

DRAFT

Aggregating Atomic Clocks for Time-Stamping

T. Saidkhodjaev (UMD), J. Voas (NIST), R. Kuhn (NIST), J. DeFranco (PSU), and P.

Laplante (PSU)

Abstract

A timestamp is a critical component in many applications, such as proof of transaction ordering

or analyzing algorithm performance. This paper reports on a method called Verified

Timestamping (VT) that improves the standard timestamp protocol. VT was developed at the

National Institute of Standards and Technology (NIST) for use in algorithms where timestamp

accuracy is critical. VT is an aggregation of the outputs from various atomic clocks to create a

Timestamping Authority (TsA). The motivation for this research effort included malicious

delay issues in Networks of Things [NIST SP 800-183] as well as race conditions associated

with the inclusion of new blocks into blockchains. This paper presents the TsA design and the

results of VT, which indicate that atomic clock aggregation is not only possible, but a viable

means to produce higher integrity timestamps at the ms level of performance. Tests showed that

this is sufficient to preserve event ordering, using only a conventional PC with no dedicated

connection or specialized hardware.

1.0 Introduction

The term “timestamping” refers to marking the time when a certain event occurred, such as

when a message was sent or received. Unfortunately, computer clocks are generally not precise

enough for some types of data, such as in a financial transaction where it is essential to

determine if a stock purchase occurred during the period of a particular price, for example. In

the current environment of high frequency trading, accuracy on the order of µs is needed for

audit and market surveillance by regulators (SR FINRA 2016-005). European Commission

regulations announced in 2016 for the accuracy of business clocks require clock granularity of

one µs or better, with a maximum allowed divergence from Coordinated Universal Time (UTC)

of no more than 100 µs (Annex, Directive 2014/65/EU). Similar regulations from the U.S.

Financial Industry Regulatory Authority have an even tighter clock synchronization

requirement with no more than a 50 µs (SR FINRA 2016-005) divergence. General purpose

computer clocks are not a good choice when accurate time is needed as they are known to have

poor accuracy, with a possible drift of 5 s to 15 s per day (Lombardi, 2019). The Network Time

Protocol (NTP) and atomic clocks are routinely used to synchronize actions and provide more

accurate time for internet applications. However, even NTP and atomic clocks are not precise

enough for some applications such as those that use blockchain technology where timestamp

verification and transaction order is critical (Stavrou & Voas, 2017). In addition, a timestamp

that is trusted and verifiable is needed to accurately sequence the blocks for blockchain

consensus protocol (Kuhn et al., 2019). The purpose of this project is to propose a general

purpose system called Timestamping Authority (TsA), which would be able to provide reliable,

real-time, high precision timestamps preserving the order of events regardless of their number

and time when they were processed. In this paper we will discuss the TsA motivation and

design with blockchain technology as a use case.

2.0 Background

The most accurate and precise time is kept by atomic clocks, which measure the frequency of

oscillations of atoms that happens to be very close to a constant number. For most applications,

accuracy refers to the closeness of measurements to a particular true value (such as a physical

location), while precision is the closeness of measurements to each other. UTC, as its name

implies, involves coordination among a set of cooperating systems. In the context of

timekeeping, accuracy refers to traceability to UTC, while precision is the degree of

synchronization among a set of clocks.

As noted previously, financial regulators require highly accurate timestamps, with UTC

traceability. Within financial systems, continuous monitoring of clock synchronization stability

is required, with realtime comparisons to UTC references. Global Positioning System (GPS)

signals are typically used to provide UTC traceability to a national institution such as NIST, the

Research Institutes of Sweden, or others. UTC combines time scales known as International

Atomic Time (TAI) and Universal Time (UT1), which rely on a weighted average time from

450 atomic clocks in 70 nations (for TAI) and observations of rotations of the Earth (for UT1).

To reduce potential vulnerability to GPS jamming or spoofing, financial institutions may

employ specialized high-power encrypted signal transmission to protect systems providing

UTC traceability. NTP is commonly used to provide synchronization of clocks within variable-

latency packet switched networks. For NTP implementations, atomic clocks are connected to

servers that deliver time over the network. These servers in turn are connected to other servers,

and so on (Mills, 2003). This tree-like design (Figure 1) is needed to reduce the load on the top-

level servers.

Figure 1: NTP Network Structure.

Yellow arrows indicate a direct connection; red arrows indicate a network connection.

This protocol operates over User Datagram Protocol (UDP), which is a transport layer network

protocol. NTP version 3, used in the project, was standardized as Internet Engineering Task

Force RFC-1305 (Mills, 1992), and is compatible with the latest version 4, RFC-7822 (Mizrahi

& Mayer, 2016). The typical device might use one of the bottom-layer NTP servers to

synchronize time. However, using the bottom layer can be insufficient in some situations, since

some precision is lost on the way from the top. Improving precision becomes extremely

expensive as the required level increases. The cause of this imprecision is due to the

asymmetric network routes and network conditions (Mills, 2012).

A blockchain is an example of an application where timestamp accuracy is critical for

verification and security. A blockchain is a series of timestamped immutable records that are

managed by multiple computer entities. In order to add a new block to the chain, the candidate

that wants to insert the block needs to perform a computation (e.g., calculate a hash of the

concatenation of the previous block hash and a hash of the current data) and submit the result to

the system for verification. The need for accurate timestamps comes into play when there are

multiple candidates at the same time. In this case, only the candidate that finishes the hash

calculation first will be added. All other candidates must start over with the new last block.

This is a time consuming and expensive process. Figure 2 illustrates the addition of a

timestamp using the basic methodology where only one candidate will succeed in being added

to the chain and all others will have to start the hash calculation over – creating a type of race

condition.

Figure 2: Adding a block to the blockchain with a basic timestamp

(B – block; H – hash; f - hash function; C – candidate)

A possible solution to this problem is integrating a single TsA service into the system as shown

in Figure 3.

Figure 3: A Timestamping Authority Service

A TsA service could provide an accurate time on demand over a network. However, this does

not resolve the situation where events happen simultaneously. As mentioned earlier, transaction

order is critical in many applications. Figure 4 shows a single timestamping authority with the

requests coming sequentially, thus keeping the accurate order of the requests. However, this

design does not scale well and would work only for transactions that occurred geographically

close to the TsA.

Figure 4: A single timestamping authority

A scalable timestamping solution would use several TsA servers, but then the question of time

synchronization between them arises. An open specification called Chainpoint uses blockchain

technology and the NIST randomness beacon to tackle this problem. A Chainpoint client stores

a hash of the NIST randomness beacon and the timestamp on the blockchain:Chainpoint

(Timestamp + hash(random beacon)) • blockchain

The NIST randomness beacon (beacon.nist.gov) produces a purely random 512-bit string every

minute. Every random value is then stored in a blockchain and can be verified at any time.

https://beacon.nist.gov

Inserting the random number facilitates proving the authenticity of the timestamp at any minute

on the timeline. This approach will both guarantee transaction order and provide verifiability to

the timestamps. However, the time resolution of Chainpoint timestamps depends on the

randomness beacon, which is one minute, so we need to look for a different approach.

3.0 TsA Design

To ensure accurate time and order, when a time request is made, the timestamp will be

determined by using an aggregation from several atomic clocks. Specifically, the atomic clocks

that are used as time sources for this project have publicly available NTP servers, which are

synchronized to the clocks, thus providing precise time to the clients (see Sect. 3.1 for details of

this process). The communication with the client also works over NTP. NTP can provide up to

1 ms precision under ideal network conditions, and the precision deteriorates as asymmetric

network routes are introduced (see RFC-1305, Appendix F). When a network route is

asymmetric, the time for a request to get to the server is different from the time to get the

response. This situation usually happens when long-distance requests are made or when the

network condition is unsatisfactory. Since only the nearest atomic clocks are used, to provide

high precision, NTP also accounts for latency automatically (see RFC-1305). Figure 5 shows

the transition of 4 timepoints in the UDP message that allows the calculation of correct network

delay and local clock offset from the server clock.

The testing procedure consists of using one PC, running the Timestamping Authority Server

locally, and running from one to three clients also locally. Due to everything running on the

same PC, time for the request to get from the client to the server and from the server to the

client is negligible, so the precision of the aggregation procedure can be tested. The server

starts up, gets time from three atomic clocks, and the clients are run when the server is ready to

respond, (i.e. it has calculated an average time from all three clocks). Then, since we may

assume that network delays are not an issue, we can collect all the timestamps received by the

clients and compare them to the order they were sent. The tests showed that the correct order is

preserved when the requests are spaced out by 10 ms or more.

Figure 5: Network Delay calculation from RFC-1305

Figure 6 shows an example time request from Event X. The TsA is retrieving the time from

several atomic clocks and returns the precise time to the client.

Figure 6: Scheme of TsA operation.

(ET - exact time of the event; AET - approximate exact time; A - atomic clock)

The timestamps are assigned to the candidates and form a queue, giving some time to the first-

comer and notifying all other process candidates to wait (Figure 7). That is, the queue is formed

among the candidates and each one is given some time to do the hash computation. If the client

fails, the opportunity is given to the next candidate. This approach could reduce CPU time

spent by the candidates, because they now have an opportunity to wait for the first arrival to

finish before continuing their own computations. Timestamps will serve as a proof that the

candidate was indeed first to arrive. This approach would be especially useful if there are

multiple servers accepting blocks and they need to be coordinated. In this case, they could

query the TsA and receive timestamps that could be used across the servers.

Figure 7: Adding a block to the blockchain with a TsA.

(B – block; H – hash; f - hash function; C – candidate)

It is important to note that the clients are not permitted to use local time due to possible

imprecision. Maintaining accurate UTC time is difficult, and TsA does not claim that the time

provided is accurate. Instead, the Time Stamping Authority establishes a common timescale for

the system that would preserve order of timestamped events. In other words, Time Stamping

Authority is precise, but not necessarily accurate. The project described in this paper was

designed to demonstrate the effectiveness of an authority by aggregating time from several

official reliable atomic clocks and use it to produce the common timescale. The prototype

currently aggregates time from three nearby atomic clocks and computes the average of their

times. (This is currently implemented as simple averaging, but some form of weighted average

may be used in the future.) More effective formulae can be used after the aggregation. Tests

with local server and client show that using this approach preserves the order of timestamps.

3.1 Clocks Used and Their Reliability

The International Bureau of Weights and Measures (IBWM) or Bureau International des Poids

et Mesures (BIPM) in French, the organization that defines the International System of Units

(SI) units, also provides the UTC time standard (https://www.bipm.org). This standard is

created based on over 400 participating laboratories measuring time with their atomic clocks

and reporting the measured time every 5 days to IBWM, which then calculates the weighted

average based on the clock precision and produces UTC. The problem is that it is difficult to

transmit clock data in real-time without losing accuracy, hence all calculated time points are in

the past. Nevertheless, the data from the atomic clocks spread across the globe suggests that

most of them are synchronized up to hundreds of nanoseconds (ns)

(https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html), which is more

than enough for the problem at hand. Within the U.S., the difference between UTC and the two

commonly used clocks (NIST and Naval Observatory) is only a few ns. IBWM also publishes

the Annual Report on Time Activities (https://www.bipm.org/en/bipm-

services/timescales/time-ftp/annual-reports.html), which lists laboratories participating in

creation of the time standard, and are known to be reliable. Some of those laboratories have

publicly available NTP servers linked to the clocks, which are used in this project as time

sources. For the North American region, possible clock servers are the National Institute of

Standards and Technology NTP (https://tf.nist.gov/tf-cgi/servers.cgi), the United States Naval

Observatory NTP (https://tycho.usno.navy.mil/NTP/) and the National Research Council of

Canada NTP (https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official-

time/network-time-protocol-ntp). One problem with using these clocks is that the public servers

are vulnerable to distributed denial of service (DDoS) attacks, and therefore all clients making

too frequent requests to them are banned (e.g., the NIST clock encourages no more than one

request every 4 s). This problem has been solved by maintaining an offset from local time to

each of the used clocks, and updating it every 10 s (this interval can be configured). Per

Lombardi’s estimations, most hardware clocks gain or lose about 5 s to 15 s per day (Lombardi,

2019), so with simple calculations, we see that the hardware clocks can gain or lose at most 2

ms every 10 s. While not perfect, the period of 10 s was chosen as a trade-off to both have

acceptable precision, and not get the server banned by the atomic clock NTP servers. Therefore,

https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official
https://tycho.usno.navy.mil/NTP
https://tf.nist.gov/tf-cgi/servers.cgi
https://www.bipm.org/en/bipm
https://www.bipm.org/en/bipm-services/timescales/time-ftp/Circular-T.html
https://www.bipm.org

even if a local clock is imprecise, it is very unlikely that any significant deviation will happen

in 10 s.

4.0 Implementation Description

The NTP utilities library from Apache Commons Net was used in the project

(https://commons.apache.org/proper/commons-net/). Some code was modified and everything

else was used as a library. The project consists of four executables written in Java. The first and

primary executable is the server, which can be configured and started via command line,

specifying the NTP servers to be used at run time. The server periodically updates local time

offsets of the used clocks and services client requests. There is a class

TimeStampingAuthorityServerRunner with a main method that is compiled to the executable

server. There are also two other classes that can be used as library code. One of these

(TimeStampingAuthority) simply requests time from the clocks, maintains clock offsets and can

provide aggregate time via the application programming interface (API), and another one

(TimeStampingAuthorityServer) also runs an NTP server on a specified port. There is a separate

Clock class that contains logic for maintaining the clock offsets and network communication

with the atomic clock servers.

The second executable is the client for testing. It can be configured and started via

command line, and it logs the time points received from the server to a .txt file. The client

makes requests to the server at the specified address with a given frequency. Tests show that an

interval of 10 ms or more should preserve events ordering on the TsA side. Even though such

precision might not be enough for some applications, it has a benefit of simplicity: no need for

advanced equipment or dedicated connections, just one program on any PC. Moreover, we

would note that this is a proof-of-concept, so future developments may achieve higher

precision.

The third executable takes the log file produced by the client and checks if timestamps the

client received are in the ascending order. It can check multiple files at the same time and is

also usable from a command line. The fourth executable takes several log files and combines

them. This executable was used when several clients were run simultaneously to test how well

TsA preserves order of events with its timestamps. All the executables are configurable. VT

https://commons.apache.org/proper/commons-net

uses the Maven framework for dependency management and build automation. It also uses Git

for tracking changes

(https://github.com/usnistgov/blockmatrix/tree/master/TimeStampingAuthority).

Executables can be used on their own, but it is suggested that an interactive development

environment (IDE) supporting Maven and Git is used in development, e.g. IntelliJ IDEA or

Eclipse (both are free). There are four Maven modules corresponding to four executables in the

project. 3 contain just one class with a main method, and one contains several classes

mentioned above. There is a directory called “testing” which contains all the executables, a file

with the clock data and a script for testing. Maven is configured in such a way that when the

“package” command is run, all the modules are assembled into .jar files. When the “verify”

command is run after that, the .jar files are moved into the correct directories for convenience.

The “out” directory contains all 4 executables bundled with their dependencies as well as a

library .jar, containing non-executable server-side classes without dependencies. This library jar

can be used in other projects as a dependency, assuming that the Apache Commons Net library

is included.

4.1 Installation

This project uses Java Development Kit (JDK) 12.0.1 (the current version as of this writing),

but is tested to be backward-compatible with JDK 1.8.0_21.

If used as a .jar, the executables do not have any dependencies except for the Java runtime

environment.

If used as Java classes, the Apache Commons Net library needs to be downloaded, which

provides implementation of many network protocols, including NTP, along with utilities that

make it easier to use these protocols in the program. You can include this library as a

dependency in a Maven project using the information on

https://mvnrepository.com/artifact/commons-net/commons-net/3.6 or download the libraries as

source code or as binaries on

https://commons.apache.org/proper/commons-net/download_net.cgi. The libraries are open

source and are available under the Apache License, Version 2.0.

https://commons.apache.org/proper/commons-net/download_net.cgi
https://mvnrepository.com/artifact/commons-net/commons-net/3.6
https://github.com/usnistgov/blockmatrix/tree/master/TimeStampingAuthority

It is suggested that you use an IDE with support of Maven and Git if you would like to use

them in the development of the project, because Maven downloads the dependencies for you

and makes building and packaging easier and Git helps revert any changes and keep track of

the history of the project. If not, a simple solution would be to rip out the classes of all 4

modules and put them in a new project together. Do not forget to add the Apache Commons

Net library as a dependency.

5.0 Limitations

The order-preserving property of the current TsA implementation has been tested only locally.

Namely, the procedure was to run the Time Stamping Authority server locally, together with

one or more clients that would request timestamps from the server. Since the time on the PC is

the same, more tests are needed to determine the reliability of TsA. Namely, clients could be

located far from the server, and have their own reliable time source to compare the timestamps

with. Based on this kind of testing, the conclusion about order-preservation can be made.

Sometimes several subsequent timestamps get “merged” and have the same value, even though it

is known that the events were supposed to have a time interval between them. For example, there

could be several timestamps with values 1, 1, 1, 4, 5, while the events were supposed to happen

at times 1, 2, 3, 4, 5. It is likely that this happens due to low computing power of the

development machine used, and as a consequence of running several processes for actual testing

of the program and other processes running in the background. If the events are spaced out with

the stated time difference - 10 ms, then the weak order is always preserved. By weak order we

mean the sequence of numbers where two numbers can be equal, not strictly increasing.

Implementation factors are a consideration in this merging phenomenon. The prototype was

implemented in Java, which sometimes has unpredictable runtime due to garbage collection, and

it was not the only program running on the PC, so the operating system (OS) could take away

processor time for a fraction of a second, corrupting the timestamps. It is expected that if the

implementation had adequate performance and priority is given to the time-stamping server,

these anomalies should not be present, and the resulting timestamps should form strictly

increasing sequence. Additional testing will be used to evaluate this condition.

1. NTP assumes that the offset from the client clock is to be calculated by the client, so the TsA has

no way to know if the client completed the timestamp calculation correctly.

2. When requesting time from the clocks and serving time to the client, only one NTP-request is

made, since acceptably low latency network conditions are assumed. It is suggested to make

several NTP-requests and take the one with the lowest round trip time to exclude asymmetric

route errors.

3. RFC-1305 suggests a formula for combining several clock times to increase accuracy and

precision. This could be used instead of a simple average of all the clocks, which is currently

used.

6.0 Conclusion

In the real estate community, it is said that property value is based on “location, location,

location.” But we also know that timing is everything. In sports, the end of a game can be

decided in a single second. In financial transactions, it comes down to milli- and microseconds.

Here, we have shown that atomic clock aggregation is possible and that it works better if the

clocks are somewhat geographically co-located due to latency. We have argued that a

Timestamping Authority (TsA) is a feasible approach to creating timestamps of higher integrity.

We plan to continue this research to better understand the impact of latencies on the accuracy of

the aggregated clock results.

7.0 References

Lombardi, M., “Computer Time Synchronization,” Time and Frequency Division, National

Institute of Standards and Technology, https://tf.nist.gov/service/pdf/computertime.pdf,

retrieved, 8/17/19.

Mills, D., “Network Time Protocol (Version 3) Specification, Implementation and Analysis,”

RFC 1305, March 1992, https://tools.ietf.org/pdf/rfc1305.pdf, retrieved 8/17/19.

Mizrahi, T., Mayer, M., “Network Time Protocol Version 4 (NTPv4) Extension Fields,” Internet

Engineering Task Force (IETF), March 2016, https://tools.ietf.org/pdf/rfc7822.pdf, retrieved

8/17/19.

https://tools.ietf.org/pdf/rfc7822.pdf
https://tools.ietf.org/pdf/rfc1305.pdf
https://tf.nist.gov/service/pdf/computertime.pdf

Kuhn, R., Yaga, D., Voas, J., “Rethinking Distributed Ledger Technology,” Computer, Feb

2019, pp. 68-72.

Stavrou, A., Voas, J., “Verified Time,” Computer, March 2017, pp. 78-82.

Directive 2014/65/EU of the European Parliament and of the Council with regard to regulatory

technical standards for the level of accuracy of business clocks

http://ec.europa.eu/finance/securities/docs/isd/mifid/rts/160607-rts-25_en.pdf

Annex: http://ec.europa.eu/finance/securities/docs/isd/mifid/rts/160607-rts-25-annex_en.pdf

SR-FINRA-2016-005. Proposed Rule Change to Reduce the Synchronization Tolerance for

Computer Clocks that are Used to Record Events in NMS Securities and OTC Equity Securities

https://www.finra.org/industry/rule-filings/sr-finra-2016-005

Mills, D.L. (2003). A brief history of NTP time: memoirs of an Internet timekeeper. Computer

Communication Review, 33, 9-21.

Mills, D.L. (2012). Executive Summary: Computer Network Time Synchronization.

https://www.eecis.udel.edu/~mills/exec.html.

https://www.eecis.udel.edu/~mills/exec.html
https://www.finra.org/industry/rule-filings/sr-finra-2016-005
http://ec.europa.eu/finance/securities/docs/isd/mifid/rts/160607-rts-25-annex_en.pdf
http://ec.europa.eu/finance/securities/docs/isd/mifid/rts/160607-rts-25_en.pdf

