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1 Introduction 

In the mid 1990s Peter Shor broke the schemes that we currently use for informa-
tion security in the public key setting, see [1]. If we accept that the construction 
of the technology to implement his attacks is an engineering challenge as op-
posed to a physical impossibility, then we admit that out current public key 
infrastructure is a paper tiger waiting to be crushed. 

Since that time, several communities have emerged devoted to various promis-
ing avenues to security in a post-quantum world, that is, a world with the large 
scale quantum computing devices required to undermine current public key cryp-
tography by Shor’s techniques. We can largely place these communities in four 
classes: code-based, isogeny-based, lattice-based and multivariate. 

These families are all disparate, though there are sometimes some similarities 
between code-based and lattice-based techniques. Isogeny-based and multivari-
ate cryptosystems, however, are usually viewed as being far removed from the 
code-based and lattice-based camps. 

An interesting, though impractical, scheme was presented at PKC 2012, see 
[2], which hacked a lattice technique for use as a multivariate cryptosystem. The 
main idea is to separate a multivariate quadratic system of formulae into a linear 
part L and a quadratic part Q playing the roles of the matrix A and the error 
distribution χ, respectively, in standard LWE, see [3]. The coefficients of L are 
very large, whereas the coefficients of Q are very small. When a small input x 
is introduced, a small vector Q(x) is sampled and the “lattice point” L(x) is 
perturbed. As long as the parameters are quite large, and under some additional 
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assumptions, the distribution of (L, Q(x)+ L(x)) is close to that of (L, L(s)+ e) 
where e is drawn from an appropriate Gaussian distribution, so that the security 
of the scheme is based on the LWE assumption and the MQ problem, that is, 
the problem of solving quadratic systems of equations over a field. 

A natural question to ask is whether it is possible to breed a hybrid code-
based multivariate scheme and what properties is might possess. In this work, 
we present a new multivariate encryption scheme inspired and derived from 
linear codes. While the connection to code-based schemes is not so direct and 
apparent as the connection to LWE in [2], the construction appears versatile 
and amenable to adjustment for various security and performance properties as 
have multivariate schemes in general come to be known. As an example of this, 
we propose, in addition to the fundamental scheme, a variant with a decryption 
algorithm approximately 6000 times faster than the original, and, in fact, much 
faster than any multivariate encryption scheme targeting CCA security at the 
128-bit security level, see Table 1 for a comparison with currently credibly se-
cure multivariate encryption schemes including Simple Matrix, Extension Field 
Cancellation, HFERP and EFLASH, see [4–7]. 

Table 1. Performance characteristics of multivariate encryption schemes at the best 
available comparison to the 128-bit security level. 

Scheme Sec. PK size Enc.(ms) Dec.(ms) Fail Rate 
2−32EFLASH(2,134,159,9) 128 165.7KB 1.3 12758 

EFCpt2 (2,83,8) 80? 523KB 4 2481 negl. 
EFCpt2 (2,148,8)§ 128 3059KB 23‡ ∼14000‡ negl. 

2−32ABC(28,10,13,14,14,364,180) 100† 5537KB 53 59 
2−32ABC(28,12,15,16,16,484,240)§ 128 13556KB 126‡ 147‡ 

HFERP(85,70,89,61,37 + 1) 128 1344KB 6 49182 negl. 
2−16CBM-CPA(148,132,476) 128 818.3KB 9.1 414168 

PCBM-CCA(148,149,133,475) 128 818.4KB 9.1 423222 negl. 
2−16ECBM-CPA(148,131,23,5,298) 128 569.7KB 4.5 66.3 
2−64ECBM-CCA(148,83,71,5,160) 128 327.1KB 4.5 160 

EPCBM-CCA(148,149,132,23,5,297) 128 578.8KB 4.5 67.1 negl. 

This manuscript is organized as follows. In Section 2 we present the frame-
work for the new scheme. Then, in Section 3 we examine the decryption failure 
rate and set constraints on parameters to satisfy reasonable bounds. We then 
conduct a security analysis against the known attack vectors in Section 4. In Sec-
tion 5 we introduce a modification dramatically improving performance, both in 
decryption time and in key size. We then present some concrete parameters for 

? The published parameters achieve around 73 bits of security, see [8]. 
† The published parameters achieve around 98 bits of security, see [9]. 
§ Extrapolated performance parameters to achieve 128-bit security. 
‡ Performance is estimated via scaling. 
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future scrutiny in Section 6. Finally, we conclude, discussing future directions 
for this line of reasoning. 

2 Nonlinear Multivariate System from a Linear Code 

Let Fq be a finite field with q elements and let C be a rank k random linear code 
of length n over Fq. Let G be the generator matrix for C in standard form and 
let H be the corresponding parity check matrix. 

We construct a quadratic system of formulae as follows. First, randomly select 
k matrices Ai in Mn×(n−k)(Fq ). Next form the products Bi = AiH. Finally, let 
F : Fn → Fk be defined by F (x) = (F1(x), . . . , Fk(x)), where Fi(x) is given by q q 

>xBix . 

Given knowledge of the code C, preimages under F may be acquired by 
computing a set of representatives A of the cosets of C in Fq

n , and linearly 
solving for a preimage in each coset. Specifically, note that if y = F (x), then 

0 0there exists an x ∈ A and an xb ∈ C such that x = x + xb; moreover, we note 
that since xb = xG for some x ∈ Fk , thatq 

0 0> y` = (x + xb)B`(x + xb>) 
0> > 0> >b + b + b b= x 0B`x + x 0B`x xB`x xB`x 
0> > 0> > = x 0B`x + x 0A`HG> xB`x xA`HG> x + b + b x 
0> 0>+ b= x 0B`x xB`x 
0> 0> = x 0B`x + xGB`x , 

for 1 ≤ ` ≤ k, form k linear equations in the k unknown coefficients of x. 
We further note a few simple facts. Efficient derivation of preimages of F 

requires that n−k be small. Then, necessarily, the matrices B`, which are of rank 
n−k at most, are of low rank. Given merely the multivariate representation of F`, 
however, an adversary does not immediately recover a low rank representation of 

(n 
2F` as a quadratic form. In general, there are around q ) matrix representations 

of F`, many of which have high rank. 
Still, the code structure of C can be learned from F in this form by simply 

searching for roots of the system. Since any code word x ∈ C satisfies F (x) = 0, 
one simply searches with complexity roughly O(kqn−k) for k roots of F which 
generate a k-dimensional subspace of roots of F and C is recovered. To prevent 
this attack, we use the plus (+) modifier, adding p additional random formulae 
to F . These additional formulae are then mixed via an affine transformation T 
with the k formulae derived from C producing the public key of the code-based 
multivariate cryptosystem (CBM): 

P = T ◦ (F kQ), 
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where Q : Fn → Fp is a random quadratic map and T : Fk+p → Fk+p is anq q q q 
invertible linear map. Preimages of P are then calculated by inverting T and 
following the above procedure for finding a preimage of F . 

Including the (+) modifier, the extra equations generated by Q must be 
satisfied as well, so we may need to check all values of x0 ∈ A to find a valid 
preimage. When p is not much larger than k, we expect in general that the 
preimage may not be a singleton. Thus, we must make p considerably larger 
than k so that the equations from Q provide check equations that a single correct 
input has been found. We can therefore find parameters for which this scheme 
can be instantiated for public key encryption. For sufficiently large p, the system 
is statistically injective, in the sense that the probability of selecting an input 
producing a non-unique output is negligible in n. 

3 Decryption Failure Rate 

The hidden map F from Section 2 deviates significantly from a random function 
in that there is a large dimensional subspace on which it is identically zero. This 
property is not the only manner in which F behaves differently. 

One would expect a random function from Fn to Fk to collide in every value q q 

approximately qn−k times; moreover, one would expect the distribution of mul-
n−ktiplicities for each output to be centered at q . The value, n − k is small by 

kdesign, however, and the output 0 occurs at least q times. Thus, the distribu-
tion of multiplicities of the outputs must be skewed towards lower values while 

khaving a single large value around q . We can say somewhat more. 
Aside from codewords, there is a higher probability for a collision on the 

outputs of two elements in the same coset of the code. Recall that given a 
0 0 0> 0>representative x0 of the coset x + C, that F`(x + xG) = x0B`x + xGB`x . 

0Thus, there is a collision F (x0) = F (x + xG) if the k × k matrix � � 0> 0>GB1x · · · GBkx 

is singular. In particular, there are as many elements in the coset with the same 
output as x0 as the size of the kernel of this map. Since a k × k matrix is singular 
with probability approximately q−1 for sufficiently large k and, very roughly, 
the kernel is of dimension r with probability about q−r , the distribution of 
multiplicities of outputs is large near zero and decays exponentially in q, with 
the single exception of a very large multiplicity output of 0. We experimentally 
verified this analysis. The results of a particular example can be found in Table 2. 

Table 2. The frequency of multiplicities of outputs of the hidden map F — that is, the 
number of outputs whose preimage under F is of a given size— for an instance of F 
with parameters q = 2, n = 12, k = 10, and p = 16. 

Multiplicity 0 2 4 6 8 1030 
Frequency 192 384 256 127 64 1 
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With this observation on the distribution of multiplicities we can estimate a 
collision probability for P under the standard heuristic that random quadratic 
functions behave as random oracles and the additional assumption that failures 
are dominated by multiple preimages in C. For clarity of notation, in the fol-
lowing allow #A to represent the size of the set A. A collision occurs when the 
size of the preimage of a valid ciphertext under P is greater than one. Thus, the 
probability of collision is given by � �� � Pr #P −1(y) > 1 

pfail = Pr #P −1(y) > 1 #P −1(y) > 0 = . 
Pr [#P −1(y) > 0] 

Clearly, since P = T ◦ (F kQ) and T is invertible, we have equivalently, � T � 
Pr #(F −1(y1) Q−1(y2)) > 1 

pfail = T 
Pr [#(F −1(y1) Q−1(y2)) > 0]� T � � T � 
1 − Pr #(F −1(y1) Q−1(y2)) = 1 − Pr #(F −1(y1) Q−1(y2)) = 0 

= T ,
1 − Pr [#(F −1(y1) Q−1(y2)) = 0] 

where y = y1ky2. 
Considering the above observation about the special status of y1 = 0, we 

consider the two probabilities in the above numerator, splitting into the cases 
ky1 = 0 and y1 6= 0. Since we know that F (C) = 0 and |C| = q , we model 

k kthe random variable #F −1(y1) as a Binomial(qn − q , q−k). Similarly, since q 
kvalues in F −1(0) are not random, we model #F −1(0) as q + X where X ∼ 

kBinomial(qn −q , q−k). We will require the following Lemma related to binomial 
random variables. 

Lemma 1 
n � �X n 
k (rp)k(1 − p)n−k = npr(1 + (r − 1)p)n−1 . 

k 
k=0 

Proof. Trivial. 

First, we consider the probability of no intersection. h \ i 
Pr #(F −1(y1) Q−1(y2)) = 0 h \ i 

= Pr #(F −1(y1) Q−1(y2)) = 0 y1 = 0 Pr [y1 = 0] h \ i 
+ Pr #(F −1(y1) Q−1(y2)) = 0 y1 6= 0 Pr [y1 =6 0] 

We expand this expression by splitting the events into disjoint unions based on 
the value of #F −1(y1). 

q n−q h iXk \ 
kPr #(F −1(y1) Q−1(y2)) = 0 ∧ #F −1(y1) = s + q y1 = 0 Pr [y1 = 0] 

s=0 

q n−q h iXk \ 
+ Pr #(F −1(y1) Q−1(y2)) = 0 ∧ #F −1(y1) = s y1 6= 0 Pr [y1 6= 0] 

s=0 
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Let Qy1 represent the function Q restricted to F −1(y1). Then we may simplify 
the notation obtaining: 

q −q nXk � �
kPr #Q−1(y2) = 0 ∧ #F −1(y1) = s + q y1 = 0 Pr [y1 = 0]y1 

s=0 

q n−qXk � � 
+ Pr #Q−1(y2) = 0 ∧ #F −1(y1) = s y1 6= 0 Pr [y1 =6 0]y1 

s=0 

Under the assumption that Q acts as a random oracle, independence is main-
tained even with a restricted domain. Therefore, we obtain: 

q n−qXk � � � �
kPr #Q−1(y2) = 0 Pr #F −1(y1) = s + q y1 = 0 Pr [y1 = 0]y1 

s=0 Xk q n−q � � � � 
+ Pr #Q− 

y1 

1(y2) = 0 Pr #F −1(y1) = s y1 =6 0 Pr [y1 6= 0] 
s=0 

Each of these probabilities is now readily computed. In the case that y1 = 0, 
k#F −1(y1) − q is binomial; otherwise, #F −1(y1) is binomial. Since the proba-

−pbility that a random input to Q produces y2 is q , the probability that none 
−p)t kof t outputs is equal to y2 is (1 − q for either t = s or t = s + q . Thus we 

have: 

q n−q � �Xk 

−p)s+q k qn − qk 
−ks(1 − q −k)q n−q k −s −k(1 − q q q 

s 
s=0 

k q n−q � �X n − qk 
n−q+ (1 − q −p)s q

q −ks(1 − q −k)q k−s(1 − q −k) 
s 

s=0� � � kk �q n−q−k −p)q −k−p= 1 − q + q −k(1 − q 1 − q . 

T 
A similar process for Pr[#(F −1(y1) Q−1(y2)) = 1] produces expressions 

−kin the form of Lemma 1 with qn − qk in place of n, 1 − q−p in place of r and q 
in place of p. Simplifying the massive expression we obtain: h \ i 
Pr #(F −1(y1) Q−1(y2)) = 1 

−p)q k −1 −k−p)q n−q k−1 = (q −k−p ∗ (1 − q + q −p ∗ (1 − q −k)) ∗ (q n−k − 1) ∗ (1 − q 
k n k−p)q −k−p)q −q+ q −p ∗ (1 − q −1 ∗ (1 − q . 

With some tedious but trivial manipulation, we can show that the result-
2k−n−p−1ing expression for lg(pfail) is approximately equal to q . Thus we have 

proven the following theorem. 
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Theorem 1 Under the heuristic that F and Q are random functions, the 
C 

collision probability for the CBM satisfies the bound 

2k−n−ppfail < q . 

Furthermore, if 
p

lim > 1, 
n→∞ n 

then pfail is negligible in n. 

We performed some small scale experiments which agree with the above 
probability to within a factor of q = 2 as k and n increase, suggesting that 
the heuristic of Theorem 1 is sufficiently close to reality to be meainingful. A 
range of values of k, n and p exhibiting a transition between loose and tight 
approximation by the above estimate are presented in Table 3. 

In addition to possible lack of injectivity, there is another issue affecting 
CMB. If the plaintext happens to be a code-word, then the decryption method 
fails to provide any linear relations. In this case, inversion can still be achieved 
with high probability at the cost of searching through the code for the appro-
priate preimage. Such searches are performed in the experiment presented in 

kTable 3. For practical parameters, there are q codewords and k must be quite 
large; thus, inversion in this case is infeasible. Therefore, when we consider de-
cryption failures, we find that the failure rate is the larger between qk−n and 
2k−n−pq . Thus, there is a phase transition for CBM around p = k. For plain 
CBM the decryption failure rate is dominated by qk−n , but for the fairly rich 
space of possible variants, it is possible for this transition to take place. 

4 Security Analysis 

Attacks on multivariate cryptosystems largely fall in to a few categories: alge-
braic, rank, differential, statistical and ad hoc. We analyze the scheme presented 
in Section 2 with respect to these categories. 

4.1 Algebraic Attack 

The most fundamental attack in multivariate cryptography is the algebraic at-
tack, that is, directly solving the system of equations y = P (x). The complexity 
of this method is determined by the size of the Macaulay matrix at the solving 
degree. In practice, coincidence of the solving degree and the first fall degree 
in Gröbner basis calculations is sufficiently common that we conservatively as-
sume that they are equal and select parameters for which the first fall degree is 
sufficiently large to guarantee security from this attack. 

Following the analysis of [6], we calculate the semi-regular degree, i.e. the first 
fall degree assuming that as few relations as possible exist among the polynomials 
at each degree, as the first non-positive coefficient in the series expansion of 

(1 − tq)n(1 − t2)m 

Sn,m(t) = . 
(1 − t)n(1 − t2q )m 
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Table 3. The log decryption failure rate for small scale variants of the scheme. Val-
ues are computed by encrypting all possible plaintexts and counting the number of 
plaintexts that cannot be uniquely decrypted. All experiments use the value q = 2. 

n = 13 

k = 8 
p 
lg(pf ail) 

12 
−7.093 

13 
−7.830 

14 
−8.415 

15 
−9.000 

16 
−12.000 

17 
−11.000 

k = 9 
p 
lg(pf ail) 

12 
−6.625 

13 
−7.415 

14 
−8.300 

15 
−9.193 

16 
−9.415 

17 
−11.000 

p
k = 10 

lg(pf ail) 
12 

−5.238 
13 

−6.193 
14 

−6.715 
15 

−8.046 
16 

−9.000 
17 

−9.000 
p

k = 11 
lg(pf ail) 

12 
−3.294 

13 
−4.206 

14 
−5.212 

15 
−6.057 

16 
−7.219 

17 
−7.913 

n = 14 

k = 9 
p 
lg(pf ail) 

12 
−6.245 

13 
−7.557 

14 
−8.415 

15 
−9.193 

16 
−10.415 

17 
−11.000 

p
k = 10 

lg(pf ail) 
12 

−5.950 
13 

−6.591 
14 

−7.715 
15 

−8.678 
16 

−10.000 
17 

−11.415 
p

k = 11 
lg(pf ail) 

12 
−4.378 

13 
−5.081 

14 
−5.902 

15 
−6.810 

16 
−8.000 

17 
−9.046 

p
k = 12 

lg(pf ail) 
12 

−2.623 
13 

−3.381 
14 

−4.142 
15 

−5.090 
16 

−6.000 
17 

−6.830 

n = 15 
p

k = 10 
lg(pf ail) 

12 
−6.102 

13 
−7.006 

14 
−7.660 

15 
−9.193 

16 
−10.830 

17 
−11.415 

p
k = 11 

lg(pf ail) 
12 

−5.128 
13 

−5.967 
14 

−6.923 
15 

−7.956 
16 

−9.046 
17 

−10.300 
p

k = 12 
lg(pf ail) 

12 
−3.621 

13 
−4.323 

14 
−5.127 

15 
−6.145 

16 
−7.099 

17 
−8.023 

p
k = 13 

lg(pf ail) 
12 

−2.207 
13 

−2.653 
14 

−3.358 
15 

−4.218 
16 

−5.155 
17 

−5.961 

As seen in Section 3, to keep the decryption failure rate low we require 
that 2k − n − p is small. If we set this quantity to at most −64, we obtain 
p ≥ 2k − n + 64. If we further assume that the MinRank is r = 2(n − k) and is 
fixed at some value, then following the analysis in [10], we have an upper bound 
on the degree of regularity of the minimum of r and the semi-regular degree. 

For practical values of n it is easy to find values of k for which the semi-
regular degree is bounded by r and for which the above formula holds for p. 
Thus, under the assumption that the scheme is semi-regular, the complexity of�� �ω 

� 
n+rthe algebraic attack is O , where 2 ≤ ω < 3. r 

We ran a series of experiments on small-scale variants to compare their be-
haviour to that of semi-regular schemes. For these experiments we chose to keep 
n − k as close as reasonably possible to 10 to ensure that the MinRank is suffi-
ciently high to model the behaviour of larger schemes. To study larger degrees 
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of regularity in comparison to the semi-regular degree, we chose a small p, sat-
isfying the formula p = 2n − k − 8. We also chose to examine parameter sets 
at the boundary of different semi-regular degrees to verify that these systems 
of equations really behave as generic systems. We found that in all trials the 
observed degree of regularity always exactly matched the semi-regular degree. 
The data are presented in Table 4. 

Table 4. Degree of Regularity dreg for small schemes at the transitions points of semi-
regular degree dsr with k as close as possible to n − 10 such that the scheme is not 
degenerate. Ten experiments are conducted for each parameter set, all having the same 
results. 

(n, k, p) (10, 2, 10) (11, 3, 11) (23, 13, 25) (24, 14, 26) (36, 26, 38) (37, 27, 39) 
dreg 3 4 4 5 5 6 
dsr 3 4 4 5 5 6 

4.2 Rank Attacks 

Since for each coordinate of F there exists a matrix representation of rank n − k, 
we may suspect that there is a relevant rank attack on the scheme separating F 
from Q. There are a couple of systematic forms we must consider to analyze rank 
attacks. One such representation, the upper triangular representation, seems to 
offer no weakness. Even though the non-standard matrix has rank n − k which 
may be low, the upper triangular form in general has much larger rank, see 
Table 5. On the other hand, if we ignore diagonal entries, symmetric represen-
tations have a rank bound of 2(n − k) since we can construct such a symmetric 
representation by adding the non-standard representation of rank n − k with its 
transpose. 

Given a low rank linear combination α of the symmetric forms ignoring the 
diagonal elements, one can take the corresponding linear combination Tα of the 
upper triangular representations representing a function in the span of the Fi. 
Once recovered, there is an efficient way to expose the code C, undermining the 
scheme. One can randomly select O(kqn−k) vectors and likely find k generators 

>ci of C by testing whether linear combinations of roots ciTαc = 0 are alsoi 
roots. We note explicitly that the secret non-standard matrix representations of 
Fi share the same kernel, but there is no need for the systematic representations 
to share this property. 

Under the assumption that the rank of the systematic matrix representations 
of Fi is no more than 2(n − k) and given p + 1 systematic matrix representations 
of public polynomials, we are guaranteed that there is a linear combination 
eliminating the p plus polynomials. Therefore, we may simply select p + 1 of the 
public symmetric forms and run a MinRank attack obtaining a solution. Using 
the standard “linear algebra search” technique of solving MinRank, one obtains 
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Table 5. MinRank for some small example instances of the code-based multivariate 
scheme. In each instance, there exists a non-standard matrix representation of a linear 
combination of the public quadratic forms of rank n − k = 2; however, in each case the 
MinRank achieved is larger. In each case, q = 2 and the systematic form used for the 
MinRank is the upper-triangular representation. 

n (k = n − 2, p = n + 4) 10 11 12 13 14 15 
MinRank 4 5 5 7 7 8 

a complexity of � � 
2d p+1 e(n−k)nO (p + 1)ω q . 

4.3 Differential Attacks 

Consider the differential DP (a, x) = P (a+x)−P (a)−P (x)+P (0) of the public 
key P . We may expand this quantity as follows: 

DP (a, x) = D(T ◦ (F kQ))(a, x) 

= T (DF kDQ)(a, x). 

The special structure of DF implies that P has a subspace differential in-
variant, see [9, Definition 2]. Specifically, suppose that M is a linear projection 
onto C. Then we obtain 

DF (Ma, Mx) = F (ca + cx) − F (ca) − F (cx) + F (0) = 0. 

As noted in the previous subsection, since the systematic matrix forms of Fi are 
not necessarily of low rank, it is inefficient to recover the differential invariant 
from rank techniques. The alternative, however, of modeling the differential in-
variant as a cubic system of equations in the unknown coefficients of M and T −1 

is no better, even though there are several dependencies in the system. Finding 
such an M in this way requires solving kn2 cubic equations in kn+km variables, 
which is much more complex than the brute force attack. 

4.4 Statistical and ad hoc Attacks 

As shown in, [11, 12], statistical cryptanalysis techniques in multivariate cryp-
tography can be quite varied and can possibly allow for hybridized statisti-
cal/algebraic attacks. Security against all such attacks will be an ongoing re-
search topic in this area in general. 

To address the question of whether there are any straightforward and effective 
statistical attacks, we analyze the code-based multivariate scheme in two ways. 
First, we analyze the difference in distribution between P (C) and P (C), that is, 
ciphertexts derived from codeword and non-codeword plaintexts, respectively. 
Second, we examine the difference in Hamming weight between ciphertexts and 
random vectors. 
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To compare the distributions P (C) and P (C) we chose to select a statis-
tic sensitive to any change in distribution between two empirical distributions, 
the Kolmogorov-Smirnov statistic. We select subsets X1 and X2 of C and C, 
respectively, of the same size and compute 

KSN = sup F1,N (x) − F2,N (x) , 
x∈Fm 

q 

where Fi,N is the empirical distribution of P (Xi) with respect to a fixed total 
order � on Fm

q and |Xi| = N . At significance level α, the test detects a distinction 
in the distributions if r 

−ln(α)
KSN > . 

N 
For small parameters we chose X1 = C and observed that the rejection rate 

approaches α as p increases for fixed n and k. Expecting more power for larger 
values of N we increase parameter sizes and allow X1 to be a random size N 
subset of C. In this case, we see that for sufficiently large data sets that the 
distributions seem to converge. 

We further perform a goodness-of-fit test comparing the empirical distribu-
tion of P (X) for X ⊆ Fn with |X| = N with the uniform distribution Unif(Fm).q q 
The test asserts that the distributions differ when 

KSN 
0 = sup x ∈ Fq

m FN (x) − F (x) > √ 
δα 

, 
N 

1 0 ∈ Fm 0 2i δ2where F (x) = |{x : x � x}| and ϑ( 1 , α) = 1 − α where ϑ is the qm q 2 π 
1Jacobi theta function. We use the trick from [?] of replacing δα with δα + √ + 

6 N 
δα−1 to maximize the accuracy of the tests for small sample sizes. In our case, N 
we used N = 2048 for all of the tests. Again, for fixed n and k as p increases we 
observe that the rejection rate approaches α. Some data from our experiments 
are presented in Table 6. 

Table 6. Rejection rates (Rr) for 100 trials of the Kolmogorov-Smirnov test for sample 
data values at the α = 0.05 level. Test A compares the distributions of P (X1) and 
P (X2), while Test B compares P (X) with Unif(Fm

q ). In all cases N = 2048. 

Test A n = 14 k = 12 
p 7 8 9 10 11 12 13 14 15 16 
Rr 10 8 2 7 4 7 4 5 4 6 

Test B n = 24 k = 18 
p 17 18 19 20 21 22 23 24 25 26 
Rr 10 9 7 6 9 7 5 4 5 6 

We also conduct experiments comparing the Hamming weight distribution 
H(P (Fn)) to the distribution of the Hamming weight of random vectors in Fm ,q q 
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Binomial(m, 0.5). The results of the experiments are presented in Table 7. Again, 
the data indicate that as p increases the statistical differences become small. 

We note that while these data suggest that for larger parameters and in 
particular for larger values of p that the distribution of ciphertexts is “smoothed” 
towards uniform in distribution and towards binomial in Hamming weight, it is 
not easy to judge the rate of observations required to attain significance levels 
of cryptographic relevance. While the tests seem to have sufficient power to 

= 211provide results with N at the α = 0.05 level, it is difficult to justify how 
many observations are required to achieve significance at α = 2−f(n). Verifying 
that the number of samples must be very large to measure a distinction in the 
distributions is an open question. 

Table 7. Rejection rate (Rr) for 100 trials of the Kolmogorov-Smirnov goodness-of-
fit test comparting the Hamming weight distribution on N = 2048 ciphertexts with 
parameters n = 14 and k = 12 with Binomial(m, 0.5) at the α = 0.05 level. 

Test A n = 14 k = 12 
p 1 2 3 4 5 6 7 8 9 10 
Rr 100 100 42 7 6 2 7 4 3 5 

5 Modifications 

One clear problem with CBM is the poor decryption failure rate. Since the 
legitimate user needs to perform qn−k linear algebra steps to invert F , this 
quantity must remain small; however, inversion is infeasible even with an unique 
preimage when x ∈ C. Also, as seen in Section 4, the linear algebra search 
MinRank attack has a complexity that is only a factor of 2 p greater in the n 
exponent than decryption by a legitimate user. Thus, to achieve a high level 
of security, extremely large parameters must be used. We propose a couple of 
modifications that provide the degrees of freedom required to make CBM more 
versatile. 

5.1 PCBM 

The first modification exploits polynomial morphisms to avoid infeasible inver-
sion. Specifically, we can consider an embedding of the plaintext space insisting 
that output of the affine transformation U is never a codeword. We repeat the 
construction of CBM from Section 2 using n0 in place of n and adding to every 
equation a random linear form. Thus, we have 

>Fi(x) = xBix + x · bi, 

where bi is a random vector of dimension n0 . We then choose an invertible affine 
transformation T : Fk+p → Fk+p, set n = n0 − 1 and select an injective affineq q 
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: Fn → Fn 0 transformation U q q such that Im(U) ∩ C = ∅. The public key is 
then given by P = T ◦ (F kQ) ◦ U . Clearly, the inversion process for F is the 
same because the extra summand from the bi merely changes the linear form 
associated with the ith equation. 

With this construction, infeasible inversion due to the plaintext begin a code-
word is impossible, and the decryption failure analysis simplifies to essentially 
the same as the injectivity probability in Section 3. Since, due to rank con-
cerns, practical parameters make the decryption failure probability extremely 
low, PCBM is statistically injective. 

5.2 ECBM 

In this subsection we propose a modification of the scheme that decouples de-
cryption for the legitimate user from a search through all cosets of the code. 
Specifically, we propose to use an embedded small instance of EFLASH, see [7], 
to encode the syndrome corresponding to the plaintext, thus identifying uniquely 
the correct coset in which to solve for the valid preimage. 

Let K be a degree d > n − k extension of Fq , and let f : K → K be a 
q +1 θC∗ monomial, f(x) = x 
θ 

where (q + 1, qd − 1) = 1. Let φ : Fd → K be q 
an Fq-vector space isomorphism. Then E = φ−1 ◦ f ◦ φ is the vector-valued 
representation of the monomial function f over Fq. Further define 

E0(x) = Πa ◦ E(V (xH>)), 

where Πa is a codimension a projection and V : Fq
n−k → Fq

d is linear of full 
rank. Finally, let U and T be invertible linear maps of dimensions n and m, 
respectively, and we compute the public key 

P = T (F kE0kQ) ◦ U. 

Inversion of P is accomplished as follows. Given a ciphertext y, the user 
first computes v = T −1(y). Next, v is parsed into v1, v2 and v3, corresponding 
to the outputs of F , E0 and Q, respectively. The user then randomly searches 
through the q possible preimages of v2 under Πa, inverts E via exponentiation 
by h satisfying h(qθ + 1) = 1 (mod qd − 1), and searches through all preimages 

d+k+1−ns of these values under V . In this way, the user obtains q values s one 
of which is the valid syndrome corresponding to the preimage u = U(x) of v1 

under F . The valid syndrome reveals the coset of C containing u, and inversion 
of F to recover u proceeds as in Section 2. Finally the plaintext is recovered as 
x = U−1(u). 

We note a few consequences of using this modification of the code-based 
scheme. First, at the cost of the inversion of an embedded small EFLASH in-
stance there is no longer an enumeration of cosets step in the inversion of F . Thus 

n−k−athe inversion of F is sped up by as much as a factor of q . Second, since 
the complexity of inversion is decoupled from the quantity n − k, this value can 
be made much larger, making the MinRank attack much less efficient. Finally, 
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since we are introducing a C∗ monomial map in the scheme, we must reconsider 
differential and Q-rank attacks. 

Luckily, it is straightforward to see that the analysis proving resistance to 
differential and Q-rank attacks for EFLASH, see [7], are applicable in this context 
as well. Note that even though n can be chosen much larger than d, the input to 
the public key is compressed to a dimension of n − k < d before the application 
of the EFLASH instance Πa ◦ E ◦ V ; thus, there is a valid projection and an 
entire EFLASH instance in the central map. Therefore, P has no differential 
symmetries or invariants, and can be built to have Q-rank 2a. 

6 Parameter Selection 

In selecting parameters, we consider the analyses of the previous section as well 
as efficiency. The most inefficient operation is inversion of the hidden map F kQ; 
therefore, we begin by describing an efficient approach. 

In key generation we fix the values of our coset representatives, A and pre-
compute the constants x0B`x

0> and the linear forms GB`x
0> for each 1 ≤ ` ≤ k. 

Collectively, these values form an affine map B : Fk → Fq
k . Inversion of F kQ isq 

then accomplished by finding all preimages x of B and checking that Q(x0 + x) 
is the appropriate output. Thus the complexity of inversion is approximately 
n−kkωq . 

We find that the limiting attack from Section 4 is the linear algebra search 
2 p(n−k) 

nvariant of the MinRank attack. With a complexity on the order of q , we 
find that the legitimate user only has an advantage of a factor of 2 p in the n 
exponent over an adversary. Thus p must be made large to allow efficient in-n 
version while maintaining security. We examine the case that p is sufficiently n 
larger than 3 that the adversary must choose 4 vectors in the MinRank calcu-
lation. Then parameters achieving the 128-bit security level are given by q = 2, 
n = 148, k = 132 and p = 476. For these parameters the semi-regular degree 
is 8 which achieves slightly over 128-bit security for the algebraic attack. For a 
static key version (PCBM), we propose the parameters q = 2, n = 148, n0 = 149, 
k = 133 and p = 475. The performance is fairly abysmal for these parameters, 
with decryption for our non-optimized implementation taking approximately 400 
seconds. 

The EFLASH variant of the code-based cryptosystem is much more efficient. 
Parameters achieving the 128-bit security level are q = 2, n = 148, k = 131, 
d=23, a = 5 and p = 298 for ephemeral use with a decryption failure rate of 2−16 . 
With these parameters our non-optimized magma implementation decrypts in 
66ms, about 6000 times faster than the code-based scheme without modification. 

The EFLASH variant also allows us the freedom to choose parameters for 
static use. Since the decryption complexity is no longer related to n − k, we 
can set this quantity to a large value. This change has two effects. First, with 
a sufficiently large value of n − k, we no longer need an extremely large value 
for p to prevent the MinRank attack. In fact, if we chose n − k around 65, then 
even with p ≈ n the MinRank attack does not affect our 128-bit security claim. 
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Secondly, the allowance of smaller values of p reduces key sizes. Therefore, for 
static keys we propose the parameters q = 2, n = 148, k = 83, d = 71, a = 5 
and p = 160 achieving a decryption failure rate of 2−64 . 

In addition we propose a parameter set incorporating both of the mentioned 
modifiers, EP CBM . This scheme sacrifices a miniscule amount of speed and 
key size to allow for static keys. The proposed parameters for 128-bit security 
are q = 2, n = 148, n0 = 149, k = 132, d = 23, a = 5 and p = 297. 

7 Conclusion 

The code-based multivariate encryption scheme (CBM) presented here is an in-
teresting and novel avenue to explore in the attempt to find an efficient and 
secure multivariate public key encryption scheme. While the literature contains 
a few multivariate encryption schemes with a claim to solid theoretical foun-
dations, none of these schemes have achieved noteworthy performance at the 
security levels necessary for future public key applications. 

Without modification, the code-based scheme of Section 2 seems to lie solidly 
in the region of poor performance inhabited by the past multivariate encryption 
schemes. To avoid truly colossal keys one must endure decryption with precom-
puted keys that still takes minutes at the 128-bit security level. The reason for 
this slowness is that decryption is analogous to a form of syndrome decoding 
without an error-prone message provided. To use this analogy, the plaintext is 
like a noisy codeword and the ciphertext is like a very noisy hint about the 
noisy codeword and its syndrome in the form of several inner products of the 
noisy codeword with its syndrome. Given the private key, the inner products can 
be extracted, but the syndrome must be guessed before the message and then 
noisy message are recovered; however, the analogy stretches rather thin here 
since there is no distance bound for the error and consequently a need merely 
for uniqueness in the “noisy codeword” and not the codeword itself. 

In contrast, modifying the scheme by including a miniature version of EFLASH 
embedded in the system enhances the performance dramatically. It is no longer 
the case that a search for the correct syndrome must be undertaken. The correct 
syndrome is enciphered by the EFLASH component. Thus, the very efficient 
decoding process given the syndrome and hint allows for rapid decryption. In 
addition, due to the decoupling of the rank from decryption efficiency, the rank 
can be increased a great deal resulting in much smaller keys. 

We also propose a technique that bypasses the main culprit in decryption 
failure; specifically, we can ensure that the input to the central map F is never 
a codeword, an occurance which precludes efficient inversion. With this method 
we allow decryption failure rates so low that the scheme is often both injective 
and practically invertible on its range eliminating decryption failures altogether. 

There are several directions to explore that this work inspires. First, we may 
consider whether there is any mechanism by which we can connect the security 
of this scheme with the syndrome decoding problem. Currently there is no bound 
on the weight of the coset representative used in decryption, which is why the 
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decoding analogy is not extremely tight, and it is not clear how to force the coset 
representative to be of small norm without revealing the code structure, which 
is not allowable for this scheme. In another direction, with the necessity of so 
many equations, there are numerous modifications that can be added to try to 
optimize performance. Perhaps one could embed another sufficiently high rank 
encoding of the syndrome with a different technique that at the appropriate scale 
is more efficient than the EFLASH modification while maintaining security. For 
now the possibilities are wide open. 
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