques can be used to verify the creation of these subwavelength lattices. For
example, nanoresolution spectroscopy [33] can be used to directly map out the probability density of
atoms in the ground band of the λ/(2N)-spaced lattices. In addition, Bloch oscillations [20, 34] or
time-of-flight measurements of the momentum distributions [35] could be used to measure the N times
larger Brillouin zones. In fact, λ/4-spaced lattices were recently realized using the techniques explored
in this paper with 171Yb atoms [36].

To adiabatically load into the ground band of the time-averaged λ/(2N)-spaced lattice potential,
the stroboscopic lattice should be turned on slower than the motional time scale set by h̄/(N2ER), while
maintaining a large gap to the bright states at all times. For pulse scheme (1) this can be achieved by
slowly adjusting the envelope of the pulsed control beam Ω̃c(t) = f(t)Ωc(t) while maintaining constant
Ωrms (See Appendix E).

7. Summary and Outlook

In this paper, we evaluate the idea of stroboscopically generating potentials using the repulsive barriers
of a dark-state KP potential. We analyzed the competing requirements of maintaining dark state spin
adiabaticity and simultaneous motional diabaticity during pulsing of the KP potentials in the presence of
realistic imperfections. We showed that it is possible to create such potentials in a experimental system
of 171Yb atoms by calculating the Floquet spectrum of atoms in a stroboscopically generated λ/4-spaced
lattice. This approach is applicable to any three-level system, although it needs to be well isolated from
coupling to other levels, which will shorten lifetimes. While we have treated 1D systems here, this
method can be readily generalized to 2D. Using progenitor lattices of subwavelength attractive trapping
potentials [37] in conjunction with barriers provides flexibility in tailoring the potential landscape.
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Note-We note that related and complementary work is being pursued by Łacki et. al. [20].

Appendix A. Sufficiency conditions for adiabaticity

We start with the time-dependent Hamiltonian,

Ĥ(x, t) =
p̂2

2m
+
h̄

2


0 0 Ωp(t)

0 0 Ω∗c(x, t)

Ωp(t) Ωc(x, t) −(2∆(t) + iΓ)

 . (A.1)

Ĥ(x, t) is non-Hermitian due to the iΓ/2 term and requires a biorthogonal set of eigenvectors to
diagonalize it [38]. Due to the non-Hermitian nature of Ĥ(x, t) the eigenvectors are not guaranteed to
be orthogonal to each other, but still form a linearly independent set that spans the Hilbert space [38].
To derive the artificial gauge potentials and for quantifying the sufficiency conditions for adiabaticity,
we transform Ĥ(x, t) using a rotation transform R̂(x, t) composed of the right eigenvectors [38] of the
spin-light field coupling part of Ĥ(x, t). The expression for R̂(x, t) is:

R̂(x, t) =


− cosαeiθ sinα 1√

1+l2
sinα 1√

1+u2

sinα cosα e−iθ√
1+l2

cosα e−iθ√
1+u2

0 l√
1+l2

u√
1+u2

 , (A.2)

where

α = tan−1

∣∣∣∣ Ωp(t)

Ωc(x, t)

∣∣∣∣, ζ =
√
|Ωc(x, t)|2 + Ω2

p(t),

θ = Arg Ωc(x, t), l =
2E−(x, t)

ζ
, u =

2E+(x, t)

ζ
. (A.3)

For pulse scheme (1) where both control beams are changed simultaneously with equal magnitude:
Ωc(x, t) = Ωc(t) sin(kx+ φ(t)) resulting in θ(x, t) = 0. For pulse scheme (2) where only one control
beam is pulsed: Ωc(x, t) = Ωc2(t)ei(φ2(t)+kx)/i− Ω0

ce
−ikx/2i resulting θ(x, t) 6= constant.

The transformation Ĥrot(x, t) = R̂−1ĤR̂− ih̄R̂−1∂R̂/∂t rotates Ĥ(x, t) into the dressed-atom
picture of the Λ-system. The effective Hamiltonian after the transformation is [39, 22, 24, 32, 40, 41]

Ĥrot(x, t) =
(p̂− Â)2

2m
− B̂ + h̄


0 0 0

0 E−(x, t) 0

0 0 E+(x, t)


︸ ︷︷ ︸

ÊBO(x,t)

, (A.4)

where Â = ih̄R̂−1∇R̂, B̂ = ih̄R̂−1∂R̂/∂t, ∆Γ(t) = ∆(t) + iΓ/2, and E± =
(
− ∆Γ(t) ±√

∆2
Γ(t) + Ω2

p(t) + |Ωc(x, t)|2
)
/2 are the energies of the upper and lower bright states.

We rearrange the terms in Eq. A.4 to separate the motion of atoms in the three BO channels
(dark state, upper-bright state, and lower-bright state) [22, 17, 18] from the off-diagonal couplings
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(Ĥod(x, p, t)). For pulse scheme (1) (θ(x, t) = 0) this gives

Ĥrot(x, t) =

Born-Oppenheimer channels︷ ︸︸ ︷
p̂2

2m
+
h̄2

2m


(α′)2 0 0

0 l′u′

(l−u)2
− u

(l−u)
(α′)2 0

0 0 l′u′

(l−u)2
+ l

(l−u)
(α′)2

+ ÊBO(x, t)

−B̂(x, t)− p̂.Â(x, t)

2m
− Â(x, t).p̂

2m
+ N̂(x, t)︸ ︷︷ ︸

Ĥod(x,p,t)

, (A.5)

where f ′ = ∂f/∂x and ḟ = ∂f/∂t. The term B̂(x, t) arises from the explicit time dependence of
the Ĥ(x, t). Careful pulse shaping can help suppress the terms in B̂(x, t) that couple the dark-state
channel with the bright-state channels. The coupling terms in Ĥod(x, p, t) depend only on the ratio of
the Rabi frequencies (α′, α̇) and not on their absolute magnitudes, while the energy separation between
the channels (ÊBO(x, t)) depend on absolute magnitudes of the Rabi frequencies. Thus at higher Rabi
frequencies the BO channels become increasingly decoupled. In addition, ∆ � Ω0

p,Ω
0
c ensures that the

bright-state channels are well separated from the dark-state channel.

Appendix A.1. Floquet scalar gauge potentials

Here we derive the expression for the Floquet scalar gauge potential for the dark-state channel. The
expression for Â when both control beams are driven simultaneously as in pulse scheme (1) is

Â = ih̄


0 − 1√

l2+1
α′ − 1√

u2+1
α′

−
√
l2+1u

(l−u)
α′ 0 − u′

√
l2+1

(u−l)
√
u2+1

− l
√
u2+1

(u−l) α
′ − l′

√
u2+1√

l2+1(l−u)
0

 . (A.6)

The expression for the scalar gauge potentials for the BO channels is [40, 23]:

Â2 −Diag(Â)2

2m
=

h̄2

2m


(α′)2 0 0

0 l′u′

(l−u)2
− u

(l−u)
(α′)2 0

0 0 l′u′

(l−u)2
+ l

(l−u)
(α′)2



+

N̂(x,t)︷ ︸︸ ︷
h̄2

2m


0 − ll′α′

(l2+1)3/2
− uu′α′

(u2+1)3/2

− l
√
l2+1u′α′

(l−u)2
0

√
l2+1u(α′)2√
u2+1(u−l)

−u
√
u2+1l′α′

(l−u)2
l
√
u2+1(α′)2√
l2+1(l−u)

0

, (A.7)

where the first matrix contains the scalar gauge potentials for each of the BO channels. The scalar
gauge potential for the dark-state channel is,

WDS(x, t) =
h̄2

2m

(
∂

∂x
α(x, t)

)2

. (A.8)
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The expressions for Â(x, t) and WDS(x, t) for pulse scheme (2) (θ(x, t) 6=constant), are

Â = ih̄


iθ′ cos2 α − e−iθ(i sin(2α)θ′+2α′)

2
√
l2+1

− e−iθ(i sin(2α)θ′+2α′)

2
√
u2+1

eiθ
√
l2+1u(i sin(2α)θ′−2α′)

2(l−u)
iuθ′ cos2 α

(l−u)
−
√
l2+1(iuθ′ cos2 α+u′)

(u−l)
√
u2+1

eiθl
√
u2+1(i sin(2α)θ′−2α′)

2(u−l) −
√
u2+1(ilθ′ cos2 α+l′)√

l2+1(l−u)
− ilθ′ cos2 α

(l−u)

 , (A.9)

and

WDS(x, t) =
h̄2

2m

[
1

4

(
sin(2α(x, t))

∂

∂x
θ(x, t)

)2

+

(
∂

∂x
α(x, t)

)2]
. (A.10)

Appendix A.2. Formulating the sufficiency conditions for adiabaticity

The general expression for B̂ is analogous to Â except that derivatives are with respect to x in Â and
with respect to t in B̂, which for pulse scheme (1) is:

B̂ = ih̄


0 − 1√

l2+1
α̇ − 1√

u2+1
α̇

−
√
l2+1u

(l−u)
α̇ 0 −

√
l2+1

(u−l)
√
u2+1

u̇

− l
√
u2+1

(u−l) α̇ −
√
u2+1√

l2+1(l−u)
l̇ 0

 . (A.11)

The local adiabatic criterion (Eq. 4a) for the instantaneous dark state requires that the minimum of the
spatially and temporally varying energy gap between the dark and bright states must be much larger
than the largest off-diagonal couplings between them, which we quantify as

min(|E−(xh, t)|, |E+(xh, t)|)�
∣∣∣∣ ∂∂tα(xh, t)

∣∣∣∣. (A.12)

For ∆ = 0, where fastest STIRAP pulses are guaranteed [42, 24, 32, 43]

Ωrms(xh, t)�
∣∣∣∣ ∂∂tα(xh, t)

∣∣∣∣, (A.13)

where Ωrms(x, t) =
√
|Ωc(x, t)|2 + Ω2

p(t).
The expression for pulse scheme (2) (θ(x, t) 6= constant) is:

B̂ = ih̄


iθ̇ cos2 α − e−iθ(i sin(2α)θ̇+2α̇)

2
√
l2+1

− e−iθ(i sin(2α)θ̇+2α̇)
2
√
u2+1

eiθ
√
l2+1u(i sin(2α)θ̇−2α̇)

2(l−u)
iuθ̇ cos2 α

(l−u)
−
√
l2+1(iuθ̇ cos2 α+u̇)

(u−l)
√
u2+1

eiθl
√
u2+1(i sin(2α)θ̇−2α̇)

2(u−l) −
√
u2+1(ilθ̇ cos2 α+l̇)√

l2+1(l−u)
− ilθ̇ cos2 α

(l−u)

 , (A.14)

which in addition to α̇ and α depends on θ̇ and θ.

Appendix B. Pulse Shaping

Appendix B.1. Pulse scheme (2)

In the main text, we consider pulse scheme (1) with the constraint Ω2
p(i)(t) + Ω2

c(i)(t) = β2
i . For pulse

scheme (2), in which only one control beam is pulsed, Ωp(i)(t) = Ω0
pi and Ωc1(i)(t) = Ω0

ci/2, the pulse
shape Ωc2(i)(t) and tSi are determined by r(i)(t) (Eq. 6) and εi as follows:
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Ωc2(i)(t) =



0 −Ti/2 ≤ t ≤ −Ti/2 + toff,i/2

Ω0
ci

2
− Ω0

piG(t+ton,i/2)√
16π2ε2i+4π2−G2(t+ton,i/2)

−Ti/2 + toff,i/2 ≤ t ≤ −ton,i/2

Ω0
ci

2
−ton,i/2 ≤ t ≤ ton,i/2

Ω0
ci

2
− Ω0

piG(t−ton,i/2)√
16π2ε2i+4π2−G2(t−ton,i/2)

ton,i/2 ≤ t ≤ Ti/2− toff,i/2

0 Ti/2− toff,i/2 ≤ t ≤ Ti/2

(B.1)

where G(t) = |4πt/tSi − sin(4πt/tSi)| and

tSi =
4

r0iΩ0
pi

√
4ε2i + 1

. (B.2)

For this scheme, xh is at the nodes of Ωc(x, t) since the energy gap between the dark-state and bright-
state channels is the smallest at the nodes and the spin at the node must completely flip from |2〉 to |1〉
(Fig. 1a) at the end of the pulse.

Appendix B.2. Verifying the spin-adiabaticity requirements and choice for r0i

We use the off-diagonal coupling terms in Eq. A.11 and set ∆ = 0 to recast the sufficiency conditions in
Ref. [25] (the inequalities Eq. 4a-4c). The first condition Eq. 4a implies∣∣∣∣ ∂∂tα(xh, t)

∣∣∣∣� Ωrms(xh, t), (B.3)

=⇒ r0i � 1 (B.4)

where we have used Eqs. 5 and 6. For r0i = 0.01, this inequality is well satisfied. The stronger version [25]
of the second inequality Eq. 4b states:∣∣∣∣ ∂∂t

(
∂α(xh, t)/∂t

Ωrms(xh, t)

)∣∣∣∣
max

tSi � 1 (B.5)

=⇒ r0i �
1

2π
' 0.16. (B.6)

For r0i = 0.01, this inequality is also well satisfied. We note that Eq. B.5 also enforces that r(t) must
be differentiable. The stronger version of the third inequality Eq. 4c is [25]∣∣Ωrms(xh, t)r

2(t)
∣∣
max tSi � 1 (B.7)

=⇒ tSiβir
2
0i � 1 =⇒ 4 arctan(1/εi)� 1/r0i for pulse scheme (1) (B.8)

where we have substituted Eq. 8. Again this inequality is well satisfied for r0i = 0.01.

Appendix C. Bloch-Floquet bandstructure

Appendix C.1. Bandstructure of Ĥ(x, t)

We evaluate the matrix elements of the quasienergy operator K̂q derived in Sec. 4. K̂q is expressed in
dimensionless units x̃ and t̃ where x̃ = (2π/λ)x = kx, t̃ = (2π/T )t = ωT t, ER = h̄2k2/(2m) = h̄ωR, and
the tildes over x and t are dropped for convenience, as follows:[

(−i∂x + q)2 + Ω̂(x, t)− iωT
∂

∂t

]
|uq,Eq(x, t)〉〉 = Eq|uq,Eq(x, t)〉〉 (C.1)

=⇒ K̂q|uq,Eq(x, t)〉〉 = Eq|uq,Eq(x, t)〉〉. (C.2)
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We expand the Hilbert space of the Bloch-Floquet modes in a plane wave basis:
|uq,Eq(x, t)〉〉 =

∑
lmj clmj|lmj〉 where 〈xt|lmj〉 = eilxeimt|j〉. Here l ∈ [−L,L], m ∈ [−M,M ], and

j ∈ [1, 2, 3] represents the three spins. The Hilbert space spanned by the basis set is composed of plane
waves with the property

∑
lmj |lmj〉〈lmj| = I(2L+1) ⊗ I(2M+1) ⊗ I3. We solve Eq. C.2 by diagonalizing

K̂q. The matrix elements of the spin-independent components of K̂q (〈l′m′j′|K̂q|lmj〉) are:

〈
l′m′j′

∣∣∣∣− i ∂∂t
∣∣∣∣lmj〉 = δll′ ⊗ (mδmm′)⊗ δjj′ , (C.3)

〈
l′m′j′

∣∣∣∣ (−i∂x + q)2

∣∣∣∣lmj〉 =
[
(l + q)2 δll′

]
⊗ δmm′ ⊗ δjj′ . (C.4)

The spin-dependent component of K̂q is Ω̂(x, t):

Ω̂(x, t) =
1

2


0 0 Ωp(t)

0 0 Ω∗c(x, t)

Ωp(t) Ωc(x, t) −(2∆(t) + iΓ)

 (C.5)

=
1

2

(
Ωp(t)(|1〉〈3|+ |3〉〈1|)︸ ︷︷ ︸

A

+−(2∆(t) + iΓ)|3〉〈3|︸ ︷︷ ︸
B

+ Ω∗c(x, t)|2〉〈3|+ Ωc(x, t)|3〉〈2|︸ ︷︷ ︸
C

)
, (C.6)

where the matrix elements of A and B are,

〈l′m′j′|A|lmj〉 = δll′ ⊗ 〈m′|Ωp(t)|m〉 ⊗ (δj′1δj3 + δj′3δj1), (C.7)

〈l′m′j′|B|lmj〉 = −iΓδll′ ⊗ δmm′ ⊗ δj′3δj3 − 2δll′ ⊗ 〈m′|∆(t)|m〉 ⊗ δj′3δj3. (C.8)

Depending on the pulse scheme, 〈l′m′j′|C|lmj〉 has different forms. For pulse scheme (1) i.e. Ωc(x, t) =

Ωc(t) sin(x+ φ(t)):

〈l′m′j′|C|lmj〉 =

{
1

2
(δl′,l−1 + δl′,l+1)⊗ 〈m′|Ωc(t) sinφ(t)|m〉

+
1

2i
(δl′,l+1 − δl′,l−1)⊗ 〈m′|Ωc(t) cosφ(t)|m〉

}
⊗ (δj′2δj3 + δj′3δj2). (C.9)

For pulse scheme (2) i.e. Ωc(x, t) = Ωc2(t)ei(φ2(t)+x)/i− Ω0
ce
−ix/2i :

〈l′m′j′|C|lmj〉 =

{
1

i
δl′,l+1 ⊗ 〈m′|Ωc2(t)eiφ2(t)|m〉 − Ω0

c

2i
δl′,l−1 ⊗ δm′m

}
⊗ δj′3δj2+{

− 1

i
δl′,l−1 ⊗ 〈m′|Ωc2(t)e−iφ2(t)|m〉+

Ω0
c

2i
δl′,l+1 ⊗ δm′m

}
⊗ δj′2δj3. (C.10)

The spatio-temporal probability distribution of a Bloch-Floquet mode is,

|ψ|2 =
∑

l′m′lmj

cl′m′jclmje
i(l−l′)x+i(m−m′)t, (C.11)

where |ψ〉 = 〈x, t|uq,Eq(x, t)〉〉 with the fractional probability of being in spin |i〉 at x and t (x ∈ [−π, π],
t ∈ [−π, π]) given by,

|〈j|ψ〉|2

|ψ|2
=

∑
l′m′lm cl′m′jclmje

i(l−l′)x+i(m−m′)t∑
l′m′lmj cl′m′jclmje

i(l−l′)x+i(m−m′)t . (C.12)
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It is important [17] to appropriately choose the number of plane waves L and M to be large enough
to accurately represent the couplings between the dark-state channel and bright-state channels. We
solve for the lowest few dozen eigenstates near zero energy of these sparse matrices with dimensions
3(2L+ 1)(2M + 1)× 3(2L+ 1)(2M + 1) ∼ 105 × 105 using the Arnoldi algorithm. We find that the
solution converges with M as low as 25, however for all our calculations we use M ' 210.

Appendix C.2. Bandstructure of ĤDS(x, t)

In this subsection, we outline the method used to numerically solve for the Bloch-Floquet bandstructure
of the dark-state channel ignoring non-adiabatic couplings to the bright-state channels:

ĤDS(x, t) =
p̂2

2m
+WDS(x, t) (C.13)

where ĤDS(x + λ/2, t) = ĤDS(x, t) and ĤDS(x, t + T ) = ĤDS(x, t). Due to the nonlinear nature
of WDS(x, t) solving for the bandstructure in the extended Hilbert space approach requires a 2D
Fourier transform of WDS(x, t). Instead we solve for the bandstructure using the approach outlined
in Refs. [5, 29, 3, 2] where we evaluate the time evolution operator over one Floquet period, Û(T, 0),
and then diagonalize it.

Making the Bloch ansatz, |ψDS(x, t)〉 = eiqx|uq,DS(x, t)〉, the time-dependent Schrodinger equation
in dimensionless units is

∂

∂t
|uq,DS(x, t)〉 = − i

ωT

Ĥq,DS︷ ︸︸ ︷((
− i∂x + q

)2

+WDS(x, t)

)
|uq,DS(x, t)〉. (C.14)

We determine the time evolution operator for one Floquet period Ûq,DS(2π + t0, t0) [2, 3, 5] and equate
that to the time evolution operator of an effective Floquet Hamiltonian e−Ĥ

F
q,DS [t0]T/h̄ where ĤF

q,DS[t0] is
defined at a Floquet gauge t0 [4].

The expression for Ûq,DS(2π, 0) for t0 = 0 is derived as follows:

|uq,DS(x, 2π)〉 = Ûq,DS(2π, 0)|uq,DS(x, 0)〉

= T (e−i
∫ 2π
0 Ĥq,DS(x,t)dt/ωT )|uq,DS(x, 0)〉

=

( L∏
l=0

e−iĤq,DS(x,l∆t)∆t/ωT

)
|uq,DS(x, 0)〉

=

( L∏
l=0

Ŝq,le
−iÊq(l∆t)∆t/ωT Ŝ−1

q,l

)
|uq,DS(x, 0)〉

=⇒ Ûq,DS(2π, 0) =

( L∏
l=0

Ŝq,le
−iÊq(l∆t)∆t/ωT Ŝ−1

q,l

)
= e−Ĥ

F
q,DS [0]T/h̄ (C.15)

where T is the time-ordering operator, L∆t = 2π and L is an integer number of time-steps. Ŝq,l is chosen
to diagonalize Ĥq,DS(x, l∆t) at time l∆t: Ŝ−1

q,l Ĥq,DS(x, l∆t)Ŝq,l = Êq(l∆t) where Ŝ−1
q,l Ŝq,l = I2L+1. Finally,

we diagonalize Ûq,DS(2π, 0) in Eq. C.15 to evaluate the Floquet eigenvalues and the eigenvectors [5, 2, 3]:

Ûq,DS(2π, 0) = e−iĤ
F
q,DS [0]T/h̄ =

2L+1∑
j=1

e−iE
j
qT/h̄|ujq,DS(x, 0)〉〈ujq,DS(x, 0)|. (C.16)

The Floquet eigenvalues Ej
q are time-independent. For λ/(2N)-spaced lattices the Rabi pulses are the

same for each T/N sub-Floquet period and symmetry arguments were used to speed up the creation of
the one-period Floquet evolution operator Ûq,DS(2π, 0) [5].
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Figure D1: Level structure of the (6s2)1S0 and (6s6p)3P1 manifolds of 171Yb: ∆ is the single photon
detuning; ∆̃ is the Zeeman splitting in the excited state due to an external magnetic field; and ∆HFS is
the (6s6p)3P1 hyperfine splitting.

Appendix D. Effect of two-photon detuning

In this section, we discuss the detrimental effect of the states outside the Λ-system in realizing λ/(2N)-
spaced lattices for the specific case of 171Yb. In addition to the Λ-system composed of the states |1〉,
|2〉 and |3〉, the (6s6p)3P1 manifold has 5 additional states |4〉 to |8〉 that can couple to states |1〉 and
|2〉 (Fig. D1). When the effective Rabi frequencies are much smaller than their respective detunings to
the off-resonant excited states |4〉 to |8〉, we can adiabatically eliminate the excited states and quantify
their effect on the ground states |1〉 and |2〉 of the Λ-system in dimensionless units as follows:

Ω̂OR(x, t) '
(
δ1(t) +

Ω2
p(t)

2(∆HFS + iΓ/2)
+

3|Ωc(x, t)|2

8(∆HFS + iΓ/2)

)
|1〉〈1|+(

δ2(t) +
Ω2
p(t)

4(∆̃ + iΓ/2)
+

Ω2
p(t)

2(∆HFS + iΓ/2)
+

|Ωc(x, t)|2

8(∆HFS + iΓ/2)

)
|2〉〈2| (D.1)

'
(
δ1(t) +

Ω2
p(t)

2∆HFS
+

3|Ωc(x, t)|2

8∆HFS
− iΓ1(x, t)

2

)
|1〉〈1|+(

δ2(t) +
Ω2
p(t)

4∆̃
+

Ω2
p(t)

2∆HFS
+
|Ωc(x, t)|2

8∆HFS
− iΓ2(x, t)

2

)
|2〉〈2|, (D.2)

where

Γ1(x, t) = Γ

(
Ω2
p(t)

2∆2
HFS

+
3|Ωc(x, t)|2

8∆2
HFS

)
, (D.3)

Γ2(x, t) = Γ

(
Ω2
p(t)

4∆̃2
+

Ω2
p(t)

2∆2
HFS

+
|Ωc(x, t)|2

8∆2
HFS

)
, (D.4)

when Γ � ∆̃,∆HFS. By dynamically modulating δ1(t) and δ2(t) we compensate for the spatially
homogeneous but temporally modulated real parts in Eq. D.2. The compensated Ω̂OR(x, t) is added
to Ĥ(x, t) and solved for using the method outlined in Sec. 4 and Appendix C.1 to calculate the Bloch-
Floquet bandstructure of λ/(2N)-spaced lattices in the presence of two-photon detunings and photon
scattering loss due to states outside the Λ-system. The non-Hermitian terms in Eq. D.2 (Eqs. D.3
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Figure D2: The Floquet spectrum Eq at q = 0 as a function of ωT/ωR for a λ/4-spaced lattice: All
calculations are performed for Ω0

ci = 600Γ, r0i = 0.01, εi = 0.2, ∆ = 0, and tSi = 0.36Ti. (a) For the
ideal Λ-system (b) For the Λ-system with the spatio-temporally modulated ac-Stark shifts and losses
due to the excited states |4〉-|8〉.

and D.4) account for loss from photon scattering due to admixing of the adiabatically eliminated excited
states with the bare stable ground states |1〉 and |2〉. For a λ/4-spaced lattice created by pulse scheme
(1), Eq. D.2 is

〈l′m′j′|Ω̂OR(x, t)|lmj〉 = −i Γ

4∆2
HFS

δl′,l ⊗ 〈m′|Ω2
p(t)|m〉 ⊗

(
δj′1δj1 + δj′2δj2

)
− i Γ

8∆̃2
δl′,l ⊗ 〈m′|Ω2

p(t)|m〉 ⊗ δj′2δj2 − i
Γ

2∆2
HFS

δl′,l ⊗ 〈m′|Ω2
c(t)|m〉 ⊗

(
3

16
δj′1δj1 +

1

16
δj′2δj2

)
−
(

1

∆HFS
− i Γ

2∆2
HFS

){
1

2
(δl′,l−2 + δl′,l+2)⊗ 〈m′|Ω2

c(t) cos 2φ(t)|m〉
}
⊗
(

3

16
δj′1δj1 +

1

16
δj′2δj2

)
,

(D.5)

where ∆HFS ' −33, 000 Γ and ∆̃ ' −5500 Γ (Fig. D1). The real spatio-temporally modulated terms in
Eq. D.5 originate from Ωc(x, t) and may only be compensated with the experimental overhead of adding
more laser fields.

In Fig. D2b we show the effect of Ω̂OR(x, t) and contrast it with an ideal Λ-system (Fig. D2a). In
Fig. D2b, the window of operational ωT is smaller and the losses are higher as expected. At lower ωT
the sinusoidal two-photon detunings are not time averaged out. The ground band is also red shifted due
to the ac-Stark shifts being red detuned. Large Rabi frequencies with uncompensated spatio-temporally
modulated two-photon detuning destroy the fidelity of the STIRAP pulses and make it harder to create
λ/(2N)-spaced lattices. Losses from excited states admixing further shorten lifetimes.

Another possible candidate system that uses fine-structure states instead of hyperfine states for
the Λ-system consists of the metastable states (6s6p)3P2 and (6s6p)3P0 of Yb as the long-lived states
|1〉 and |2〉, and (6s7s)3S1 as the excited state |3〉. This Λ-system is well isolated, and |1〉 and |2〉 are
separated in energy by multiple THz. In this configuration, λ/(2N)-spaced lattices can be realized for
both bosonic and fermionic species of Yb. The large matrix elements for the (6s6p)3P2 ↔ (6s7s)3S1

and (6s6p)3P0 ↔ (6s7s)3S1 transitions ensure that higher Rabi frequencies can be achieved in these
systems without the detrimental effect of states outside the Λ-system. However Floquet heating from
interactions [2, 3] and losses from fine-structure collisions of (6s6p)3P2 atoms [44] could limit lifetimes
in these systems.
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Appendix E. Adiabatic loading into the ground band

There are a few ways to adiabatically load into the ground band of a λ/4-spaced lattice given that
one has control over Ωc1(t), Ωc2(t), Ωp(t), φ1(t), and φ2(t). We consider here a protocol in which the
time-averaged potential is grown by periodically pulsing Ωc(t) with a slowly varying envelope f(t) with
a timescale much slower than the motional degree of freedom: Ω̃c(t) = f(t)Ωc(t). The pulse profile for
Ωc(t) is determined by Eq. 7 for a given final ε. For pulse scheme (1), Ω̃p(t) along the ramp is determined

by Ω̃p(t) =
√
β2 − Ω̃2

c(t). The large and constant energy gap h̄β/2 minimizes admixing of the dark-state
channel with the bright-state channels. Under these conditions the loading is spin adiabatic because∣∣∣∣∂α̃(xh, t)

∂t

∣∣∣∣ < |βr(t)| < βr0, (E.1)

for 0 < f(t) < 1 and ḟ(t)� 1/T , where α̃ = tan−1[Ω̃p(t)/Ω̃c(x, t)]. For pulse scheme (2), we propose the
protocol Ω̃p(t) = (1− f(t))Ω0

p and the pulse profile for Ωc2(t) is one that creates the desired λ/4-spaced
lattice for a chosen ε according to Eq. B.1. Ω̃p(t) is reduced down from an initial large value to its final
value of Ω0

p. This ensures that the energy gap h̄β/2 at the nodes is lower at the end of the ramp than at
the start, minimizing admixing of the dark-state channel with the bright-state channels along the ramp.
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Subwavelength-width optical tunnel junctions for ultracold atoms. Physical Review A, 94(6):1–7, 2016.

[19] Y. Wang, S. Subhankar, P. Bienias, M. Łącki, T-C. Tsui, M. A. Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, and
S. L. Rolston. Dark state optical lattice with a subwavelength spatial structure. Phys. Rev. Lett., 120:083601, Feb
2018.

[20] M. Lacki, P. Zoller, and M. A. Baranov. Stroboscopic painting of optical potentials for atoms with subwavelength
resolution. Phys. Rev. A, 100:033610, Sep 2019.

[21] Saar Rahav, Ido Gilary, and Shmuel Fishman. Effective Hamiltonians for periodically driven systems. Physical
Review A, 68(1):013820, 2003.

[22] John Moody, Alfred D. Shapere, and Frank Wilczek. ADIABATIC EFFECTIVE LAGRANGIANS. 1989.
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