Measurements and Modeling
Thermophysical Properties of Lubricants

M. L. Huber
National Institute of Standards and Technology
Applied Chemicals and Materials Division
325 Broadway
Boulder, CO 80305 USA

Presentation for SAE E-34 Propulsion Lubricants Committee
Tuesday, September 24, 2019
Denver CO
• History
 – 2014 NAVAIR (Naval Air Systems Command) contacted NIST; interested in thermophysical property data for gas turbine engine oil MIL-PRF-23699 (used in most military aircraft and 95% of commercial aircraft)
 • Needed accurate properties to assist in their Modeling and Simulation programs
 – Properties of interest include: viscosity, specific heat, density, thermal conductivity, enthalpy
 • Used software GFSSP (General Fluid System Simulator Program) developed by NASA. Desired ability to incorporate fluid properties for MIL-PRF-23699 into this software.
 – NIST did not have anything available at that time.
• **History**
 – 2015 NIST and NAVAIR entered into an agreement for NIST to provide
 • Highly accurate thermophysical property measurements of 3 pure fluid base stock components (POE5, POE7, POE9).
 • Highly accurate thermophysical property measurements of a fully formulated lubricant meeting MIL-PRF-23699.
 • Thermophysical property model within REFPROP software for a fully formulated lubricant.
 • A mini-course for up to 8 participants on the measurement and modeling of thermophysical properties.
 – 2018 Work completed and Final report submitted to NAVAIR.
Thermophysical Properties of Polyol Ester Lubricants

Thomas J. Bruno
Tara J. Fortin
Marcia L. Huber
Arno Laescke
Eric W. Lennon
Elisabeth Mansfield
Mark O. McIndoe
Stephanie L. Outcalt
Richard A. Perkins
Kimberly N. Umess
Jason A. Widgren

Applied Chemicals and Materials Division
Material Measurement Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8263

August 2019
Measurements Summary

- Completed measurements on 3 pure fluids (POE5, POE7, POE9) and the fully formulated lubricant MIL-PRF-23699
 - Thermal decomposition
 - Compressed liquid density (270 – 470 K, to 50 MPa, vib. tube, unc. <0.15%)
 - Ambient pressure density (278 – 343 K, vib. tube, unc. <0.18%)
 - Sound speed (283 – 423 K, up to 70 MPa, pulse-echo apparatus, unc. < 0.04%)
 - Ambient pressure sound speed (278 – 343 K, time of flight, unc. <0.2%)
 - Ambient pressure C_p (208 – 503 K; DSC method, 2-3 % unc.)
 - Vapor pressure (gas saturation method, POE5 only)
 - Viscosity (275 – 450 K, up to 137 MPa, oscillating piston viscometer, unc. 5-10%)
 - Thermal conductivity (300 – 500 K, up to 69 MPa, transient hot wire apparatus, unc. 0.5%)

- All the gory details in NISTIR 8263
 https://doi.org/10.6028/NIST.IR.8263
 Modeling Summary

- Use density, C_p, sound speed, ρ_{sat} data to develop an equation of state (EOS)
 - Can compute all thermodynamic properties from this equation
- Use viscosity and thermal conductivity data to develop individual correlations for viscosity and thermal conductivity as functions of density and temperature
- Initially tried to develop a “surrogate” fluid model for the lubricant
 - This had worked well in the past for complex fuels such as jet and rocket fuels, and diesel but did not work so well for the lubricant
- Successfully developed a pseudo-pure fluid model for the lubricant
 - EOS coefficients and coefficients for viscosity and thermal conductivity correlations are in the NISTIR 8263
 - Much better way to disseminate results - REFPROP
 - “fluid” files are in the NISTIR 8263 or email us
REFPROP Model https://www.nist.gov/srd/refprop

- **REference Fluid Thermodynamic and Transport PROPerties (NIST23)** sold by NIST Standard Reference Data
 - Contains thermophysical properties of industrially important pure fluids (147 at present) and mixtures (up to 20 components)

- **Easy-to-use computer program**
 - Can provide tables or graphs of properties of fluids
 - Thermodynamic properties (density, sound speed, heat capacity, enthalpy, entropy, boiling point, etc.)
 - Transport and other properties (viscosity and thermal conductivity, surface tension)
 - Easy to add a new “fluid file” for the lubricant MILPRF23699
 - Just place the MILPRF23699.FLD file (a plain text file) in a specific directory where all files of type .FLD reside, then run the program

- **Source code (FORTRAN) included**
- **Can Interface with common applications (Excel, MATLAB, LabView, Python, C/C++, etc.) through wrappers and DLL**
 - Info on wrappers here: https://github.com/usnistgov/REFPROP-wrappers
Results for MIL-PRF-23699

Developed a Helmholtz-form EOS
All thermodynamic properties come from the EOS

\[
\frac{\alpha(\rho, T)}{RT} = \alpha(\delta, \tau) = \alpha^0(\delta, \tau) + \alpha^\tau(\delta, \tau) \quad \delta = \frac{\rho}{\rho_c} \quad \tau = \frac{T_c}{T}.
\]

\[
\alpha^0 = \frac{h_0^0}{RT_c} - \frac{s_0^0}{R} \cdot \left(1 + \ln \frac{\delta \tau_0}{\delta_0 \tau} - \frac{\tau}{R} \int_{\tau_0}^{\tau} \frac{C_p^0}{\tau^2} \, d\tau + \frac{1}{R} \int_{\tau_0}^{\tau} \frac{C_p^0}{\tau} \, d\tau \right).
\]

\[
\alpha^\tau(\delta, \tau) = \sum N_k \delta^d_k \tau^l_k + \sum N_k \delta^d_k \tau^l_k \exp(-\delta^l_k) + \sum N_k \delta^d_k \tau^l_k \exp(-\eta_k (\delta - \varepsilon_k)^2 - \beta_k (\tau - \gamma_k)^2).
\]

Uncertainties:
- density 0.2%
- sound speed 0.1%
- \(C_p\) 0.3%
Note on developing EOS

- Measurements, although seeming comprehensive, do not cover the entire fluid space

- Use a set of constraints during development to ensure appropriate behavior over entire fluid surface

T_c
Results for MIL-PRF-23699: density
Results for MIL-PRF-23699: speed of sound
Results for MIL-PRF-23699: heat capacity

All measurements at ambient pressure (0.083 MPa)
Results for MIL-PRF-23699: thermal conductivity

\[\lambda(T, \rho) = \lambda^0(T) + \Delta \lambda^{\text{res}}(T, \rho) + \lambda^{\text{crit}}(T, \rho), \]

\[\lambda^0(T) = \sum_{k=0}^{n} \alpha_k T^k \]

\[\Delta \lambda^{\text{res}}(T, \rho) = \sum_{l=1}^{3} (\beta_{1,l} + \beta_{2,l}(T/T_c))(\rho/\rho_c)^l \]

\[\lambda^{\text{crit}}(T, \rho) \] found with generalized method \(f(T_c, \rho_c, \rho_c, \text{MW}, \omega) \)
Results for MIL-PRF-23699: viscosity

\[\eta(\rho, T) = \eta_0(T) + \Delta \eta(\rho, T) + \Delta \eta_c(\rho, T) \]

\(\eta_0(T) \) found from method of Chung et al. (1988)

\[\Delta \eta(\rho, T) = (a_1 \Gamma + a_2 \Gamma^2 + a_3 \Gamma^3 + a_4 \Gamma^{11}) \sqrt{T} \rho_r^{2/3} \]

\(\Gamma = \rho_3^{3.36}/T \)

\(\Delta \eta_c(\rho, T) \) set to zero
Results for MIL-PRF-23699: PH chart generated by REFPROP
Results for MIL-PRF-23699: tables generated by REFPROP

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Pressure (MPa)</th>
<th>Density (kg/m³)</th>
<th>Enthalpy (kJ/kg)</th>
<th>Entropy (kJ/kg-K)</th>
<th>Cp (kJ/kg-K)</th>
<th>Sound Speed (m/s)</th>
<th>Therm. Cond. (W/m-K)</th>
<th>Viscosity (mPa-s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>315.02</td>
<td>79.941</td>
<td>1018.8</td>
<td>-998.87</td>
<td>-2.0982</td>
<td>1.8429</td>
<td>1618.9</td>
<td>0.16236</td>
<td>75.570</td>
</tr>
<tr>
<td>315.02</td>
<td>69.898</td>
<td>1014.2</td>
<td>-1006.8</td>
<td>-2.0920</td>
<td>1.8417</td>
<td>1585.8</td>
<td>0.16033</td>
<td>66.052</td>
</tr>
<tr>
<td>315.01</td>
<td>59.865</td>
<td>1009.4</td>
<td>-1014.7</td>
<td>-2.0856</td>
<td>1.8407</td>
<td>1551.5</td>
<td>0.15824</td>
<td>57.548</td>
</tr>
<tr>
<td>315.00</td>
<td>49.827</td>
<td>1004.4</td>
<td>-1022.6</td>
<td>-2.0791</td>
<td>1.8399</td>
<td>1515.7</td>
<td>0.15606</td>
<td>49.937</td>
</tr>
<tr>
<td>315.01</td>
<td>39.787</td>
<td>999.12</td>
<td>-1030.5</td>
<td>-2.0722</td>
<td>1.8394</td>
<td>1478.2</td>
<td>0.15378</td>
<td>43.113</td>
</tr>
<tr>
<td>315.01</td>
<td>29.759</td>
<td>993.56</td>
<td>-1038.3</td>
<td>-2.0651</td>
<td>1.8391</td>
<td>1438.9</td>
<td>0.15140</td>
<td>37.079</td>
</tr>
<tr>
<td>315.02</td>
<td>19.737</td>
<td>987.66</td>
<td>-1046.1</td>
<td>-2.0577</td>
<td>1.8393</td>
<td>1397.6</td>
<td>0.14889</td>
<td>31.726</td>
</tr>
<tr>
<td>300.01</td>
<td>0.051000</td>
<td>986.76</td>
<td>-1088.6</td>
<td>-2.1311</td>
<td>1.8010</td>
<td>1358.2</td>
<td>0.14580</td>
<td>44.160</td>
</tr>
<tr>
<td>300.02</td>
<td>9.7320</td>
<td>992.84</td>
<td>-1081.1</td>
<td>-2.1388</td>
<td>1.8001</td>
<td>1401.4</td>
<td>0.14382</td>
<td>52.491</td>
</tr>
<tr>
<td>300.03</td>
<td>19.737</td>
<td>998.75</td>
<td>-1073.3</td>
<td>-2.1464</td>
<td>1.7998</td>
<td>1443.6</td>
<td>0.15078</td>
<td>62.320</td>
</tr>
<tr>
<td>300.04</td>
<td>29.740</td>
<td>1004.3</td>
<td>-1065.5</td>
<td>-2.1537</td>
<td>1.7998</td>
<td>1483.6</td>
<td>0.15312</td>
<td>73.505</td>
</tr>
<tr>
<td>300.04</td>
<td>39.759</td>
<td>1009.6</td>
<td>-1057.7</td>
<td>-2.1608</td>
<td>1.8002</td>
<td>1521.7</td>
<td>0.15535</td>
<td>86.240</td>
</tr>
<tr>
<td>310.09</td>
<td>0.030000</td>
<td>978.77</td>
<td>-1070.3</td>
<td>-2.0711</td>
<td>1.8279</td>
<td>1324.9</td>
<td>0.14429</td>
<td>28.114</td>
</tr>
<tr>
<td>310.08</td>
<td>9.7170</td>
<td>985.13</td>
<td>-1062.9</td>
<td>-2.0790</td>
<td>1.8267</td>
<td>1369.3</td>
<td>0.14694</td>
<td>33.178</td>
</tr>
<tr>
<td>310.08</td>
<td>19.721</td>
<td>991.28</td>
<td>-1055.1</td>
<td>-2.0866</td>
<td>1.8262</td>
<td>1412.4</td>
<td>0.14952</td>
<td>39.115</td>
</tr>
<tr>
<td>310.07</td>
<td>29.725</td>
<td>997.07</td>
<td>-1047.4</td>
<td>-2.0940</td>
<td>1.8260</td>
<td>1453.3</td>
<td>0.15196</td>
<td>45.881</td>
</tr>
<tr>
<td>310.07</td>
<td>39.748</td>
<td>1002.5</td>
<td>-1039.5</td>
<td>-2.1011</td>
<td>1.8263</td>
<td>1492.2</td>
<td>0.15430</td>
<td>53.533</td>
</tr>
<tr>
<td>310.08</td>
<td>49.776</td>
<td>1007.7</td>
<td>-1031.7</td>
<td>-2.1079</td>
<td>1.8269</td>
<td>1529.3</td>
<td>0.15653</td>
<td>62.136</td>
</tr>
<tr>
<td>310.07</td>
<td>59.807</td>
<td>1012.7</td>
<td>-1023.8</td>
<td>-2.1146</td>
<td>1.8277</td>
<td>1564.9</td>
<td>0.15867</td>
<td>71.862</td>
</tr>
<tr>
<td>310.08</td>
<td>69.868</td>
<td>1017.4</td>
<td>-1015.9</td>
<td>-2.1210</td>
<td>1.8288</td>
<td>1599.1</td>
<td>0.16073</td>
<td>82.712</td>
</tr>
<tr>
<td>310.08</td>
<td>79.917</td>
<td>1021.9</td>
<td>-1008.0</td>
<td>-2.1272</td>
<td>1.8300</td>
<td>1632.0</td>
<td>0.16271</td>
<td>94.839</td>
</tr>
<tr>
<td>290.04</td>
<td>0.064000</td>
<td>994.74</td>
<td>-1106.4</td>
<td>-2.1915</td>
<td>1.7750</td>
<td>1392.0</td>
<td>0.14725</td>
<td>72.968</td>
</tr>
<tr>
<td>290.05</td>
<td>4.7480</td>
<td>997.61</td>
<td>-1102.8</td>
<td>-2.1953</td>
<td>1.7747</td>
<td>1412.7</td>
<td>0.14843</td>
<td>79.603</td>
</tr>
</tbody>
</table>
Conclusions

• We developed, based on our experimental measurements, models for the thermophysical properties of MIL-PRF-23699 (and 3 pure POE’s)
 • including ρ, density, T, heat capacity, sound speed, vapor pressure, enthalpy, entropy, viscosity, thermal conductivity
• Models implemented in easy-to-use computer program REFPROP
• Details and REFPROP-compatible files in freely available publication
 https://doi.org/10.6028/NIST.IR.8263