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Aggregating Atomic Clocks for Time-Stamping 
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Laplante (PSU) 

Abstract 

A timestamp is a critical component in many applications, such as proof of transaction ordering 

or analyzing algorithm performance. This paper reports on a method called Verified 

Timestamping (VT) that improves the standard timestamp protocol. VT was developed at the 

National Institute of Standards and Technology (NIST) for use in algorithms where timestamp 

accuracy is critical. VT is an aggregation of the outputs from various atomic clocks to create a 

Timestamping Authority (TsA). The motivation for this research effort included malicious 

delay issues in Networks of Things [NIST SP 800-183] as well as race conditions associated 

with the inclusion of new blocks into blockchains. This paper presents the TsA design and the 

results of VT, which indicate that atomic clock aggregation is not only possible, but a viable 

means to produce higher integrity timestamps at the ms level of performance. Tests showed that 

this is sufficient to preserve event ordering, using only a conventional PC with no dedicated 

connection or specialized hardware. 

1.0 Introduction 

The term “timestamping” refers to marking the time when a certain event occurred, such as 

when a message was sent or received. Unfortunately, computer clocks are generally not precise 

enough for some types of data, such as in a financial transaction where it is essential to 

determine if a stock purchase occurred during the period of a particular price, for example. In 

the current environment of high frequency trading, accuracy on the order of µs is needed for 

audit and market surveillance by regulators (SR FINRA 2016-005). European Commission 

regulations announced in 2016 for the accuracy of business clocks require clock granularity of 

one µs or better, with a maximum allowed divergence from Coordinated Universal Time (UTC) 



 

 

 

  

 

 

 

 

 

 

   

   

  

 

 

  

 

 

   

of no more than 100 µs (Annex, Directive 2014/65/EU). Similar regulations from the U.S. 

Financial Industry Regulatory Authority have an even tighter clock synchronization 

requirement with no more than a 50 µs (SR FINRA 2016-005) divergence. General purpose 

computer clocks are not a good choice when accurate time is needed as they are known to have 

poor accuracy, with a possible drift of 5 s to 15 s per day (Lombardi, 2019). The Network Time 

Protocol (NTP) and atomic clocks are routinely used to synchronize actions and provide more 

accurate time for internet applications. However, even NTP and atomic clocks are not precise 

enough for some applications such as those that use blockchain technology where timestamp 

verification and transaction order is critical (Stavrou & Voas, 2017). In addition, a timestamp 

that is trusted and verifiable is needed to accurately sequence the blocks for blockchain 

consensus protocol (Kuhn et al., 2019). The purpose of this project is to propose a general 

purpose system called Timestamping Authority (TsA), which would be able to provide reliable, 

real-time, high precision timestamps preserving the order of events regardless of their number 

and time when they were processed. In this paper we will discuss the TsA motivation and 

design with blockchain technology as a use case. 

2.0 Background 

The most accurate and precise time is kept by atomic clocks, which measure the frequency of 

oscillations of atoms that happens to be very close to a constant number. For most applications, 

accuracy refers to the closeness of measurements to a particular true value (such as a physical 

location), while precision is the closeness of measurements to each other. UTC, as its name 

implies, involves coordination among a set of cooperating systems. In the context of 

timekeeping, accuracy refers to traceability to UTC, while precision is the degree of 

synchronization among a set of clocks. 

As noted previously, financial regulators require highly accurate timestamps, with UTC 

traceability. Within financial systems, continuous monitoring of clock synchronization stability 

is required, with realtime comparisons to UTC references. Global Positioning System (GPS) 

signals are typically used to provide UTC traceability to a national institution such as NIST, the 

Research Institutes of Sweden, or others. UTC combines time scales known as International 

Atomic Time (TAI) and Universal Time (UT1), which rely on a weighted average time from 



 

 

 
    

           

  

 

  

 

 

  

450 atomic clocks in 70 nations (for TAI) and observations of rotations of the Earth (for UT1). 

To reduce potential vulnerability to GPS jamming or spoofing, financial institutions may 

employ specialized high-power encrypted signal transmission to protect systems providing 

UTC traceability. NTP is commonly used to provide synchronization of clocks within variable-

latency packet switched networks. For NTP implementations, atomic clocks are connected to 

servers that deliver time over the network. These servers in turn are connected to other servers, 

and so on (Mills, 2003). This tree-like design (Figure 1) is needed to reduce the load on the top-

level servers. 

Figure 1: NTP Network Structure. 

Yellow arrows indicate a direct connection; red arrows indicate a network connection. 

This protocol operates over User Datagram Protocol (UDP), which is a transport layer network 

protocol. NTP version 3, used in the project, was standardized as Internet Engineering Task 

Force RFC-1305 (Mills, 1992), and is compatible with the latest version 4, RFC-7822 (Mizrahi 

& Mayer, 2016). The typical device might use one of the bottom-layer NTP servers to 

synchronize time. However, using the bottom layer can be insufficient in some situations, since 

some precision is lost on the way from the top. Improving precision becomes extremely 

expensive as the required level increases. The cause of this imprecision is due to the 

asymmetric network routes and network conditions (Mills, 2012). 



 

 

  

 

 

 

  

 

 
            

            

 

A blockchain is an example of an application where timestamp accuracy is critical for 

verification and security. A blockchain is a series of timestamped immutable records that are 

managed by multiple computer entities. In order to add a new block to the chain, the candidate 

that wants to insert the block needs to perform a computation (e.g., calculate a hash of the 

concatenation of the previous block hash and a hash of the current data) and submit the result to 

the system for verification. The need for accurate timestamps comes into play when there are 

multiple candidates at the same time. In this case, only the candidate that finishes the hash 

calculation first will be added. All other candidates must start over with the new last block. 

This is a time consuming and expensive process. Figure 2 illustrates the addition of a 

timestamp using the basic methodology where only one candidate will succeed in being added 

to the chain and all others will have to start the hash calculation over – creating a type of race 

condition. 

Figure 2: Adding a block to the blockchain with a basic timestamp 

(B – block; H – hash; f - hash function; C – candidate) 

A possible solution to this problem is integrating a single TsA service into the system as shown 

in Figure 3. 



 

      

 

 

 

 

 
      

 

 

 

  

Figure 3: A Timestamping Authority Service 

A TsA service could provide an accurate time on demand over a network. However, this does 

not resolve the situation where events happen simultaneously. As mentioned earlier, transaction 

order is critical in many applications. Figure 4 shows a single timestamping authority with the 

requests coming sequentially, thus keeping the accurate order of the requests. However, this 

design does not scale well and would work only for transactions that occurred geographically 

close to the TsA. 

Figure 4: A single timestamping authority 

A scalable timestamping solution would use several TsA servers, but then the question of time 

synchronization between them arises. An open specification called Chainpoint uses blockchain 

technology and the NIST randomness beacon to tackle this problem. A Chainpoint client stores 

a hash of the NIST randomness beacon and the timestamp on the blockchain:Chainpoint 

(Timestamp + hash(random beacon)) • blockchain 

The NIST randomness beacon (beacon.nist.gov) produces a purely random 512-bit string every 

minute. Every random value is then stored in a blockchain and can be verified at any time. 

https://beacon.nist.gov


 

 

 

  

 

 

 

 

 

  

 

 

  

  

 

 

 

  

  

 

 

Inserting the random number facilitates proving the authenticity of the timestamp at any minute 

on the timeline. This approach will both guarantee transaction order and provide verifiability to 

the timestamps. However, the time resolution of Chainpoint timestamps depends on the 

randomness beacon, which is one minute, so we need to look for a different approach. 

3.0 TsA Design 

To ensure accurate time and order, when a time request is made, the timestamp will be 

determined by using an aggregation from several atomic clocks. Specifically, the atomic clocks 

that are used as time sources for this project have publicly available NTP servers, which are 

synchronized to the clocks, thus providing precise time to the clients (see Sect. 3.1 for details of 

this process). The communication with the client also works over NTP. NTP can provide up to 

1 ms precision under ideal network conditions, and the precision deteriorates as asymmetric 

network routes are introduced (see RFC-1305, Appendix F). When a network route is 

asymmetric, the time for a request to get to the server is different from the time to get the 

response. This situation usually happens when long-distance requests are made or when the 

network condition is unsatisfactory. Since only the nearest atomic clocks are used, to provide 

high precision, NTP also accounts for latency automatically (see RFC-1305). Figure 5 shows 

the transition of 4 timepoints in the UDP message that allows the calculation of correct network 

delay and local clock offset from the server clock. 

The testing procedure consists of using one PC, running the Timestamping Authority Server 

locally, and running from one to three clients also locally. Due to everything running on the 

same PC, time for the request to get from the client to the server and from the server to the 

client is negligible, so the precision of the aggregation procedure can be tested. The server 

starts up, gets time from three atomic clocks, and the clients are run when the server is ready to 

respond, (i.e. it has calculated an average time from all three clocks). Then, since we may 

assume that network delays are not an issue, we can collect all the timestamps received by the 

clients and compare them to the order they were sent. The tests showed that the correct order is 

preserved when the requests are spaced out by 10 ms or more. 



 

 

       

 

 

 
      

            

  

 

 

Figure 5: Network Delay calculation from RFC-1305 

Figure 6 shows an example time request from Event X. The TsA is retrieving the time from 

several atomic clocks and returns the precise time to the client. 

Figure 6: Scheme of TsA operation. 

(ET - exact time of the event; AET - approximate exact time; A - atomic clock) 

The timestamps are assigned to the candidates and form a queue, giving some time to the first-

comer and notifying all other process candidates to wait (Figure 7). That is, the queue is formed 

among the candidates and each one is given some time to do the hash computation. If the client 

fails, the opportunity is given to the next candidate. This approach could reduce CPU time 

spent by the candidates, because they now have an opportunity to wait for the first arrival to 

finish before continuing their own computations. Timestamps will serve as a proof that the 



 

 

 

           

            

  

 

 

 

 

 

 

 

candidate was indeed first to arrive. This approach would be especially useful if there are 

multiple servers accepting blocks and they need to be coordinated. In this case, they could 

query the TsA and receive timestamps that could be used across the servers. 

Figure 7: Adding a block to the blockchain with a TsA. 

(B – block; H – hash; f - hash function; C – candidate) 

It is important to note that the clients are not permitted to use local time due to possible 

imprecision. Maintaining accurate UTC time is difficult, and TsA does not claim that the time 

provided is accurate. Instead, the Time Stamping Authority establishes a common timescale for 

the system that would preserve order of timestamped events. In other words, Time Stamping 

Authority is precise, but not necessarily accurate. The project described in this paper was 

designed to demonstrate the effectiveness of an authority by aggregating time from several 

official reliable atomic clocks and use it to produce the common timescale. The prototype 

currently aggregates time from three nearby atomic clocks and computes the average of their 

times. (This is currently implemented as simple averaging, but some form of weighted average 

may be used in the future.) More effective formulae can be used after the aggregation. Tests 

with local server and client show that using this approach preserves the order of timestamps. 



   

 

  

  

 

 

  

 

 

 

 

 

 

 

  

 

  

 

3.1 Clocks Used and Their Reliability 

The International Bureau of Weights and Measures (IBWM) or Bureau International des Poids 

et Mesures (BIPM) in French, the organization that defines the International System of Units 

(SI) units, also provides the UTC time standard (https://www.bipm.org). This standard is 

created based on over 400 participating laboratories measuring time with their atomic clocks 

and reporting the measured time every 5 days to IBWM, which then calculates the weighted 

average based on the clock precision and produces UTC. The problem is that it is difficult to 

transmit clock data in real-time without losing accuracy, hence all calculated time points are in 

the past. Nevertheless, the data from the atomic clocks spread across the globe suggests that 

most of them are synchronized up to hundreds of nanoseconds (ns) 

(https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html), which is more 

than enough for the problem at hand. Within the U.S., the difference between UTC and the two 

commonly used clocks (NIST and Naval Observatory) is only a few ns. IBWM also publishes 

the Annual Report on Time Activities (https://www.bipm.org/en/bipm-

services/timescales/time-ftp/annual-reports.html), which lists laboratories participating in 

creation of the time standard, and are known to be reliable. Some of those laboratories have 

publicly available NTP servers linked to the clocks, which are used in this project as time 

sources. For the North American region, possible clock servers are the National Institute of 

Standards and Technology NTP (https://tf.nist.gov/tf-cgi/servers.cgi), the United States Naval 

Observatory NTP (https://tycho.usno.navy.mil/NTP/) and the National Research Council of 

Canada NTP (https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official-

time/network-time-protocol-ntp). One problem with using these clocks is that the public servers 

are vulnerable to distributed denial of service (DDoS) attacks, and therefore all clients making 

too frequent requests to them are banned (e.g., the NIST clock encourages no more than one 

request every 4 s). This problem has been solved by maintaining an offset from local time to 

each of the used clocks, and updating it every 10 s (this interval can be configured). Per 

Lombardi’s estimations, most hardware clocks gain or lose about 5 s to 15 s per day (Lombardi, 

2019), so with simple calculations, we see that the hardware clocks can gain or lose at most 2 

ms every 10 s. While not perfect, the period of 10 s was chosen as a trade-off to both have 

acceptable precision, and not get the server banned by the atomic clock NTP servers. Therefore, 

https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official
https://tycho.usno.navy.mil/NTP
https://tf.nist.gov/tf-cgi/servers.cgi
https://www.bipm.org/en/bipm
https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html
https://www.bipm.org


 

  

 

 

 

 

  

 

 

  

   

 

       

 

 

 

 

      

 

  

 

 

even if a local clock is imprecise, it is very unlikely that any significant deviation will happen 

in 10 s. 

4.0 Implementation Description 

The NTP utilities library from Apache Commons Net was used in the project 

(https://commons.apache.org/proper/commons-net/). Some code was modified and everything 

else was used as a library. The project consists of four executables written in Java. The first and 

primary executable is the server, which can be configured and started via command line, 

specifying the NTP servers to be used at run time. The server periodically updates local time 

offsets of the used clocks and services client requests. There is a class 

TimeStampingAuthorityServerRunner with a main method that is compiled to the executable 

server. There are also two other classes that can be used as library code. One of these 

(TimeStampingAuthority) simply requests time from the clocks, maintains clock offsets and can 

provide aggregate time via the application programming interface (API), and another one 

(TimeStampingAuthorityServer) also runs an NTP server on a specified port. There is a separate 

Clock class that contains logic for maintaining the clock offsets and network communication 

with the atomic clock servers. 

The second executable is the client for testing. It can be configured and started via 

command line, and it logs the time points received from the server to a .txt file. The client 

makes requests to the server at the specified address with a given frequency. Tests show that an 

interval of 10 ms or more should preserve events ordering on the TsA side. Even though such 

precision might not be enough for some applications, it has a benefit of simplicity: no need for 

advanced equipment or dedicated connections, just one program on any PC. Moreover, we 

would note that this is a proof-of-concept, so future developments may achieve higher 

precision. 

The third executable takes the log file produced by the client and checks if timestamps the 

client received are in the ascending order. It can check multiple files at the same time and is 

also usable from a command line. The fourth executable takes several log files and combines 

them. This executable was used when several clients were run simultaneously to test how well 

TsA preserves order of events with its timestamps. All the executables are configurable. VT 

https://commons.apache.org/proper/commons-net


 

 

 

      

 

 

 

 

  

   

   

   

  

 

 

 

  

 

 

 

 

  

 

 

 

uses the Maven framework for dependency management and build automation. It also uses Git 

for tracking changes 

(https://github.com/usnistgov/blockmatrix/tree/master/TimeStampingAuthority). 

Executables can be used on their own, but it is suggested that an interactive development 

environment (IDE) supporting Maven and Git is used in development, e.g. IntelliJ IDEA or 

Eclipse (both are free). There are four Maven modules corresponding to four executables in the 

project. 3 contain just one class with a main method, and one contains several classes 

mentioned above. There is a directory called “testing” which contains all the executables, a file 

with the clock data and a script for testing. Maven is configured in such a way that when the 

“package” command is run, all the modules are assembled into .jar files. When the “verify” 

command is run after that, the .jar files are moved into the correct directories for convenience. 

The “out” directory contains all 4 executables bundled with their dependencies as well as a 

library .jar, containing non-executable server-side classes without dependencies. This library jar 

can be used in other projects as a dependency, assuming that the Apache Commons Net library 

is included. 

4.1 Installation 

This project uses Java Development Kit (JDK) 12.0.1 (the current version as of this writing), 

but is tested to be backward-compatible with JDK 1.8.0_21. 

If used as a .jar, the executables do not have any dependencies except for the Java runtime 

environment. 

If used as Java classes, the Apache Commons Net library needs to be downloaded, which 

provides implementation of many network protocols, including NTP, along with utilities that 

make it easier to use these protocols in the program. You can include this library as a 

dependency in a Maven project using the information on 

https://mvnrepository.com/artifact/commons-net/commons-net/3.6 or download the libraries as 

source code or as binaries on 

https://commons.apache.org/proper/commons-net/download_net.cgi. The libraries are open 

source and are available under the Apache License, Version 2.0. 

https://commons.apache.org/proper/commons-net/download_net.cgi
https://mvnrepository.com/artifact/commons-net/commons-net/3.6
https://github.com/usnistgov/blockmatrix/tree/master/TimeStampingAuthority


 

   

 

 

 

  

  

   

 

 

 

  

 

   

 

 
 

  

 

  

It is suggested that you use an IDE with support of Maven and Git if you would like to use 

them in the development of the project, because Maven downloads the dependencies for you 

and makes building and packaging easier and Git helps revert any changes and keep track of 

the history of the project. If not, a simple solution would be to rip out the classes of all 4 

modules and put them in a new project together. Do not forget to add the Apache Commons 

Net library as a dependency. 

5.0 Limitations 

The order-preserving property of the current TsA implementation has been tested only locally. 

Namely, the procedure was to run the Time Stamping Authority server locally, together with 

one or more clients that would request timestamps from the server. Since the time on the PC is 

the same, more tests are needed to determine the reliability of TsA. Namely, clients could be 

located far from the server, and have their own reliable time source to compare the timestamps 

with. Based on this kind of testing, the conclusion about order-preservation can be made. 

Sometimes several subsequent timestamps get “merged” and have the same value, even though it 

is known that the events were supposed to have a time interval between them. For example, there 

could be several timestamps with values 1, 1, 1, 4, 5, while the events were supposed to happen 

at times 1, 2, 3, 4, 5. It is likely that this happens due to low computing power of the 

development machine used, and as a consequence of running several processes for actual testing 

of the program and other processes running in the background. If the events are spaced out with 

the stated time difference - 10 ms, then the weak order is always preserved. By weak order we 

mean the sequence of numbers where two numbers can be equal, not strictly increasing. 

Implementation factors are a consideration in this merging phenomenon. The prototype was 

implemented in Java, which sometimes has unpredictable runtime due to garbage collection, and 

it was not the only program running on the PC, so the operating system (OS) could take away 

processor time for a fraction of a second, corrupting the timestamps. It is expected that if the 

implementation had adequate performance and priority is given to the time-stamping server, 

these anomalies should not be present, and the resulting timestamps should form strictly 

increasing sequence. Additional testing will be used to evaluate this condition. 



 

  

 

  

 

   

 

  

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

1. NTP assumes that the offset from the client clock is to be calculated by the client, so the TsA has 

no way to know if the client completed the timestamp calculation correctly. 

2. When requesting time from the clocks and serving time to the client, only one NTP-request is 

made, since acceptably low latency network conditions are assumed. It is suggested to make 

several NTP-requests and take the one with the lowest round trip time to exclude asymmetric 

route errors. 

3. RFC-1305 suggests a formula for combining several clock times to increase accuracy and 

precision. This could be used instead of a simple average of all the clocks, which is currently 

used. 

6.0 Conclusion 

In the real estate community, it is said that property value is based on “location, location, 

location.” But we also know that timing is everything. In sports, the end of a game can be 

decided in a single second. In financial transactions, it comes down to milli- and microseconds. 

Here, we have shown that atomic clock aggregation is possible and that it works better if the 

clocks are somewhat geographically co-located due to latency. We have argued that a 

Timestamping Authority (TsA) is a feasible approach to creating timestamps of higher integrity. 

We plan to continue this research to better understand the impact of latencies on the accuracy of 

the aggregated clock results. 
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