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Abstract
Noisy measurement data pose a challenge for changepoint analysis, especially in the pres-

ence of multiple changepoints and when the model is nonlinear. We explore various ap-
proaches to estimating changepoints and their standard errors under these conditions. We
consider whether adding a monotonicity constraint improves the changepoint estimates and
reduces their standard errors. We finish with a novel application to material science using
crack growth data from additively manufactured titanium. As cyclic loading is applied to a
test specimen, crack growth can be partitioned into three regimes: slow-growth, mid-growth,
and high-growth. We improve estimates of the transition points between these regimes ver-
sus those made by experts in the field by adding confidence bounds to the changepoint
locations, allowing for designed experiments to study treatment effects on changepoint lo-
cation.

Key Words: changepoint, isotonic regression, nonlinear least squares, pool-adjacent-
violators algorithm

1. Introduction

As a material is subjected to cyclic fatigue loading, cracks can form and grow over
time even when the maximum applied force is well below the yield strength of the
material. To measure the resistance of a material to fatigue crack propagation, a
notched sample is cyclically loaded for many thousands of cycles. For each force
cycle, the crack size a is estimated and the cyclic force range, ∆P = Pmax − Pmin

is recorded. For analysis, the stress intensity factor, ∆K, is calculated from ∆P ,
a, and the geometry of the specimen, since during fatigue testing the force range is
constant, while ∆K increases as the crack propagates. The stress intensity can be
calculated for any part where the forces and geometry are known. ∆K is plotted
against the change in crack length per cycle or fatigue crack rate, da

dn (see Figure 1).
Figure 1a shows data on the linear scale. For lower values of ∆K, the crack

shows minimal growth. This transitions to an elbow region as ∆K increases, where
the crack growth rate can be predicted with a power law (Hertzberg, 1996, p. 614).
This in turn leads to a short period of rapid crack growth. The transitions between
these three regimes (slow-growth, mid-growth, and high-growth) can be used to
characterize the fatigue properties of the material. Because the transitions are
difficult to identify on the linear scale, both da

dn and ∆K are typically transformed
by taking the log (base 10) (Figure 1b). The transformation changes the elbow
region into a linear region, with a lower changepoint occurring at the transition
into the linear region and an upper changepoint at the transition out of the linear
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(b) Log-transformed data.

Figure 1: Example of fatigue crack growth data from additively manufactured
titanium on the linear scale (left) and after taking the log (base 10) of both the stress
intensity factor ∆K and the crack growth rate da

dn (right). Possible changepoint
locations are shown by the vertical red lines.

region. These changepoints are typically determined through inspection by experts
in the field. Our challenge is to estimate these two changepoints objectively.

We proceed as follows. Since we don’t know the true changepoints for the
experimental data, we start with a simulation study both to compare methods using
data with a known changepoint and to explore how aspects of the data might bias
the estimates. Additionally, we investigate whether it is possible to reduce noise in
the data knowing that crack growth should always increase as ∆K increases. We
finish by estimating the changepoints on experimental data and comparing results
with changepoints estimated using inspection by expert engineers. All computation
was performed using R (R Core Team, 2018).

2. Methods

We assume that the model should be linear between the changepoints, so we concen-
trate on methods that can be made to accommodate this constraint. Specifically, we
focus on fitting models using nonlinear least squares (NLS). We can parameterize
the function that we fit to approximate different shapes below, between, and above
the two changepoints. In each case, the function segments are constrained to meet
at the changepoints, and the changepoint locations are estimated as parameters.
The approach also has the advantage of providing standard errors on the parameter
estimates and model fit diagnostics. For example, the model for estimating one
changepoint with one linear and one quadratic segment is

ŷ =Ix≤changepoint(a1 + b1 ∗ x)+ (1)

Ix>changepoint(b2 ∗ x + c2 ∗ x2)

If c2 is set to zero this model reduces to one with two linear segments meeting at
the changepoint.

2.1 Noise reduction

We know that da
dn should be monotonically increasing with ∆K (cracks do not de-

crease in size in engineering materials under cyclic force), so it is natural to consider
the benefit of isotonic regression (Barlow and Brunk, 1972; Dykstra, 1981; Robert-
son et al., 1988). Isotonic regression is unique in that it is guaranteed to reduce
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Figure 2: Example of PAVA using simulated data. Black circles are the original
data points, the red triangles show the result after PAVA. If the original data is
already increasing, PAVA does nothing, but the pooling is evident whenever a y
value decreases.

mean-squared error when estimating a monotonic mean function. We consider the
isotonic regression calculated using the pool-adjacent-violators algorithm (PAVA)
(Ayer et al., 1955). PAVA is implemented in R in the isotone package (Mair et al.,
2009).

PAVA works as follows. Start with the data (xi, yi) for observations i ∈ 1, . . . , n
ordered such that xi ≤ xi+1. At this point the yi’s have not been touched. We
assume equal weights. Start at i = 1 and check whether y2 is less than y1. If this
is the case, the monotonicity constraint is violated, so pool y1 and y2 by replacing
both with their average y1+y2

2 . Then proceed as follows for i ∈ 2, . . . , n− 1:

1. Check for a monotonicity violation (yi+1 is less than yi). If that is the case,
pool yi+1 and yi.

2. If the new value of yi is now less than yi−1, pool all three (yi−1, yi, and yi+1)
by replacing the three values with their average. Then for j ∈ i − 1, . . . , 1
repeat until j = 1 or yj < yj+1.

3. Proceed to the next i.

After the PAVA computation has completed, the y’s are monotonically non-
decreasing (Figure 2). Even though PAVA appears to naturally apply to fatigue
crack growth data due to the monotonicity, it is not clear whether PAVA will bias
the changepoint estimates, or to what extent the associated standard errors will be
affected.

3. Simulation study

The simulation study is set up to explore different situations that might arise in
the experimental data in a controlled way. We simulate data using (1) for the one
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Figure 3: Data generation models shown without noise. Both have a linear first
section with b2 = 1 up to the changepoint at x = 1. Multiple parameter values for
the upper segments are shown, corresponding to the slope on the upper segment
(b2) in the linear-linear model and the coefficient on the quadratic term (c2) for the
linear-quadratic model.

changepoint case since including a second changepoint is a straightforward extension
of the NLS function. The first segment is a line with b1=1 for x between 0 and 1.
The changepoint is at x = 1. For x between 1 and 2, we consider both a linear
and a quadratic segment, the quadratic is chosen because it represents the simplest
nonlinear case.

Two parameters are varied when simulating data. The first is the amount of
additive noise. In the experimental data, the error relative to the range of the y
measurements is about 1 %, so we consider a range of additive noise values includ-
ing: 1 %, 2 %, 3 %, and 5 %. The other parameter we vary is the shape of the
second segment after the changepoint. In the linear-linear model where c2=0, this
parameter is the slope of the second segment (b2), and will range between 1.5 and 5.
For the linear-quadratic model, we fix the slope of the quadratic segment to be 1 at
the changepoint (b2=1) so the function is continuous and smooth, but we vary the
coefficient on the quadratic term (c2) between 0.5 and 5. Changing c2 is equivalent
to changing the second derivative (differing by a factor of 2). Examples of these
data generation models with different parameter values are shown in Figure 3.

For each model, parameter value, and relative noise level, we simulate 10,000
data sets, each with 200 points below the changepoint and 200 points above, and fit
linear-linear and linear-quadratic models using NLS. The output of each iteration
is an estimated changepoint location, and we use these to compute the bias and
standard error of the changepoints. The second part of the simulation will treat
noise reduction using PAVA. Although PAVA should reduce the noise in the data
with no penalty in overall model fit, it is not clear whether PAVA will introduce
bias in the specific parameter estimate for the changepoint. Thus for each simulated
data set, we also fit the model to PAVA smoothed data, and compare the bias and
standard error of the changepoint parameter estimates for unsmoothed and PAVA-
smoothed data.
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Figure 4: Bias (left) and standard error (right) for the estimated changepoint
obtained by fitting the linear-linear model to linear-linear data versus the value of
b2 used to simulate the data.
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Figure 5: Bias (left) and standard error (right) for the estimated changepoint
obtained by fitting the linear-linear model to linear-quadratic data versus the value
of c2 used to simulate the data.

3.1 Bias and standard error

Figure 4 shows the bias (left) and standard error (right) of the estimated change-
point for the linear-linear model fit to the linear-linear data. On the x-axis is the
slope of the upper segment, ranging between 1.5 and 5. In the noisiest scenario (5
% relative noise) with the least slope difference (b2 = 1.5), the bias is -0.18. When
b2 = 2, the bias drops to just -0.05 and keeps improving as the slope increases. The
standard error follows a similar pattern.

Results for bias and standard error of the estimated changepoint for the linear-
linear model fit to linear-quadratic data are shown in Figure 5. The shape of the
curves for bias and standard error are similar to the previous case (fitting a linear-
linear model to linear-linear data) but now instead of the bias trending towards zero
it settles at roughly 0.32. The standard error decreases for all relative noise levels
as the coefficient on the quadratic term increases.

Results for bias and standard error of the estimated changepoint for the linear-
quadratic model fit to linear-quadratic data are shown in Figure 6. When c2 is
between 0.5 and 1.5, the biases are near zero but the standard errors at the four
relative noise levels are highest at the 0.5 value, decreasing as c2 increases. The
bias is negative for coefficients 2 through 5. A negative bias here indicates that the
transition to the quadratic segment, the changepoint, is estimated to be too low, so
the quadratic segment consistently takes over part of the linear segment.
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Figure 6: Bias (left) and standard error (right) for the estimated changepoint
obtained by fitting the linear-quadratic model to linear-quadratic data versus the
value of c2 used to simulate the data.

The results of the simulation show that fitting a linear-linear model to linear-
linear data performs well. The recommendation is not as clear for the linear-
quadratic data, since fitting a linear-quadratic model does not perform consistently.
The parameter combinations with biases near zero have the largest standard er-
rors, and there are erratic jumps in the bias for some coefficient values. Fitting a
linear-linear model to the linear-quadratic data shows higher bias in the change-
point estimate, but the results are consistent over different coefficient values, and
the standard errors are consistently lower compared with the linear-quadratic fit.

3.2 PAVA results

In the simulation study, we explore two ways that PAVA can influence the analysis.
The first is to show the improvement in model fit, and the second is to explore the
effect on the changepoint estimates themselves.

In terms of model fit, the reduction in mean-squared error from unsmoothed to
PAVA-smoothed data is shown in Figure 7. The percent change was calculated going
from unsmoothed to PAVA-smoothed data, relative to the unsmoothed data. For
both cases where the model fit matches the data model, PAVA reduced the mean-
squared error of the NLS fit by over 80 %. This reduction is larger at high relative
noise levels, and decreases as the upper segment becomes steeper. The third case,
fitting a linear-linear model to linear-quadratic data, shows similar improvement
(over 80 %) when b2 is 0.5 or 1, but offers less of an improvement as b2 increases.
When b2 = 5, PAVA reduced the mean-squared error by less than 40 % at the lowest
relative noise level.

The effect of PAVA on the bias of the changepoint estimates is shown in Figure 8.
This plot shows the difference in absolute values, |biasunsmoothed| − |biasPAVA|. A
positive value means that PAVA reduces the bias, while a negative value means the
opposite. We chose to use this difference instead of calculating a percentage change
since many values are close to zero, leading to unstable relative changes.

For a linear-linear model fit to linear-linear data, PAVA reduces the magnitude
of the bias when b2 = 1.5 for the three highest relative noise levels (2 %, 3 %, and 5
%). When b2 = 2, PAVA reduces the magnitude of the bias only for the 5 % relative
noise case. PAVA increases the bias for the other combinations of slope and relative
noise, but only by 0.01 or less.

PAVA does not improve the bias when fitting a linear-linear model to linear-
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Figure 7: Percent change in mean-squared error of the NLS fit going from un-
smoothed to PAVA smoothed data. (left) linear-linear model fit to linear-linear
data, (center) linear-linear model fit to linear-quadratic data, and (right) linear-
quadratic model fit to linear-quadratic data.

quadratic data. Bias is actually increased for all combinations of relative noise and
the coefficient on the quadratic term (c2), although this increase is 0.02 or less for
relative noise of 1 %. The difference in bias decreases for all relative noise levels as
c2 increases.

When fitting a linear-quadratic model to linear-quadratic data, PAVA reduces
the bias at all noise levels for c2 values from 1.5 to 4, although by less than 0.025
in all cases. Bias increases for a quadratic coefficient of 1, but by less than 0.01.

While PAVA substantially reduces the overall error in the model fit, it does
not offer a consistent reduction in bias for the changepoint estimate. However, in
cases where PAVA increases the magnitude of the bias, the increase is less than 0.01
when the correct model is fit to the data. The bias increase is more than 0.02 when
fitting the linear-linear model to linear-quadratic data when the c2 is less than 2.
Although PAVA does not consistently reduce the bias of the changepoint estimates,
the reduction in mean-squared error from the model fit means that PAVA could be
a useful step in estimating changepoints with NLS under the right conditions (for
example, the linear-linear model fit to linear-linear data with high noise and a small
change in slope). PAVA should not be used for the case where a linear-linear model
is fit to linear-quadratic data.

4. Analysis of experimental data

We turn now to the problem of estimating the two changepoints on the experimental
data. We extend the linear-linear and linear-quadratic models from the simulation
study to now include two changepoints. For simplicity we call the linear-linear-
linear model the “1-1-1” model and the quadratic-linear-quadratic model the “2-1-
2” model, from the order of the polynomials in each segment. The equation that
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Figure 8: Difference in the absolute value of the bias for unsmoothed data and the
absolute value of bias for PAVA-smoothed data. A positive value indicates that the
magnitude of the bias is smaller after PAVA, while a negative value indicates the
opposite.

Parameter 1-1-1 model 2-1-2 model Expert

Lower changepoint 1.087 (0.00579) 1.152 (8.735) 1.06 (0.0107)
Upper changepoint 1.735 (0.00469) 1.667 (0.0283) 1.75 (0.00974)

b0 5.180 (0.162) 2.710 (161.622) N/A
c0 N/A -9.268 (1.756) N/A
a1 -7.333 (0.0252) -7.299 (0.0368) N/A
b1 2.735 (0.0179) 2.712 (0.0261) N/A
b2 6.893 (0.353) 1.865 (0.783) N/A
c2 N/A 21.821 (3.954) N/A

Table 1: Parameter estimates for the 1-1-1 and 2-1-2 models, and the mean values
from the expert engineers. Standard errors for each point estimate are shown in
parentheses. Units on the changepoint estimates are log10(MPa ∗m1/2).

we fit using NLS is given by

ŷ =Ix<lower changepoint(b0 ∗ x + c0 ∗ x2)+
Ilower changepoint≤x≤upper changepoint(a1 + b1 ∗ x)+ (2)

Ix>upper changepoint(b2 ∗ x + c2 ∗ x2)

where c0 and c2 are set at zero for the 1-1-1 model. There are no intercept terms
estimated for the lower and upper segments because they are not free parameters.
Since we do not know the true changepoints, we first had three expert engineers
provide their best guess of the changepoint locations, independent of one another,
for comparison with our results. Results for the 1-1-1 and 2-1-2 models are compared
with the expert estimates in Table 1. This comparison illustrates why we use the
1-1-1 model for fitting even though the fatigue crack growth data appears to follow a
2-1-2 model. The 2-1-2 model fails to produce a lower changepoint with a reasonable
standard error, and the 2-1-2 estimates are not as close to the expert changepoints
as the 1-1-1 estimates. The experimental data may correspond to a high bias,
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Figure 9: Experimental data with changepoints from each of the three experts and
the 1-1-1 model. The 1-1-1 estimates agree almost exactly with at least one expert
for both the upper and lower changepoints.

high standard error case in the simulation study where a linear-linear model is fit
to linear quadratic data. In addition, the 2-1-2 model may not be a good fit to
the experimental data. The 1-1-1 estimates are much closer to the average values
from the experts for both changepoints, and the estimates have reasonable standard
errors. Note that the 1-1-1 and 2-1-2 models estimate almost identical values for
the slope and intercept of the central linear segment.

Individual estimates from the three experts and the 1-1-1 model are shown in
Figure 9. The expert estimates show variability in the changepoint locations, but
the estimates from the 1-1-1 model are both in the right area and very close to at
least one expert for both the upper and lower changepoints. Results for data from
other fatigue tests are similar, so we conclude that the 1-1-1 method is at least as
reliable as an expert engineer in estimating the two changepoints.

For the experimental data, Figure 10 shows the point estimates and 95 % con-
fidence intervals for three methods: experts (mean ± 2×standard error), the 1-1-1
model, and the 1-1-1 model with PAVA. While PAVA isn’t recommended for fitting
a linear-linear model to linear-quadratic data, we estimate changepoints for PAVA-
transformed experimental data for completeness. Based on the simulation results
for the case where a linear-linear model is fit to linear-quadratic data, the upper
changepoint should be biased high; however, the 1-1-1 model produces an upper
changepoint that is less than the average computed for the experts. Although the
point estimates for the 1-1-1 method with and without PAVA are similar, PAVA
does reduce the widths of the confidence intervals.

5. Conclusions

The simulation study provides insight into the behavior of changepoint estimation
using NLS for a variety of scenarios. Fitting a linear-linear model to linear-linear
data produces the most consistent changepoint estimates, with biases smaller than
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Figure 10: Comparison of point estimates and 95 % confidence intervals for the
lower changepoint (top) and the upper changepoint (bottom).

0.01 in most cases. When fitting a linear-quadratic model to linear-quadratic data,
many biases were in the range of -0.025 to -0.1. Changepoint estimates are biased,
converging to a bias of 0.32, for all cases considered when fitting a linear-linear model
to linear-quadratic data. Additionally, PAVA always reduces the mean-squared error
for the model fit, but did not always reduce the bias in the changepoint estimates
and should be used with caution.

The application to fatigue crack growth data shows that the 1-1-1 model pro-
vides realistic changepoint estimates even though the model doesn’t accurately rep-
resent the data in the lower and upper segments. This method performs quite well
compared with changepoint estimates made by experts in the field.

Future work will focus on two areas. First, we will estimate changepoints in
the context of a designed experiment to evaluate how material conditions affect the
changepoint locations. The second area of work involves missing data. Because
valid data can only be collected while the crack is below a certain percentage of
the sample width (ASTM E647), a particular test may only provide data on one of
the two changepoints. Utilizing data from these tests would be useful, since fatigue
tests are expensive.

This work builds the foundation for a methodical, data-driven approach to the
analysis of fatigue crack growth data. The objectivity provided by our statistical
approach will be useful to the scientific community.
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