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Highlights:  12 

• Time series sensor data for cooking with electric-coil and gas cooktops are presented. 13 

• Discussion of data preprocessing and feature selection for machine learning on real-time 14 

fire prevention application. 15 

• Workflow for constructing and testing machine learning models is demonstrated. 16 

• Support vector machine (SVM) detection algorithm correctly classifies 96.9 % of the data 17 
points as normal or hazardous conditions for oils on an electric-coil cooktop.  18 

• Multi-step models can enhance data classification and improve overall detection 19 
accuracy. 20 
 21 

Abstract: 22 

This paper1 presents a study to examine the potential use of machine learning models to build a 23 
real-time detection algorithm for prevention of kitchen cooktop fires. Sixteen sets of time-24 

dependent sensor signals were obtained from 60 normal or ignition cooking experiments. More 25 
than 200 000 data instances are documented and analyzed. The raw data are preprocessed. 26 

Selected features are generated for time series data focusing on real-time detection applications. 27 
Utilizing the leave-one-out cross validation method, three machine learning models are built and 28 
tested. Parametric studies are carried out to understand the diversity, volume, and tendency of the 29 
data. Given the current dataset, the detection algorithm based on support vector machine (SVM) 30 
provides the most reliable prediction of pre-ignition conditions (with an overall classification 31 

accuracy of 96.9 % for oils on an electric-coil cooktop). Analyses indicate that using a multi-step 32 
approach could further improve overall prediction accuracy. The development of an accurate 33 

detection algorithm can provide reliable feedback to intercept ignition of unattended cooking and 34 
help reduce fire losses. 35 

Keywords: machine learning, time series classification, cooking, fire prevention, fire detection 36 
 

1 Certain commercial products are identified in this paper in order to specify adequately the equipment used. Such 
identification does not imply recommendation by the National Institute of Standards and Technology, nor does it 
imply that this equipment is the best available for the purpose. 
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1. Introduction 37 

A study conducted by the National Fire Protection Association (NFPA) based on fire loss data 38 
from the National Fire Incident Reporting System summarizes the US cooking fire problem [1]. 39 
During the period 2013 – 2017, household fires involving cooking were responsible for 40 
approximately 173 200 fires, 5 020 injuries, and 550 deaths annually.  This represents 49 % of all 41 
reported home fires in the US. In 2017, U.S. Fire Departments responded to an average of 470 42 

home cooking fires per day. Of these fires, cooktops (or ranges) were found to be involved in 43 
62 % of reported home cooking fire incidents, 89 % of home cooking fire deaths, and 79 % of 44 
home cooking fire injuries. Unattended cooking was the leading cause of cooking fires.  45 

Households that use electric ranges have a higher risk of developing a cooking fire than those 46 
using gas ranges. Although 60 % of households cook with electric cooktops, 79 % of reported 47 
cooktop fires were electric [1]. In terms of standards development, the abnormal ignition test in 48 

UL 8582 represents significant progress in addressing unattended electric-coil heating element 49 
cooktop fires [2]. However, there are no current analogous standards applicable to other types of 50 
electric cooktops or to gas ranges in North America, and there are no standards for existing 51 

electric-coil element cooktops/ranges manufactured before 2019. Additionally, the cooking fire 52 
problem in the US may be worse than it was a few decades ago. Cooking caused more home fire 53 
deaths in 2013-2017 than in 1980-1984 [1]. In summary, the cooking fire problem has not been 54 

adequately addressed and the consequent fire casualties. New approaches are needed to reduce 55 
cooking fires.   56 

Typical smoke detectors being installed in kitchens are well-known to be prone to nuisance 57 

alarms caused by normal cooking activities. Despite research efforts made to understand the 58 
cooking fire characteristics [3,4], the signal behavior of various sensors [5,6] and the 59 
development of advanced cooking ignition detection algorithms [7,8], only a few of these 60 

improvements can be used in practical environments. Indeed, studies [9,10] show that 61 

commercially available smoke detectors are primarily designed to provide alerts and/or warnings 62 
for flaming fires in which fuel packages such as upholstered furniture, appliances, and/or 63 
kitchenware are being ignited. For detection of cooktop pre-ignition conditions, alterative 64 

detection technologies and analysis are needed.  65 

Johnsson [11] conducted a series of experiments to determine the feasibility of using research-66 

grade sensors to distinguish the signal behaviors between normal cooking activities and ignition 67 
conditions on an electric range in a mock kitchen. Optimal location for sensor placement and the 68 
associated cut-off value for such a detection system were suggested. More recently, Mensch et 69 
al. [12] extended the work of Johnsson using a wide range of consumer-grade sensors to develop 70 
a pre-ignition detection system. Sensor signal differences were investigated, and a threshold 71 

based on the magnitude of a volatile organic compounds (VOC) sensor was determined to best 72 

differentiate the signal peak for normal cooking and the minimum signal 60 s before ignition. 73 

More recently, the pre-ignition detection system was extended to account for both normal and 74 
ignition cooking conditions using gas cooktops [13]. Mensch and co-workers conducted a 75 
statistical analysis and showed that the previously determined threshold for the VOC sensor had 76 
to be modified to accommodate the additional data and to assure detection sensitivity and 77 

 
2 An “abnormal” ignition test was extended to consider the average temperature of a dry (without cooking oil), 
round, 20 cm diameter, cast iron pan [2]. If the average pan temperature does not exceed 385 °C for 30 min with 
the element on its highest power setting, the test is considered a pass. 
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nuisance immunity. A machine learning algorithm was implemented to study the prediction 78 

performance of using signals from either individual sensor or all sensors. The preliminary results 79 

highlighted the potential benefits of implementation of machine learning algorithms. Indeed, as 80 
the volume of data becomes larger and data complexity increases, advanced data processing, 81 
such as considering the rate of change of a sensor signal or ratios of signals from different 82 
sensors, may be beneficial to discriminate different cooking conditions.  83 

Machine learning algorithms have the capability to transform a large set of complex data with 84 
multiple variables in meaningful ways, such that a hyperplane or a dynamic threshold can be 85 
obtained for classification problems. In fact, data-driven analytics have been used to resolve 86 
complex problems for a variety of applications. In structural engineering [14], a logistic 87 
regression model was used to provide failure detection of a shackle with a dual sensing system. 88 

For outage prediction of power grids [15,16], three-dimensional support vector machine 89 
(SVM) [17] were developed using limited data. Hand-crafted features were extracted to improve 90 

the performance of prediction. In the combustion community [18], a convolutional neural 91 
network was used to predict the likelihood of ignition for a hydrogen jet in air crossflow. 92 
However, no previous studies have been carried out to study the use of machine learning models 93 
that can classify pre-ignition conditions for different cooking scenarios. Using the experimental 94 
data collected in [13], this paper contributes the use of machine learning for development of 95 
robust and reliable early warning algorithms for sensor data. The developed algorithm can help 96 
to automatically cut cooktop power or gas flow to prevent cooktop ignition. 97 

The rest of this paper is divided into four sections. Section 2 presents the experimental apparatus 98 
and procedure. Section 3 presents detailed descriptions associated with the proposed machine 99 
learning models. Section 4 discusses the results and key findings. Conclusions are provided in 100 

Section 5. 101 

 102 

2. Experimental Apparatus and Procedure 103 

Here, the focus is on electric coil element cooktop fires although some experiments were 104 

conducted using a gas cooktop. The experimental apparatus and procedure have been previously 105 
described in [12,13,19]. Some details are included here to provide a general description of the 106 

work.  107 

2.1 General Setup 108 

A series of 60 experiments were conducted in a mock kitchen, previously reported in [12,13]. A 109 
schematic of the experimental setup is shown in Figure 1. As seen in the figure, a cooktop/range 110 
is located between two gypsum-board cabinets. The dimensions of the cooktop/range are 68 cm 111 

in depth and 76 cm in width. The top surface of the cooktop/range was level with the standing 112 
cabinets. Two cooktops were considered: a household electric-coil cooktop with two heating 113 
element sizes and a household gas cooktop with three heating element sizes. For the electric-coil 114 

stove, both the big (20 cm) and the small (15 cm) heating elements were used. The heating 115 
power was measured as approximately 1.1 kW and 1.8 kW for the 15 cm and 20 cm electric-116 
coils, respectively. For the gas cooktop, the estimated heating power was 4.0 kW for the large 117 
burner and 3.4 kW for the medium burner. The small gas burner was not used in the experiments. 118 
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An aluminum shroud was used in some of the experiments to reduce the influence of air 119 

circulation in the room.  120 

2.2 Range Hood and Duct 121 

Figure 1 shows the mock kitchen with a nominal 76 cm wide exhaust hood. The separation 122 

distance between the bottom surface of the range hood and the upper surface of the cooktop was 123 
84 cm. The range hood was a 200-CFM (approximately 0.1 m3/s) rated venting system to remove 124 
smoke, grease, odors, and moisture from the cooking space. The fan had variable flow control. 125 
The outlet of the range hood was connected to a nominal 15 cm diameter aluminum duct and the 126 
exhaust air was vented to the outside environment. The exhaust flow was characterized using a 127 

velocity probe at the center of the duct after the sensor array. The average flow speed and its 128 
standard deviation was 3.4 m/s ± 0.1 m/s over all the experiments. Using the electric coil 129 
cooktop, the duct temperature increased by an average of 9 °C during cooking, causing an 130 

estimated reduction in duct mass flow of 3 %. For the gas cooktop, the duct temperature 131 
increased by an average of 23 °C, which is estimated to reduce the duct mass flow by 7 %. The 132 
duct length between the range hood opening and the sensors was approximately 3 m. 133 

 134 

Figure 1. Schematic drawing of experimental setup (not to scale) and close-up view of the sensor 135 
array (in the duct). 136 

2.3 Sensor Array 137 

Figure 1 shows the sensor array secured inside the duct. There were 14 different sensors which 138 
are sensitive to smoke, alcohol, hydrocarbons, hydrogen, natural gas, carbon monoxide, volatile 139 
organic compounds (VOC), dust/aerosols, humidity, flow, indoor air quality (IAQ), temperature, 140 

and carbon dioxide. The dust sensor was modified from a commercial product to extend its range 141 
of sensitivity. Appendix A provides additional information for the sensor array. 142 

2.4 Cooking Pans 143 

A number of cooking pans were used in the experiments. The pans were either 20 cm or 25 cm 144 
diameter round pans. Four different types of pan materials were considered: cast iron, aluminum, 145 
stainless-steel, and a 5-layer aluminum/stainless-steel composite. Most of the experiments used 146 
the 20 cm cast iron pan, which is the cookware specified in the new UL 858 standard test [2]. It 147 
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should also be noted that Type-K thermocouples were spot-welded or peened onto the top 148 

surface of each pan to monitor its temperature. In general, there were two thermocouples used to 149 

measure the pan temperature: one at the center of the pan, and one closer to the edge. 150 
Thermocouples were used to monitor the stage of cooking. For the 20 cm cast iron pan on the 151 
small electric burner, the temperature towards the edge of the pan was about 23 °C higher than 152 
the center temperature. For experiments that only measured the temperature in the center of the 153 
pan, the temperature closer to the edge was estimated using a linear regression of the relationship 154 

between the two temperatures from experiments that both temperatures were measured [13]. 155 

2.5 Food 156 

A representative range of foods were considered, including cooking oil, butter, chicken legs, 157 
salmon, hamburger, bacon, and french fries. As mentioned in [12,13], the cooking oils tested 158 
included canola oil, corn oil, olive oil, sunflower oil, and soy oil. The most common experiment 159 

used 50 mL of oil, but larger volumes of oil were also considered. A list of important test 160 
conditions for all experiments is summarized in Appendix B.  161 

2.6 Test Procedure and Data Acquisition 162 

For most experiments, both oils and food samples were prepared and placed on the pan before 163 
turning on the burner. The pan was centered on the specified burner. The gas or electric burner 164 
was generally set to its maximum power setting, and the output from the sensors was monitored. 165 
Data acquisition started at least 180 s before the heating element was turned on. Experiments 166 
were conducted until the food samples ignited or charred, or until normal cooking was complete. 167 

If ignition occurred, the fire was extinguished immediately by remotely applying baking soda. 168 
The range hood was kept turned on for the entire test period. Background signal values for each 169 

sensor, obtained before the burners were turned on, were subtracted from the raw signals. 170 
LabVIEW was utilized and an in-house program was coded to facilitate data acquisition. The 171 

sampling rate was set to 0.25 Hz. In total, data was obtained across over 12 800 time points. 172 

 173 

3.  Procedure for Machine Learning 174 

Depending on the nature of the data (i.e., time series, images, text), the optimal machine learning 175 
architecture may be different. However, the overall workflow is relatively the same. After data 176 
collection, there are five primary steps: data profiling, preprocessing, feature selection, training 177 

and evaluation.  178 

3.1 Data profiling 179 

Figure 2 shows the data for 11 selected sensors together with the pan temperature for Exp. 8, 180 

which tested 50 mL of canola oil in a round 20 cm cast iron pan on a small electric cooktop 181 
burner set to maximum power at time = 0. When the pan temperature is below 200 ºC, there is 182 
nearly no change to any of the sensor signals. At approximately 230 ºC, most of the signals begin 183 
to rise increase rather monotonically, which was generally true for all the oil experiments. The 184 
red dashed line indicates the cooking condition, either normal or pre-ignition. The curve changes 185 

from 0 to 1 when the pan temperature exceeds 300 ºC at about 320 s. At 704 s, the pan 186 
temperature reached 429 ºC, and auto-ignition occurred; the test was immediately terminated. 187 
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Figure 3 shows 3 sets of curves for Exp 8 (solid line) 3, Exp 46 (circle symbols) 4, and Exp 57 188 

(triangle symbols) 5. Each set of curves contain the sensor signals for IAQ (black) and VOC 189 

(green), as well as the red line denoting the end of normal cooking and the beginning of the pre-190 
ignition condition. Sensor data were selected based on the clear independence of the sensor 191 
signals from each other. For the two oil experiments (Exp 8 and Exp 57), the IAQ signals 192 
monotonically increased with time. However, the profile of the IAQ signal associated with 193 
Exp 46 was observably different; it first increased to a value of 0.3 x 104, remained constant for 194 

more than 300 s, then increased to a peak value of 0.76 x 104, reached a minimum value of 0.4 x 195 
104, before obtaining another peak value of 1.1 x 104. The VOC sensor for Exp 46 also shows the 196 
same complex behavior. The physical mechanism causing such behavior is not known. However, 197 
this test was repeated and the same behavior was observed. Sensor data associated with all 198 
experiments were examined; Exp 16 was eliminated because the pan was not cleaned before the 199 

experiment such that a layer of degraded oil was on the bottom of the pan before the fresh oil 200 

was added. In the future, this type of experiment could be considered.  201 
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Figure 2. Signals for 11 selected sensors during Experiment 8. 203 
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Figure 3. Comparison of IAQ (divided by 104) and VOC signals for 3 experiments (8, 46, 57). 205 

 
3 Exp 8 is for 50 mL canola oil on a 20 cm cast iron pan heated by the small electric-coil burner. 
4 Exp 46 is for 110 g bacon on a 20 cm cast iron pan heated by the small electric-coil burner. 
5 Exp 57 is for 50 mL canola oil on a 20 cm cast iron pan heated by the big gas burner. 
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3.2 Preprocessing 206 

As illustrated in Fig 2, the data range significantly differed between some of the sensor signals. 207 
For instance, in Exp 8 the data range of the smoke signal was from 0 to 2.5 V, while the IAQ 208 
signal range was more than 48 000. The difference in magnitude associated with the data is 209 
known to affect training efficiency, so a min-max normalization was applied to all signals to 210 
impose a range from 0 to 1. 211 

In machine learning, a classifier is applied to a set of data instances that are well-annotated. The 212 
classifier learns the data distribution, or fits a hyperplane in multi-dimensional space, to separate 213 
data instances based on feature vectors and corresponding labels. Here, data instances are 214 

generated using a moving window. The advantage of this approach is to provide more 215 
information for each data instance, such as temporal information for the historical data. 216 

The analysis applies a moving time window of size, 𝑊, as demonstrated in Figure 4. Each 217 

moving window represents one data instance. The measurement frequency of each signal was 218 

f  = 0.25 Hz (1 sample every 4 s) and there were W x f sample points for each signal in a moving 219 
window. Six signals are considered here, measuring alcohol, CO, dust, indoor air quality (IAQ), 220 

smoke, and VOC, leading to 6 time series with W x f sample points for each instance of 221 
processed data.  222 

 223 

Figure 4. Schematic of moving windows with window size, W, and its corresponding label (the 224 
two sliding windows are not to scale; ti and ti+1 are 4 s apart). 225 

Table 1. Number of normal cooking and pre-ignition data instances for different groups of 226 
experiments when W = 60 s. 227 

Group Label Food type Cooktop type Normal cooking Pre-ignition 

OE (Oil, Electric) Oil Electric 2486 2249 

OFE (Other Foods, Electric)  Other foods Electric 2702 606 

OG (Oil, Gas) Oil Gas 675 1022 

All (OE+OFE+OG) All All 5863 3877 
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In addition to feature representation, each instance also needs to be well annotated. As shown in 228 

Fig 4, each data instance was labeled “Normal cooking” or “Pre-Ignition”. For oils, the data is 229 

defined as “Normal Cooking” if the pan temperature is less than 300 ºC. Reference [13] provides 230 
detailed descriptions for the determination of normal condition for other foods, such as salmon, 231 
bacon, chicken, hamburgers, and french fries. Table 1 illustrates data distributions for different 232 
groups of experiments with W = 60 s. Depending on the size of time window (W), it should be 233 
noted that several instances (i.e. W x f – 1) will be lost. 234 

3.3 Feature selections 235 

After obtaining the processed data instances, features are extracted to build classifiers. Statistics, 236 

such as the mean, maximum, and standard deviation, are used to characterize a series of data or 237 
approximate the data distribution. These statistic-based representations may be useful to detect 238 
pre-ignition. For instance, pre-ignition is usually associated with high values of IAQ signal, so 239 

the maximum of the IAQ signal would be useful. We therefore propose a set of statistic-based 240 
features for unattended cooking detection.  241 

Statistic-based features can represent the character of the data. However, they cannot capture the 242 
temporal or trend information. In order to extract this information, we also propose a set of trend-243 

based features. Given the values of the signal within the data window, 𝑆 = [𝑠1, … , 𝑠𝑛 2⁄ , … , 𝑠𝑛], 244 

we extract trend-based features by computing: 𝑠𝑛 − 𝑠1, 𝑠𝑛 2⁄ − 𝑠1, 𝑠𝑛 − 𝑠𝑛 2⁄ , and max(𝑆) – 245 

min(𝑆). In addition to the raw signal, the first derivative is also calculated. We further extract the 246 

same set of features from the first derivative signal 𝑆′ = [𝑠1
′ , … , 𝑠𝑛 2⁄

′ , … , 𝑠𝑛−1
′ ], where  𝑠𝑖

′ =247 

 𝑠𝑖+1 − 𝑠𝑖. In total, 18 features for one signal can be extracted. As shown in Table 2, signals from 248 
6 sensors, including alcohol, CO, dust, IAQ, smoke, and VOC are used. With these signals, a 249 
feature vector of 108 dimensions for each data instance is obtained. The feature vector is fed into 250 

a classifier to build the pre-ignition detection model. 251 

Table 2. Signals and their features. 252 

Sensors Alcohol CO Dust IAQ Smoke VOC 

Signals Raw signal (𝑆) and the first derivative (𝑆′) 

Trend-based features  
𝑠𝑛 − 𝑠1, 𝑠𝑛 2⁄ − 𝑠1, 𝑠𝑛 − 𝑠𝑛 2⁄ , max(𝑆) – min(𝑆) 

𝑠𝑛−1
′ − 𝑠1

′ , 𝑠(𝑛−1) 2⁄
′ − 𝑠1

′ , 𝑠𝑛−1
′ − 𝑠(𝑛−1) 2⁄

′ , max(𝑆′) – min(𝑆′) 
 

Statistical features Mean, maximum, minimum, median, standard deviation 

3.4 Training and evaluation 253 

The features introduced above are extracted for each instance, and then fed into a conventional 254 

machine learning algorithm to build the pre-ignition detection model. In this analysis, multiple 255 

machine learning algorithms are adopted for the detection model, including support vector 256 

machine (SVM), random forest (RF) [20], and decision tree (DT) [21]. These commonly used 257 
machine learning algorithms are reliable for many classification applications. Appendix C 258 
provides the basic concept and the model configuration for the three machine learning 259 
algorithms. Investigating and comparing the performance of these machine learning algorithms 260 
can help determine the most suitable machine learning model for ignition detection. In general, 261 
there is a tradeoff in real-time detection associated with the size of the moving window. Using a 262 
smaller moving window can increase the response time of the model, which is an important 263 
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factor in real-time detection. On the other hand, using a larger moving window is likely to 264 

achieve higher accuracy, as the model has more information. Therefore, the impacts of algorithm 265 

type as well as window size are investigated here. Three window sizes are considered: 60 s, 32 s, 266 
and 16 s based on the frequency of the input signal (0.25 Hz).  267 

For evaluation purposes, a leave-one-experiment-out cross-validation approach is used. The 268 

dataset is divided into 𝑁 subsets, where 𝑁 is the total number of experiments. Each subset 269 
contains all the data instances from one particular experiment, then the classifier is trained with 270 
N - 1 subsets and the classifier predictions are evaluated for the data instances in the remaining 271 

subset. This is repeated 𝑁 times until all the subsets are evaluated once. Final performance is 272 

taken as the overall average accuracy across all data instances in the 𝑁 evaluations. 273 

 274 

4. Results and Discussion 275 

4.1 Classification of unattended cooking for OE and OFE data 276 

Data associated with all experiments6 with oil on the electric cooktop (denoted as OE in Table 1) 277 
and other foods (OFE) on the electric cooktop were considered. Figure 5 shows an example of 278 

the prediction results of SVM with a moving window of 16 s for Exp 8 and Exp 46. The black 279 
curves are the classifier predictions. Blue curves are the converted values based on a 280 
discrimination threshold of 0.5. If the prediction value is less than 0.5, the prediction is classified 281 

as normal cooking. If the prediction is larger than 0.5, the prediction is classified as pre-ignition. 282 
As compared to the data label (red curves), the SVM tends to predict pre-ignition well before the 283 

ignition. In order to evaluate the performance over all experiments, the precision, recall, and F1-284 
score measures are reported. Table 3 shows the prediction performance for the three moving 285 
window sizes. Here, precision is defined as the ratio of the number of true positives over the sum 286 

of true and false positives; recall is defined as the ratio of true positives over sum of true 287 

positives and false negatives. The F1 score is the weighted average of precision and recall. 288 
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Figure 5. Performance comparison of SVM with W of 16 s for Exp 8 and Exp 46 considering 290 

both OE and OFE data. 291 

 
6 Exp 16, 39, 48, 49, 50, and 60 are excluded. Exp 39, 48, 50 and 60 are dual-pan experiments. Since single pan 
experiments are of interest, the dual-pan experiments will be considered in future study. 
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The Correct Classified Rates (CCR) for the three machine learning models with three moving 292 

window sizes are presented in Fig 6. CCR is defined as the ratio of the correct classified 293 

instances to the total instances in a dataset; it is an indicator of overall classification 294 
performance. The results in Fig. 6 suggest two general conclusions. First, the larger the window 295 
size, the better the observed performance. Second, SVM seems to have slightly higher CCRs 296 
compared to RF and DT. For SVM, prediction accuracies are 93.8 %, 92.8 %, and 91.2 % for 297 
W = 60 s, 32 s, and 16 s, respectively. This statistic demonstrates that with approximately 4 times 298 

the detection frequency, there was only a 2.5 % tradeoff on prediction accuracy.   299 

Table 3. Precision, recall, and F1-score for SVM with three moving window sizes considering 300 
both OE and OFE data. 301 

Window size Class Precision Recall F1-score 

60 s 
Normal 96.3% 94.1% 95.2% 

Unattended 89.7% 93.4% 91.5% 

32 s 
Normal 94.9% 93.8% 94.3% 

Unattended 89.3% 91.1% 90.1% 

16 s 
Normal 93.6% 92.4% 93.0% 

Unattended 87.2% 89.1% 88.1% 

 302 

 303 

Figure 6. Overall performance classifying normal cooking and pre-ignition for three machine 304 

learning models with different moving window sizes considering both OE and OFE data. 305 

4.2 Classification of pre-ignition using an object-specified approach  306 

Sensors in the oil experiments, regardless of oil volume, oil type, and heating conditions, 307 
presented monotonic behavior. This trend does not necessarily exist for the cooking experiments 308 
with other foods due to a variety of factors including possibly the burner settings used, the water 309 
content of the foods, and the shape and deformation of the foods during cooking. If a machine 310 

learning model uses data that have similar behaviors, the prediction performance should increase. 311 
Therefore, an object-specified approach was also followed, training and evaluating the machine 312 

learning models either with only the OE data or only the OFE data.  313 

Figure 7 shows the updated CCRs using the object-specified approach on SVM. For OE data 314 
alone, the prediction performance for W = 60 s is increased over the combined OE and OFE data 315 
to 96.9 %. In general, there is an average 1.9 % improvement in the prediction performance over 316 
the combined OE and OFE data for all three moving window sizes. For OFE data alone, the 317 
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prediction performance for W = 16 s increases by 5.1 % over the combined OE and OFE data. 318 

The improved performance for OFE data alone with W = 60 s and W = 32 s is 2 % and 2.8 %, 319 

respectively. Table 4 shows the detailed breakdown of the two data sets using statistical 320 
measures, showing the enhanced prediction accuracy.  321 

 322 

Figure 7. Performance of SVM predictions using both OE and OFE data for training compared to 323 
the object-specified approach, where only OE or OFE data is used for training. 324 

Table 4. Precision, recall, and F1-score for SVM with three moving window sizes using the 325 
object-specified approach. 326 

Dataset Class Precision Recall F1-score 

Oil (OE) 
Normal 98.4% 95.7% 97.0% 

Unattended 95.3% 98.2% 96.8% 

Other Foods (OFE) 
Normal 96.8% 95.8% 96.2% 

Unattended 82.0% 85.6% 83.8% 

 327 

4.3. Towards Two-Step Pre-Ignition Detection 328 

Based on the previous section, the object-specified machine learning models built to classify the 329 

cooking conditions (normal or pre-ignition) for a specific type of cooking (oil heated on an 330 
electric cooktop versus other foods on an electric cooktop) is shown to outperform the more 331 

generic machine learning model. This performance enhancement does not require additional 332 
data. Instead, to use the object-specified machine learning models, a classifier that discriminates 333 
between the oil cooking scenarios and other cooking scenarios is needed. The gas cooktop 334 
experiments were not included in the previous analyses, so cooktop type could also be important 335 
in determination an optimized model. Nevertheless, the feasibility of use of a two-step 336 

architecture for detection of pre-ignition is investigated.  337 

Next, machine learning is used to detect the type of cooktop being used. The cooking oil results 338 
from different cooktop types in the dataset are used. The data from heating oil on an electric 339 
cooktop (OE) are given the label “Electric”, and the data from heating oil on a gas cooktop (OG) 340 
are given the label “Gas”. The same features as presented in Section 3.3 are used to build the 341 
cooktop type identification models and the same evaluation approach is adopted. As shown in 342 

Fig. 8, the attempt leads to very promising performance of cooktop identification. Using SVM as 343 
the classifier with W = 60 s, an accuracy of better than 98 % is observed. For a smaller W, which 344 

enables a faster time response, an accuracy of 98 % (𝑊 = 32 𝑠) and 97.3 % (𝑊 = 16 𝑠) is 345 
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achieved. As shown in Table 5, the models achieve high F1-scores for both cooktop types, 346 

indicating that the model does not achieve high CCR by simply selection of the majority side. 347 

These results suggest that the proposed method can precisely differentiate an electric cooktop 348 
from a gas cooktop, providing verification of the machine learning methods developed here. The 349 
results also demonstrate that it may be possible to build a two-step pre-ignition detection model, 350 
which first classifies the cooking scenario to recommend a specific model to better predict pre-351 
ignition conditions for a particular type of cooktop. 352 

 353 

Figure 8. Overall performance on cooktop type classification for the three machine learning 354 
models with different W using OE and OG data sets. 355 

Table 5. Precision, recall, and F1-score for SVM with three different W for cooktop type 356 

classification. 357 

Window size Class Precision Recall F1-score 

60 s 
Electric 99.5% 98.4% 98.9% 

Gas 95.5% 98.5% 96.9% 

32 s 
Electric 98.9% 98.4% 98.7% 

Gas 95.4% 96.7% 96.0% 

16 s 
Electric 98.1% 98.2% 98.2% 

Gas 94.7% 94.5% 94.6% 

 358 

 359 

Figure 9. Overall performance on food type classification for the 3 machine learning models with 360 
different moving window size on OE and OFE data. 361 
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Next, the possibility of using the classifier to identify the heating of oil versus cooking scenarios 362 

involving foods is investigated. Both the OE and OFE data sets using the electric cooktop are 363 

utilized. The data with oil (OE) is labeled “Oil” and the data with other foods (OFE) is labeled 364 
“Others”. The same model features and evaluation approach presented in Section 3.3 to build the 365 
oil versus other scenario detection models are adopted here. Table 6 provides the detailed 366 
statistical performance for the food type predictions. The numerical results indicate that the 367 
models cannot precisely differentiate cooking oil from scenarios involving cooking other foods. 368 

A possible reason is that there is insufficient data. The models to detect cooktop type achieved 369 
promising performance despite fewer data sets using the gas cooktop because the sensor signals 370 
from heating oil with a gas cooktop does not vary as much across different experiments as the 371 
varied data sets in the OFE data group. The types of other foods and procedures of cooking other 372 
foods are much more diverse than just heating oil on the highest setting, leading to diverse sensor 373 

signal patterns that make it difficult for the classifier to learn patterns.  374 

Table 6. Precision, recall, and F1-score for SVM with three moving window sizes on classifying 375 

heating oil from other cooking scenarios on electric cooktops. 376 

Window size Class Precision Recall F1-score 

60 s 
Oil 74.9% 92.6% 82.8% 

Others 82.9% 53.4% 65.0% 

32 s 
Oil 75.0% 94.5% 83.6% 

Others 86.2% 51.9% 64.8% 

16 s 
Oil 74.2% 94.6% 83.2% 

Others 85.7% 49.6% 62.8% 

 377 

5. Conclusions 378 

The feasibility of building machine learning models to perform real-time cooktop pre-ignition 379 

detection is investigated. Machine learning algorithms have the capability to consider multiple 380 
sensor signals. Taking advantage of that capability, statistic-based and trend-based features are 381 
extracted from the time series signal of six sensors: alcohol, CO, dust, IAQ, smoke, and VOC, to 382 

build pre-ignition detection models. The proposed approach achieves encouraging performance, 383 
even when using data from diverse cooking scenarios on electric cooktops (OE and OFE data 384 

sets) for training with 93.8 % of data instances predicted correctly (using SVM and W = 60 s). 385 

Models trained and tested only on data for a specified cooking condition (separating OE and 386 

OFE data sets) outperform models trained on the combined set of all electric cooktop data. For 387 
instance, the overall accuracy is 96.9 % for the model trained and tested on only the OE data set 388 
(using SVM and W = 60 s). If the cooking scenario of the target data can be identified, the 389 

detection performance of pre-ignition can be improved. This suggests the potential of a two-step 390 

approach to obtain a more robust cooking pre-ignition detection model. 391 

Results from calculations to identify cooking scenarios using a multi-step detection approach 392 

shows it is possible to precisely differentiate heating oil on electric cooktop from a gas cooktop. 393 
However, the method was not as effective in identifying a scenario of heating oil versus cooking 394 
other foods on an electric cooktop. In the future, experiments on a wider variety of food types 395 
will be considered to test the range of possible improvement of model performance. 396 
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Appendix A. Additional Information for Sensor Array. 483 

14 different sensor responses were selected for testing. The sensors were based on various operating mechanisms, including 484 
electrochemical, MOS-type, light scattering, and non-dispersive infrared absorption. Sensors were selected to measure CO2, CO, 485 
hydrocarbons, alcohols, H2, natural gas, volatile organic compounds (VOCs), smoke, air quality, and aerosols/dust. Humidity and 486 

temperature were also measured. Table A1 provides the sensor names, their sensitivity, operating principle, measurement range, and 487 
units. 488 

Table A1. Summary of sensor information. 489 

  
Sensor Name Sensitivity 

Operating 
Principle 

Measurement 
Range 

Units 

1 Smoke combustible gas, smoke electrochemical 300 -10,000 ppm 

2 Alcohol alcohol electrochemical 0.04 - 4 mg/L 

3 Hydrocarbon 1 methane, propane, butane electrochemical 300 -10,000 ppm 

4 Hydrocarbon 2 liquified petroleum, butane, propane, LPG electrochemical 300 - 10,000 ppm 

5 Hydrogen H2 electrochemical 100 - 1,000 ppm 

6 Natural Gas methane electrochemical < 10,000 ppm 

7 CO 1 CO electrochemical 0 - 10,000 ppm 

8 VOCs air contaminants, VOCs, odorous gases metal oxide sensor not specified ppm 

9 Dust aerosol optical 0.1 - 0.5 mg/m3 

10 Humidity H2O electrochemical 2000 ppm 

11 CO2 1 CO2 electrochemical 2000 ppm 

12 IAQ cooking odors, pollutants, smoke electrochemical not specified ppm 

13 CO2 2 CO2 electrochemical 5000 ppm 

14 CO 2 CO electrochemical 5000 ppm 

 490 
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Appendix B. Summary of important experimental information. 491 

EXP Ignition 
Pan Type and Size 

(cm) 
Food Type and Amount 

Burner Type and 

Size 

Hood 

Flow 
Foil Surround 

1 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

2 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

3 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

4 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

5 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

6 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

7 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

8 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

9 Yes Cast Iron, 20 Canola Oil, 100mL Electric, Small High No 

10 Yes Aluminum, 20  Canola Oil, 50mL Electric, Small High Yes 

11 Yes Multi-layered, 20  Canola Oil, 50mL Electric, Small High Yes 

12 Yes Stainless Steel, 20  Canola Oil, 50mL Electric, Small High Yes 

13 Yes Cast Iron, 20  Canola Oil, 200mL Electric, Small High Yes 

14 Yes Cast Iron, 20  Canola Oil, 50mL Electric, Big High Yes 

15 Yes Cast Iron, 25 Canola Oil, 100mL Electric, Big High Yes  

16 No Aluminum, 20  Corn Oil, 50mL Electric, Small High No 

17 Yes Aluminum, 20  Corn Oil, 50mL Electric, Small High No 

18 Yes Cast Iron, 20 Corn Oil, 50mL Electric, Small High No 

19 Yes Cast Iron, 25 Corn Oil, 100mL Electric, Big High Yes  

20 Yes Cast Iron, 20 Corn Oil, 50mL Electric, Small High Yes  

21 Yes Cast Iron, 20 Soy Oil, 50mL Electric, Small High Yes 

22 Yes Cast Iron, 25 Soy Oil, 100mL Electric, Big High Yes  

23 Yes Cast Iron, 20 Olive Oil, 50mL Electric, Small High Yes 

24 Yes Cast Iron, 25 Olive Oil, 100mL Electric, Big High Yes  

25 Yes Cast Iron, 25 Sunflower Oil, 100mL Electric, Big High Yes  

26 Yes Cast Iron, 20 Sunflower Oil, 50mL Electric, Small High Yes 

27 Yes Cast Iron, 20 Butter, 45.68g Electric, Small High Yes 

28 No Broiler Pan Hamburger, 1.14kg Oven High NA 

30 No Cast Iron, 25 Hamburger, 1.14kg Electric, Big High Yes  

31 Yes Cast Iron, 20 
Salmon, 18oz & Butter 

42.5g 
Electric, Small High Yes 

32 No Cast Iron, 25 
Salmon, 2.8oz & Butter 

85.1g 
Electric, Big High Yes  

33 No Cast Iron, 20 Water, 50mL Electric, Small High Yes 

34 No NA NA Electric, Big High NA 

35 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small High No 

36 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small Medium No 

37 No Cast Iron, 20 Canola Oil, 50mL Electric, Small Medium No 

38 No Aluminum, 20 Canola Oil, 50mL Electric, Small Medium No 

39 No 
Cast Iron, 20 & 
Aluminum, 20 

Canola Oil, 50mL & 
Canola Oil, 50mL 

Electric, Big & 
Electric, Small  

Medium No 

40 No Cast Iron, 20 Canola Oil, 50mL Electric, Small Off No 

41 No Broiler Pan Hamburger, 1.14kg Oven High NA 
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EXP Ignition 
Pan Type and Size 

(cm) 
Food Type and Amount 

Burner Type and 

Size 

Hood 

Flow 
Foil Surround 

42 No Cast Iron, 20 
Salmon, 18oz & Butter 

42.4g 
Electric, Small High No 

43 No Cast Iron, 20 
Chicken legs, 2 pieces & 

Canola Oil, 200mL 
Electric, Small High No 

44 Yes Cast Iron, 25 
French fries, 223.3g & 

Canola Oil, 500mL 
Electric, Big High No 

45 No Cast Iron, 25 Bacon, 228g Electric, Big Medium No 

46 Yes Cast Iron, 20 Bacon, 110g Electric, Small Medium No 

47 No Cast Iron, 25 Hamburger, 1.14kg Electric, Big Medium No 

48 Yes 
Cast Iron, 20 & Cast 

Iron, 25 
Canola Oil, 50mL & 
Canola Oil, 100mL 

Electric, Big & 
Electric, Small  

High No 

49 Yes 
Cast Iron, 20 & Cast 

Iron, 25 

Canola Oil, 50mL & 

Canola Oil, 100mL 

Electric, Big & 

Electric, Small  
High No 

50 Yes 
Cast Iron, 20 & Cast 

Iron, 25 

Canola Oil, 50mL & 

Canola Oil, 100mL 

Electric, Big & 

Electric, Small  
High No 

51 Yes Cast Iron, 20 Canola Oil, 50mL Electric, Small Low No 

52 No NA NA Gas, Big Medium No 

53 No Cast Iron, 20 Canola Oil, 50mL Gas, Medium Medium No 

54 Yes Cast Iron, 25 Canola Oil, 100mL Gas, Big Medium No 

55 No Cast Iron, 25 NA Gas, Big Medium No 

56 Yes Cast Iron, 25 Canola Oil, 100mL Gas, Big Medium No 

57 Yes Cast Iron, 20 Canola Oil, 50mL Gas, Big Medium No 

58 Yes Cast Iron, 25 Canola Oil, 100mL Gas, Big Medium No 

59 No NA NA Gas, Big Medium No 

60 No 
Cast Iron, 20 & Cast 

Iron, 25 

Canola Oil, 50mL & 

Canola Oil, 100mL 

Gas, Big & Gas, 

Medium  
Medium No 

 492 

It should be noted that all sensor data listed in this appendix can be found at 493 

https://doi.org/10.18434/M32171.  494 

https://doi.org/10.18434/M32171
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Appendix C. Basic Concept for Support Vector Machine, Decision Tree, and Random 495 

Forest. 496 

Machine learning (ML) algorithms have been widely used for multi-class classification problems 497 
in various fields. Based on recent literature [22-25], it has been demonstrated that support vector 498 
machine (SVM), decision tree (DT), and random forest (RT) have the capabilities to handle 499 
complex time series data with multi-dimensional feature vectors. Guidelines are lacking for the 500 

use of ML algorithms in classification problems involving time series data in fire research, and 501 
the performance for these three ML algorithms is unknown. Therefore, SVM, DT, and RF will 502 
be used for the development of classification models for prediction of fire hazards. Comparing 503 
the results obtained from the different models can serve as a sanity check for the performance of 504 
each model. In the next subsection, the basic concepts for SVM, DT, and RT will be presented. 505 

Readers can refer to the following references [26-28] for detailed descriptions of the 506 
mathematical formulation for each algorithm.   507 

 508 
Support Vector Machine (SVM) [26] 509 

SVM is a classifier that finds a decision boundary, known as a hyperplane, to separate instances 510 
into two classes. The algorithm maximizes the constrained margin such that the distance between 511 
the instances in different classes is optimized to achieve the greatest model generalizability. For 512 

example, given a training dataset 𝑇 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛)} , which can be linearly 513 

separated, the hyperplane denoted as 𝑝 can be written as: 514 

 515 
 𝑤 • 𝑋 + 𝑏 = 0 (C1) 

 516 
 517 

where 𝑋𝑛 is the sample of 𝑛𝑡ℎ instance, and 𝑦𝑛 is the class label. 𝑤 is the weight of the 518 

hyperplane, and 𝑏 is the bias of the hyperplane. Based on the definition provided in [26], the 519 
distance between the instances for different classes is: 520 
 521 

 
𝑑 =  min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
) (C2) 

 522 

where ‖𝑤‖ is norm of 𝑤. For SVM, the distance is known as margin. Therefore, SVM 523 
determines the hyperplane with the largest margin by solving the optimization problem:  524 

 525 
 

arg max
𝑤,𝑏

( min
𝑖=1,2,…,𝑛

𝑦𝑖(
𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
)) (C3) 

 526 

For real-life applications, fire data are often more complex and not linearly separable. In order to 527 
overcome this numerical difficulty, there are two treatments. The first treatment is called the 528 
“kernel trick” [26], which commonly involves four nonlinear kernel functions: 1) polynomial 529 
kernel, 2) Gaussian kernel, 3) radial basis function, and 4) sigmoid kernel. The use of a kernel 530 
function allows the transformation of data into a higher dimensional space such that a hyperplane 531 

exists separating the instances 𝑋𝑛 for different classes. The second treatment is introducing a 532 

regularization or slack variable. With the implementation of the regularization variable, a small 533 
proportion of the data are ignored, and misclassification is allowed. Although there is trade-off 534 
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for use of the regularization variable treatment, it generally helps to avoid over-fitting and to 535 

provide a more generalized model.  536 
 537 

Decision Tree (DT) [27] 538 

DT builds classification models in the form of a tree structure. A typical DT is composed of a 539 
root node, internal nodes, edges, and leaves. The root node represents the entire population. 540 
Internal nodes represent partitioning or splitting conditions, which correspond to a feature vector. 541 
Edges can be a specific value or range of values for the splitting condition of the feature. The 542 
leaves represent the terminal nodes of a tree with class labels. The hierarchical nature of the 543 

algorithm provides detailed information of how a decision is being made. As compared to SVM, 544 
DT is more transparent, and the results are easier to interpret. 545 
 546 

Given the aforementioned training dataset 𝑇 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛)}, the formulation 547 

of a DT involves selecting optimal splitting features. The process starts by splitting the 548 

dependent feature, or root node, into binary pieces, where the child nodes have less entropy than 549 
the parent node. If the sample is completely homogeneous the entropy is zero, and if the sample 550 

is equally divided the entropy is one. Mathematically, entropy is defined as: 551 
 552 
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑃𝑘𝑙𝑜𝑔𝑃𝑘

𝑘

𝑖=𝑖

 (C4) 

 553 

where 𝑃𝑘 is possibility of the instance belonging to class 𝑘. In general, DT searches through all 554 

candidate splits to find the optimal split that minimizes the resulting entropy of a tree. One 555 

effective split strategy is to always select the feature with largest information gain, 𝐼𝐺: 556 

 557 

 

𝐼𝐺(𝐷𝑝, 𝑓) =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑝) − ∑
𝑁𝑖

𝑁
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑖)

𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒

𝑖

 (C5) 

 558 

where 𝐷𝑝 is the dataset of the parent node with 𝑁 number of samples, 𝑓 is the feature, and 𝐷𝑖 is 559 

the dataset of the 𝑖𝑡ℎ child node with 𝑁𝑖 number of instances. This splitting process is continued 560 

until all the instances at current level are labeled to the appropriate classes. 561 
 562 
Random Forest (RF) [28] 563 

RF is an ensemble learning method for classification. It builds 𝐻 number of classification trees 564 
and provides the prediction of the class of an object based on the averaged results obtained from 565 

each of the trees. Mathematically, after 𝐻 trees are grown, the RF classification predictor is 566 
given as: 567 
 568 
 

𝑓(𝑥) =
1

𝐻
∑ 𝐾(𝑖, 𝑥)

𝐻

𝑖=1
 (C6) 

 569 

where 𝑥 is the input feature. 570 

 571 
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In general, significant effort is usually needed to tune the model to maximize performance. This 572 

process can be accomplished by selecting appropriate hyperparameters, which can be thought of 573 

as the “dials” or “knobs” of a machine learning model. There are several automated tuning 574 
methods, such as grid search, random search, and Bayesian optimization. In this study, the most 575 
basic tuning method, grid search [29], is used. With this technique, we simply build a model for 576 
each possible combination of all the hyperparameter values provided, evaluate each model, and 577 
select the architecture which produces the best results.  578 

 579 
Summary 580 

Table C1 provides the summary of model configurations for the three ML algorithms. For SVM, 581 
the radial basis functions (RBF) kernel function is used. The selection of the kernel function 582 
depends on both the number of input features and the size of the dataset. In this study, there are 583 

up to 12 features and roughly 10000 instances (refer to Table 1). Since the number of samples 584 

from the dataset is much larger than the number of input features, it is suggested that RBF will 585 

have better performance [30]. With the use of the RBF kernel, the two parameters, 𝐶 and 𝛾, must 586 

be considered. The parameter 𝐶 is the regularization parameter or slack variable, and it controls 587 
the trade-off between misclassification of training examples and simplicity of the decision 588 

surface. In general, a low 𝐶 makes the decision surface smooth, while a high 𝐶 aims to classify 589 

all training examples correctly [31]. The parameter 𝛾 defines how much influence a single 590 

training example has on other examples. The larger 𝛾 is, the less influence a single simple will 591 
have. Grid search [29] is used to determine the optimal values for the two parameters.  592 
 593 

Table C1: Summary of model configurations for SVM, DT, and RF. 594 

SVM DT RF 

  Optimal Range Interval 

NA 

  Optimal Range Interval 

C 100 0 - 300 10 
Estimator 10 5 - 100 5 

Gamma (𝛾) 10 0 - 50 1 

 595 
The model configurations for DT and RF are simpler. For DT, the entropy method is used to 596 

measure the quality of a split, but no parameters were needed to be adjusted. For RF, the setting 597 
remains similar except that the optimal number of trees needs to be identified. In theory, the 598 

more trees the better. However, based on results obtained for different number of trees ranging 599 
from 10 to 100 with an interval of 10 trees, the improvement of prediction accuracy with more 600 

trees is negligible (less than 0.1 %). Therefore, the number of trees is set to 10. 601 
 602 

 603 

  604 
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Figure captions 605 

Figure 1. Schematic drawing of experimental setup (not to scale) and detailed view of the sensor 606 
array (in the duct). 607 

Figure 2. Signals for 11 selected sensors and pre-ignition condition for Exp 8. 608 

Figure 3. Comparison of IAQ and VOCs signals for 3 different tests (Exp 8, 46, and 57). 609 

Figure 4. Schematic of moving windows with window size, W, and its corresponding label (the 610 

two sliding windows are not to scale; ti and ti+1 are 4 s apart). 611 

Figure 5. Performance comparison for Exp 8 and Exp 46 on OE and OFE data. 612 

Figure 6. Overall performance on normal/unattended cooking classification for 3 machine 613 
learning models with different moving window size on OE and OFE data. 614 

Figures 7. Performance improvement using the proposed object-oriented approach. 615 

Figure 8. Overall performance on stove type classification for the 3 machine learning models 616 
with different moving window size on OE and OG data. 617 

Figure 9. Overall performance on food type classification for the 3 machine learning models with 618 

different moving window size on OE and OFE data. 619 


