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ABSTRACT
Industry desires a digital thread of information that aligns as-designed, as-planned,
as-executed, and as-inspected viewpoints. An experiment was conducted to test se-
lected open data standards’ ability to integrate the lifecycle stages of engineering
design, manufacturing, and quality assurance through a thorough implementation of
a small scale model-based enterprise. The research team set out to answer: from de-
sign, through production, and final inspections, what are the hurdles that a manufac-
turer would face during the development of a fully linked and integrated information
chain? The research team was not able to fully link all the required information, but
value for industry was still identified. This paper presents the results of the experi-
ment, provides guidance on how to overcome or mitigate identified challenges, and
discusses the benefits or incentives to be gained from tracing or linking information
through multiple stages a product lifecycle.
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1. Introduction1

To better understand and address the challenges faced in linking all stages of a man-2

ufacturing and design process, an investigative fabrication process was designed and3

enacted as part of a collaboration between the National Institute of Standards and4

Technology (NIST) and The Manufacturing Technology Centre (MTC). This collabo-5

ration sought to test selected open standards’ ability to integrate the lifecycle stages of6

engineering design, manufacturing, and quality assurance through a thorough imple-7

mentation of a small scale model-based enterprise (MBE). Lessons learned through this8

exercise have been recorded and digested in such a manner as to both inform further9

development of standards as well as encourage the adoption of the most useful and ef-10

fective existing standards. In this paper, the primary standards of interest are ASME11

Y14.41, ASME Y14.47, ISO 16792, ISO 10303-242, MTConnect, and ANSI/DMSC12

Quality Information Framework (QIF). The activities and results of the collaboration13

CONTACT T. D. Hedberg Jr. Current affiliation: Applied Research Laboratory for Intelligence and Security,

University of Maryland. Email: thedberg@umd.edu



are described in this paper. The work of this collaboration builds upon past work and14

introduces novel contributions with studying a standards-based information integra-15

tion from multiple sources using automatic data-alignment strategies.16

At the onset, the most fundamental question and goal of this work was to under-17

stand the capabilities and limitations of implementing a standards-based information18

integration throughout the lifecycle of a product. From design, through production,19

and final inspections, what are the hurdles that a manufacturer would face during the20

development of a fully linked and integrated information chain? How can these obsta-21

cles be overcome or mitigated? What benefits or incentives can be gained from tracing22

or linking information through multiple stages of a product lifecycle – thus, creating23

a “digital thread” across the lifecycle? A digital thread is an integrated information24

flow that connects all the phases of the product lifecycle using accepted authoritative25

data sources (Kraft 2016; Hedberg Jr et al. 2016; Wardhani and Xu 2016). The digital26

thread focuses on integrating all phases of the product lifecycle for making efficient and27

effective measurements of the lifecycle in support of data-driven methods (Hedberg,28

Bajaj, and Camelio 2020).29

While we explored the research questions around the goals of this work, the results of30

our research point to the reality that a standards-based information integration in not31

achievable today because the standards do not data-alignment strategies without sig-32

nificant human intervention. Our results show that the popular data standards used in33

industry do not support automatic data alignment. Therefore, instead of documenting34

implementation schemes, we provide recommendations to the Standards Development35

Organizations (SDOs) for enhancing the standards that we expect would enable auto-36

matic data-alignment capabilities. We also expect that once automatic data-alignment37

capabilities are realized, researchers should then be able to discover methods for im-38

plementing and transferring standards-based information integration to practice.39

2. Background40

During a survey of the current state of the industry, as well as first-hand experience41

during the exemplar manufacturing collaboration designed for this work, we found that42

the alignment of information across lifecycle stages is primarily accomplished with in-43

tense amounts of human labor, if at all. At the date of this publication, there is still44

not a broadly applicable process or tool that allows for the automation of information45

alignment and cross-stage analysis that can link multi-stage information. An example46

of such an information trace would be to correlate as-measured data (QIF) backwards47

through as-fabricated (MTConnect), as-planned (NC Code), and as-designed (STEP)48

data to aid in determining the source of production defects (e.g., design flaw, equip-49

ment degradation). Given this lack of standardized method for linking between the50

manufacturing process stages, this paper describes our experiment exploring avenues51

for automating the process and provides recommendations and requirements for inte-52

grating this information.53

2.1. Manufacturing Standards54

Throughout the lifecycle of a manufactured product, there are a plethora of standards55

that information and data associated with that product are subject to. This makes56

the integration of such data exceedingly challenging as few of these standards were57

created with interoperablity in mind, instead each being designed for its own specific58
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purpose. This section reviews many of the standards relevant to lifecycle product59

production. In order, the review includes: ASME Y14.41, ISO 16792, ISO 10303-24260

(STEP), MTConnect, and ANSI/DMSC QIF. It should be noted that this is not61

a complete list of standards applicable to a computer-numerically controlled (CNC)62

manufacturing process; many different standards could have been used in addition or63

as an alternative to those reviewed here.64

2.1.1. Standards for Design Requirements in Digital Drawings65

With the uptake of computer-based design software, the American Society of Mechan-66

ical Engineers (ASME) released ASME Y14.41 to define requirements of model-based67

product definition in computer-aided design (CAD) software (American Society of68

Mechanical Engineers 2019). Focusing primarily on geometric dimensioning and toler-69

ancing, ASME Y14.41 presents methods for organizing product definition data within a70

CAD file and was created primarily to allow CAD information to become an additional71

resource for manufacturing and inspection criteria. Where applicable, it recommends72

annotating the model with design requirements in three-dimensional (3D) space near73

the associated geometry, or in some cases, additionally using an engineering drawing74

graphic sheet to indicate requirements.75

The ASME Y14.41 is a trusted standard of industrial practices for a company to76

best utilize digital CAD information. This standard allows for cross interpretation77

between design, machining, and inspection aspects of the product lifecycle. This stan-78

dard became the basis for the international standard ISO 16792:2006 (International79

Standards Organization 2015).80

Like the ASME standard, ISO 16792 prescribed requirements for documenting 3D81

digital models. The rules include requirements for preparation, revision, and presenta-82

tion of digital product definition data. Many of the explicit requirements address ele-83

ments that are significantly different, or not included in older standards for drawings.84

Our model-based definition (MBD) data made use of syntactic notes and annotations85

connected to semantic geometric dimensions and tolerances (GD&T) and 3D anno-86

tation views or presentation states as is mandated by the ASME and International87

Standards Organization (ISO) standards.88

An additional document, ASME Y14.46 (American Society of Mechanical Engineers89

2017), is a draft standard for trial use and seeks to extend the design rules to describe90

complex parts, and features unique to additive manufacturing.91

2.1.2. Standards for Design Information92

The international standard for describing product data in a computer interpretable93

manner independent of the construction software is defined in ISO 10303-242 (In-94

ternational Standards Organization 2014). STandard for the Exchange of Product95

Model Data (STEP) is designed for exchanging files between software used at different96

stages of the product lifecycle, including: CAD, computer-aided engineering (CAE),97

computer-aided manufacturing (CAM), computer-aided inspection (CAI), product-98

data management (PDM) / enterprise data modeling and other computer-aided tech-99

nologies (CAx) systems.100

In this project we used the STandard for the Exchange of Product Model Data101

Application Protocol 242 (STEP AP242) standard to drive the CAM process. We102

started with native SolidWorks CAD files and created derivative STEP AP242 models103

from this. The same native format was also used to create QIF files which were used104
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Figure 1. Overview of basic MTConnect architecture; the standard only specifies the output of the Agent as
highlighted by the red-dashed box (after Sobel (2015)).

in the measurement parts of the workflow.105

2.1.3. Standards for Manufacturing Information106

MTConnect is an American National Standards Institute (ANSI) accredited open,107

read-only, and extensible data-interoperability standard that offers a vocabulary and108

relevant semantics for manufacturing equipment to provide structured, contextualized109

data with no proprietary format (MTConnect Institute 2018). Figure 1 shows the basic110

MTConnect architecture. An Adapter is an optional piece of software or hardware that111

collects and filters data from a device and publishes this data to an Agent. An Agent is112

a Hypertext Transfer Protocol (HTTP) server that provides a Representational State113

Transfer (RESTful) interface for a client application. It organizes and manages data114

from one or more adapters and creates and publishes a response document based on115

requests from a client.116

During the work presented in this paper, we used the MTConnect standard to117

extract data from the CNC machine to capture key manufacturing parameters. This118

standard enables conversion of raw machine data to a machine-readable format for119

further analytics to be carried out. Investigations have been reported into applying the120

standard to large scale production facilities including aircraft production (Venkatesh121

et al. 2016).122

2.1.4. Standards for Quality and Inspection Information123

QIF is an ANSI accredited that aims to enable seamless flow of information within124

computer-aided quality measurement systems (Digital Metrology Standards Consor-125

tium 2018). QIF supports metrology data from all areas of the process chain, from126

design, through inspection and measurement resource planning, to execution, results127

evaluation, and statistical analysis.128

As with the MTConnect standard, QIF files are based on Extensible Markup Lan-129

guage (XML) enabling them to be integrated easily with other applications, including130

Internet and network-based applications. The QIF standard is used throughout this131

experiment to govern the flow of information from the design through to measurement132

stage. An illustration of data flow taken from the QIF standard documentation is133

shown in Figure 2 (Digital Metrology Standards Consortium 2018).134

Unlike many other standards considered, the QIF XML schema used to define the135

file formats are considered part of the standard. Therefore, an implementation of this136

standard not using the schema fully would not be conforming to the standard. This is137

of particular relevance for standardization, interoperability, and automation tools. It138

means that the difficulties experienced with the integration of other data standards is139

less likely to affect the QIF standard. As more companies adhere to this standard, the140
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Figure 2. Overview of basic QIF information architecture; around the QIF core library are the six QIF
application-specific information models, Model-Based Definition (MBD), Plans, Resources, Rules, Results, and

Statistics (reproduced from Digital Metrology Standards Consortium (2018)).

market will see a reduction in variability of commands that exists between different141

equipment vendors allowing for more concise and broadly applicable software solutions142

to be developed.143

2.2. Technology for Manufacturing Integrating Information144

There are many existing technologies that aim to facilitate or augment the integra-145

tion of production lifecycle information. Investigations into these technologies showed146

that a majority of off-the-shelf products have limited scope and are not structured to147

enable automated cross-domain (e.g., design, fabrication, inspection) data alignment.148

As additionally shown through our work on this paper, significant effort is required to149

manually align data. Our efforts revealed both strengths and weaknesses of the exist-150

ing technologies in extended previous work and automate some level of data alignment151

to enable information mining and data analytics.152

2.2.1. Model-Based Enterprise153

Information technology advances (e.g., data analytics, service-oriented architectures,154

and networking), coupled with operational technology (e.g., hardware and software155

for sensing, monitoring, and control of product and processes), have enabled a digital156

revolution promising to reduce costs, improve productivity, and increase output quality157

(Childerhouse and Towill 2011; Wu et al. 2013). These two facts are motivation for why158

the manufacturing sector of industry is working to connect each phase and function159

of the product lifecycle. We recognize that the problems and promises are not novel,160

but rather emerging technologies are now available that enable novel approaches to161

implement solutions that may have been ahead of their time (Mckay 2003; Wang, Ong,162
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and Nee 2018). The advances information and operation technology have coalesced into163

an effort being called MBE.164

MBE is represented be several constituent components. A workshop titled “MBx:165

Peeling Back the Layers of MBE” conducted during the 2016 MBE Summit (Carlisle166

2016), set out to define several critical components of the MBE that included design,167

engineering analysis, manufacturing, systems engineering, sustainment, testing, evalu-168

ation, and quality. Our work presented in this paper was most concerned with MBD,169

model-based manufacturing (MBM), and model-based quality (MBQ). The following170

are the proposed definitions from the workshop for MBD, MBM, and MBQ:171

MBD: The authoritative digital-data set based on a 3D geometric model that defines172

the end-item requirements for a product.173

MBM: An environment [in that] the Design Data can be consumed by the value174

stream to plan, produce, fabricate, assemble, inspect and certify, [and] maintain175

and sustain parts and assemblies to meet requirements.176

MBQ: The conformance of the physical product and process to the requirements of177

digital product definitions and process specifications using measurement plan-178

ning, execution, and evaluation in combination with 3D annotated models and179

associated data.180

The MBD, MBM, and MBQ domains have different data requirements, such as the181

identification of shape, features, and characteristics. MBE requires adopting model-182

based data standards to effectively integrate the different kinds of data for efficient183

reuse and exchange between product-lifecycle phases (Hedberg Jr et al. 2017a). How-184

ever, traceability of requirements and activities is paramount to ensuring effective func-185

tioning supply chains (Khabbazi et al. 2011). Moreover, data interoperability between186

design activities (e.g. product and assembly design) and manufacturing activities (e.g.187

fabrication, assembly, and quality assurance) must be consistent (Hedberg Jr et al.188

2017b). Hedberg Jr et al. (2017b) recommend using ISO 10303-242 (STEP AP242)189

(International Standards Organization 2014) to represent the as-designed configuration190

of products and MTConnect and QIF to represent the as-fabricated and as-measured191

configurations. Aligning these three representations would enable quicker and easier192

knowledge building based off experience in the product lifecycle. The goal of our work193

here is to evaluate the capability for integrating various types of standards-based data194

available in the MBD, MBM, and MBQ domains – particularly MTConnect and QIF.195

2.2.2. Data Mining196

A well annotated and aligned set of integrated data is necessary for extracting vi-197

tal information that might otherwise be inaccessible or impractical to synthesize. For198

example, using appropriate techniques, integrated data could be used to obtain knowl-199

edge of the factors influencing the quality of production parts. This in turn could be200

translated into actionable information or policies to improve quality and or produc-201

tion efficiency. The capture and contextualization of such actionable information is202

directly linked to data mining across the lifecycle stages to produce information about203

a process.204

Several studies (Fischer et al. 2015; Hedberg Jr et al. 2016; Trainer et al. 2016; Hard-205

wick and Sobel 2017) investigated integrating MBE components and/or standards-206

based data. Hedberg Jr et al. (2016) compared paper-based processes to model-based207

processes and identified a potential savings of 75 percent in cycle-time. Fischer et al.208

(2015) and Trainer et al. (2016) also compared paper-based processes to model-based209
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processes using STEP AP242 to study the return-on-investment benefits and develop210

tools for closing some gaps identified by Hedberg Jr et al. (2016). Lastly, Hardwick211

and Sobel (2017) automated measurement of producing a product using semantic212

tolerances, requirements sent using STEP AP242, measurements streamed using MT-213

Connect, and results returned using QIF.214

To utilize all these varied data sources and structures, robust algorithms must be215

identified and tested. A variety of data mining techniques that have been identified as216

strong candidates for use in manufacturing include clustering, classification, regression,217

and decision-tree learning (He et al. 2009; Liang 2015). Case in point, decision-trees218

have been shown to be effective in improving yield in the manufacture of semicon-219

ductor devices (Chien, Wang, and Cheng 2007) and for drawing qualitative links be-220

tween manufacturing parameters and the geometrical forms of drilled holes (Mason,221

Rahman, and Maw 2017). Recently the use of regression-tree learning has also been222

demonstrated as an effective technique for predicting part quality (Maw, Whicker,223

and Rahman 2017). These techniques may be feasible for optimizing the accuracy of224

features on the part in our and future investigations.225

3. Methodology226

The goal of this work is to explore and quantify the capabilities of integrating data227

and information between design, manufacturing, and inspection. As part of this, a228

secondary effort focused on identifying key process variables for determining optimal229

manufacturing parameters. MTC played the role of an original equipment manufac-230

turer (OEM) and NIST played the role of a contracted design house and manufacturer.231

The test case was an assembly designed with input from both parties and was man-232

ufactured at NIST. Each component of the assembly also underwent a first-article233

inspection and 100 percent inspections at NIST. Data was collected at each step in234

the workflow – STEP AP242 and NC Code sheets for design information, MTConnect235

from manufacturing data, and QIF for quality data. The assembly components were236

then shipped to MTC, where an incoming and receiving inspection was conducted. The237

aim in this process was to determine the ability to effectively and efficiently integrate238

the data collected throughout this process.239

The success criteria was identified as the ability to automatically align the features240

and characteristics across each data set. ASME Y14.5-2009 (American Society of Me-241

chanical Engineers 2009) standard defines a feature as “a physical portion of a part242

such as a surface, pin, hole, or slot or its representation on drawings in models, or in243

digital data files.” ANSI/QIF Part 1-2015 (Digital Metrology Standards Consortium244

2018) standard defines a characteristic as “a control placed on an element of a feature245

such as its size, location or form, which may be a specification limit, a nominal with246

tolerance, a feature control frame, or some other numerical or non-numerical control.”247

A design of experiments (DOE) is leveraged to induce variability in one of the parts in248

a structure. The DOE should enable linking any variability to its source. Any linking249

requires aligning data about the features and characteristics.250

Our work builds on the previous studies, but includes some novel additions. First,251

our work is the first investigation that used an assembly in the experiments. Reviewing252

the literature, all past model-based studies used single components as their test cases.253

Studying an assembly introduces a more realistic level of product complexity. Indus-254

try applies tolerances to features in definition of product components because those255

components must fit together in an assembly to realize the product. Studying only256
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the data of a single component does not provide the full context in the overall quality257

of the assembly. Therefore, industry must review the quality of all components of a258

product and the relationship of each component to the assembly for understanding259

the quality of the product.260

Second, our study tests data integration from multiple sources. The design and QIF261

data come from multiple vendors, suppliers, and tools. Collecting and integrating data262

from multiple sources is closer to a real MBE supply chain. More closely matching a263

real supply chain is a significant enhancement over previous work.264

3.1. Design of the Digital Assembly Definition265

Test cases from the NIST “MBE PMI Validation and Conformance Testing Project”266

(Lipman et al. 2017) were the starting point for the design of the assembly used in267

our study. Specifically, we used Fully-Toleranced Test Cases (FTC) 7 (box), 8 (lid),268

and 9 (mounting plate) (Lipman 2017). The decision to start with the FTC models269

was because these models had already undergone expert review and were designed to270

be an assembly. This minimized the time required to develop a valid assembly for our271

work.272

While we started with three models, we did make a few changes to ensure the273

assembly would meet all the needs of our study. First, we scaled down the original size274

of the designs to reduce the cost of the manufacturing step by allowing us to utilize275

a smaller 3-axis mill that had time available in its production schedule. Second, we276

added some additional features to all of the parts to increase the diversity of the types277

of characteristics. Lastly, we converted each design to standard metric units since the278

original designs used imperial units.279

The complete assembly is comprised of the box, lid, and mounting plate, derived280

from the FTCs, an acrylic window to mount in the lid, and standard hardware procured281

through a third-party. All data from the work presented here, including the CAD282

models, are available in a published data set from Hedberg Jr et al. (2018).283

No two-dimensional (2D) drawings were produced for the assembly or its compo-284

nents. All the product definition was included as product and manufacturing infor-285

mation (PMI) in the 3D CAD model. PMI included the typical information included286

historically on a 2D drawing, including dimensions, tolerances, and notes. PMI, in287

models, also includes meta-data stored as model attributes. Embedding the PMI in288

the CAD model enables shorter planning cycles in both manufacturing and inspec-289

tion. For example, the inspection planner can use tools that read the characteristics’290

requirements directly from the model. This eliminates the need for manual, human-291

based data entry, which also reduces the risk of injecting errors into the process. Also,292

PMI added to the model, in accordance with the ASME Y14.41-2012 (American Soci-293

ety of Mechanical Engineers 2012) standard1, will provide additional functionality to294

the user – the features associated with the PMI will highlight when selected by the295

user. 3D geometry combined with PMI provides a rich set of capabilities where both296

a computer and a human have interpretable information available for consuming the297

digital product definition in a process.298

1The 2012 edition of ASME Y14.41 was selected because the latest edition was not publicly available at the

time the models were generated in this work.
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Figure 3. Presentation of the Exploded View, as displayed inside the CAD system, of the assembly test case

showing all components
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3.2. Design of Experiments for Manufacturing Parameters299

The influence of machining-process parameters on the quality of the final product300

is a complicated problem to model. Rather than modeling the problem, a DOE was301

proposed to control the parameters of data that would allow for the identification of302

strong correlations of machining parameters for this particular case. The experiment303

focused on the 16 hole features on the plate within our assembly.304

We wanted to analyze the form error of the manufacturing process above the noise in305

the machining (and measurement) process. We decided not to make entirely identical306

parts as this would likely only achieve one single manufacturing signature type and307

background noise. The process parameters were changed sufficiently to distort the308

parts above the noise level and produce multiple manufacturing-signature types. The309

aim was to understand how much these process parameters affect variation in the part.310

Tool length, tool speed, and feed rate were the three parameters chosen to be con-311

trolled for pocketing processes during the experiment to produce variation in the qual-312

ity of the part. These parameters were identified as being the ones that are commonly313

varied in machining to modify the part. Initial values were specified at the recom-314

mended settings for given tools and component material. Each variable then had either315

one or two varied states to induce part variation. The variations were controlled to316

ensure the full parameter space is covered systematically rather than varying param-317

eters based on a random choice. Table 1 shows the DOE matrix, where “*” markers318

indicate the mean value between maximum and minimum manufacturer recommended319

values. Additional labels indicate the varied states of the respective parameter.320

The DOE approach provided a reduced number of parameter sets and reduced321

number of variants of each control parameter. Confidence in the results and the re-322

peatability of the process would come from analysis of the quality of the holes as a323

group.324

Mason, Rahman, and Maw (2017) showed that the tool length, tool speed, and325

feed rate are critical variables within the drilling of holes in mild steel components.326

Understanding the sensitivity of each control parameter with regard to how much327

effect its variation has on the final part made of aluminum, relied on expert knowledge328

of the machining specialists. The values used for each tool used for the manufacture329

of these parts can be found in Table 2.330

A new cutting edge was to be used at the start of every component such that331

tool wear can be reduced and monitored. Temperature and humidity readings were332

recorded at the start of production for each component. Fixturing was only done once333

after the initial material-preparation phase was completed. All subsequent machining334

operations were performed in-station to minimize alignment errors.335

3.3. Manufacturing and Inspection Planning and Execution336

Both manufacturing and inspection planning were completed using model-based meth-337

ods. We used commercially available software to program the fabrication and inspec-338

tion programs. The various software packages were selected for their “off-the-shelf”339

support of the QIF standard and required no customization.340

The CAD models were imported directly into the planning software with each341

model’s PMI utilized to the fullest extent supported by the software packages. The342

fabrication program’s paths and tooling selections were automatically determined by343

the CAM software when possible, but the majority of the decisions were made by the344

machining specialist based off his experience and knowledge. A numerical control (NC)345
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Table 1. DOE design matrix

Part Number Tool Length Cutting Speed Feed Rate

01 Short* Fast* High*
02 Short* Fast* Medium
03 Short* Fast* Low
04 Short* Medium High*
05 Short* Medium Medium
06 Short* Medium Low
07 Short* Slow High*
08 Short* Slow Medium
09 Short* Slow Low
10 Long Fast* High*
11 Long Fast* Medium
12 Long Fast* Low
13 Long Medium High*
14 Long Medium Medium
15 Long Medium Low
16 Long Slow High*
17 Long Slow Medium
18 Long Slow Low
19 Operator’s Choice Operator’s Choice Operator’s Choice
20 Operator’s Choice Operator’s Choice Operator’s Choice

*Recommended Value

Table 2. Process parameters for pocketing process of holes in the DOE

Tool Name Tool Length Cutting Speed Feed Rate
Short* Long Fast* Medium Slow High* Medium Low

Inches Revolutions Per Minute Inches Per Minute
0.093 inch
End Mill

0.375* 1.375 12k* 9k 6k 36* 27 21

0.125 inch
End Mill

0.375* 1.375 12k* 9k 6k 36* 27 21

0.25 inch
End Mill

0.5* 1.5 12k* 9k 6k 140* 110 80

0.5 inch
End Mill

0.75* 1.75 12k* 9k 6k 140* 110 80

0.5 inch
Counter Sink

1.0* 2.0 1k* 0.75k 0.5k 2* 1.5 1

3.0 inch
Face Mill

n/a n/a 5k* 3.75k 2k 120* 90 60

0.125 inch
Engrave

0.375* 1.375 12k* 9k 6k 40* 30 20

*Median Recommended Value
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program was generated and post-processed for the 3-axis mill fabricating the parts.346

Machine and process data was captured during the program run using MTConnect-347

compliant adapters and agents.348

For the inspection, the NIST coordinate-measurement machine (CMM) was pro-349

grammed automatically using the CMM manufacturer’s programming tool. The pro-350

gramming tool read the characteristics directly from the CAD model’s PMI, deter-351

mined the needed CMM-probe configurations, and generated an execution-time opti-352

mized inspection program. The time to generate the first-article inspection programs353

for each part took less than ten minutes per part. The measurements and inspection354

results were captured in a database in real-time and then exported as QIF Results at355

the completion of the inspection.356

The MTC CMM was a different manufacturer from the NIST CMM. The MTC357

CMM was programmed using a combination of third-party software package and the358

Dimensional Measuring Interface Standard (DMIS) for execution. The CAD model was359

translated into QIF MBD and imported into the third-party software. The software360

automatically read the PMI, recognized the features and characteristics for inspection,361

set datum structures, and assigned both a lightweight point strategy and simple scan362

strategies to the features. The CMM program was exported to DMIS 5.2 for execution363

on the CMM. The measurements were exported from the CMM manufacturer’s soft-364

ware to a DMIS .out file. The DMIS measurements file was imported to the third-party365

software and the inspection results were exported as QIF Results.366

3.4. Data and Information Flow367

Integrating data from different sources is critical to extract information and knowl-368

edge which contains links between the manufacturing parameters and the final quality369

of features on the part. For example, to draw a link between the part quality and370

machining parameters at a specific time, it is necessary to obtain both measurement371

data (in QIF format) and machine parameters (encoded in the machine’s G-Code) in372

the same format to carry out further operations. Once this has been carried out it is373

also imperative that the integrated data is stored in a format that is easily readable374

by the software carrying out data mining. The format of the final information in the375

knowledge base must be easily readable by both humans and machines; a format such376

as comma-separated value (CSV) is most appropriate as this is easily read by com-377

monly used data analysis software such as Microsoft Excel, Matlab, R, Python and378

any other analytics tools.379

An important element of the data flow is the monitoring and collecting of NC-380

Code execution data from the CNC machine using an MTConnect adapter. This data381

contains in-process measurements of important machining parameters including feed382

rate and tool-rotation speed. By converting this to simulated G-Code, it is possible to383

determine the machine parameters at a given time. This level of traceability is essential384

to any data-manipulation operations as it enables data mapping to be carried out.385

This traceability also gives a mechanism to make comparisons between the prede-386

fined parameters such as tool length, tool speed, and feed rate specified in the machine’s387

code and the actual values of these parameters recorded in-process. Part quality could388

then be linked to both the parameters specified to the machine and the true values389

of these parameters as measured in process. This step is currently being investigated390

further as the tools to perform such an action are not available. Development of such391

tools is an important step to automate the process and enable data analytics for the392
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Table 3. QIF Results for Aprox. 20 Assembly Units

Assembly Item Failed Tests
Mean % Deviation

From Nominal
Number of
QIF Tests

Units Tested

Box 0 33.74% 47 18
Cover 1 12.46% 27 20
Plate 51 33.63% 31 20

extraction of knowledge.393

Figure 4 illustrates the data flow throughout the data capture stages, including394

the different sources of data and the different standards which these data fall under.395

MTConnectR, a package within the R high-level programming language designed for396

statistical analysis (Joseph et al. 2017), was used to convert the extracted process397

data from the CNC machine code to the MTConnect XML format. The specific ma-398

chine tool used to produce the parts did not report tool-path positions. Therefore, the399

MTConnectR package was also used to simulate the tool-path position and align it400

to the collected execution data using a dynamic time warping method (Helu, Joseph,401

and Hedberg 2018). The resulting data output and alignment from the MTConnectR402

package provided a structured dataset that was used in the data-mining portions of403

the study.404

4. Results405

All of the data collected in this study is available in Hedberg Jr et al. (2018). The406

analysis of the produced parts centered around relating the machining input parameter407

specifications to the end quality measurements. The specific design features from each408

part could not be autonomously aligned with the recorded QIF tests due to inconsistent409

naming conventions between the separate sources of information. Despite this, there410

is much that can be learned from the analysis of the quality features for each of the411

separate parts produced.412

4.1. QIF Results413

During the course of this work a total of 20 assembled units were machined with414

QIF test results taken on each of the manufactured units. Of the three parts of the415

assembly, the Box exhibited zero quality test failures, the Cover showed one, and the416

Plate returned a total of 51 failed tests across the 20 units manufactured. From the417

results listed in Table 3, we can see that although the Plate had the most quality418

test failures (deviations found to be beyond the specified tolerances), the Box had the419

highest average deviation from nominal across all tests.420

To some degree, the failures within the Plates were expected as the machining pa-421

rameters were varied beyond recommended values to help correlate them to resulting422

quality. However, as seen in Figure 5 the quality results from the Box units show a423

strong bi-modal distribution for many of the captured test, with 14 of the 47 tests424

showing strong tendencies to be at the lower end of the allowable tolerance values.425

Almost all of these poor test results relate to the positioning of the respective feature.426

As the large deviations from nominal are consistent across all the units tested, the427

poor quality issues could be a result of bad tolerance selection, inadequate machining428

capabilities, or some other mis-specification of the machining parameters. By moni-429
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Figure 5. QIF Test Results for Individual Box Units as Percent of Tolerance Span

toring for such anomalous quality behavior despite a lack of failures, an investigation430

could be triggered to not only help trace down the problem, but perhaps suggest a431

solution.432

Conversely, the test performance for the 20 Cover units was very strong across nearly433

all tests. Of the 27 individual quality tests performed, only one showed deviations more434

than approximately 10 percent from nominal, and the large majority less the five435

percent. Of those tests found to show large deviations, only one exhibited a grouping436

largely not centered near nominal. Strangely perhaps, the test with the worst average437

deviation did not produce a failure. Again, such anomalies can be monitored and438

trigger deeper investigations. A full description of the Cover QIF results can be found439

in Figure 6.440

The quality test deviations in the Plate units show a stark increase in the number441

of failures compared to those found in the other assembly parts, particularly in six442

of the total 20 Plate units tested. Figure 7 shows very clearly that the units labeled443

10-18 have a clear increase in the average quality deviation and number of failures. Not444

coincidentally, this corresponds to the parts listed in Table 1 as using the “Long” tool445
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Figure 6. QIF Test Results for Individual Cover Units as Percent of Tolerance Span
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Figure 7. QIF Test Results for Individual Plate Units as Percent of Tolerance Span

lengths. A more detailed analysis matching machining parameters to quality within446

the Plate units is presented in the next section.447

A very notable test failure is the “Cylinder 3 Radius 1” test (see Figure 8). All 20 of448

the manufactured units failed this test regardless of the various machining parameters449

employed during the manufacturing. This lends highly to the supposition that the450

error is derived from some requirement of the design. This could be a tolerance mis-451

specification, a feature that is not obtainable with the current plant machinery, etc.452

By directly linking the feature identified with this test to a design side feature, quick453

investigations into alterations can be created early in test production runs of new454

products.455

It is interesting to note that all three assembly structures exhibited some of their456

worst quality test performance in tests relating feature position, perpendicularity, and457

flatness. this could indicate a shortcoming of the tolerancing, the ability of machines458

themselves to produce these features, or in the equipment used to measure these tests.459

Given that the respective units were produced on multiple machines with different460

manufacturers, this would tend to indicate either incorrect tolerancing or testing abil-461

ity. Directed and coordinated analysis of quality data across multiple parts, can help462

to identify larger anomalies that might not be apparent when focusing on singular unit463

quality test results.464
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Figure 8. QIF Test Results for Individual Plate Units as Percent of Tolerance Span
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Figure 9. Difference Between Plate Units Input NC-Code Files

4.2. Machining Parameter Analysis465

For the 20 manufactured Plate units, the machining parameters were varied as pre-466

scribed in Table 1. As can be seen in Figure 7, nearly half of the units exhibit a marked467

increase of the average deviation from nominal in the QIF recorded tests. These devi-468

ations can be directly correlated with the machining parameters chosen to direct the469

production of each unit.470

For this analysis, an aggregation of the relative and actual values for these param-471

eters is interpreted directly from the respective NC-Code input files. The exception472

to this is any reference to “Tool Length,” which is not directly recorded in the stan-473

dard NC-Code file format. Figure 9 shows the calculated differences between the 20474

Plate manufacturing input files. Please note that the files for units 7 and 16, as well as475

those for 6 and 15 are functionally identical. The only notable difference between these476

plates is the selection of the tool length, which is recorded external to the NC-File. The477

parameters collected to compare the machining of these parts were those that related478

to the spatial cutting path of the tool (X, Y, Z, I, J, K), the cutting speed (S), the479

feed rate (F), as well as preparatory commands and other miscellaneous inputs (G, M,480

H). Although this work is limited to 11 parameters within the NC-Code, for broader481

scale operations the analysis could be extended to all possible parameter inputs of482

NC-Code.483

To characterize the relationships between the quality and the input machining pa-484

rameters for these Plates, explicit interpretations of the input NC-Code is not needed.485

Instead, characterizations of the various parameter sequences were developed and com-486
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Figure 10. Effect of Machining Parameters on Quality

pared on a relative scale. Ultimately, the selection of this characterization is somewhat487

arbitrary and matters only in its ability to capture the relative meaningful differences488

between the files. Towards this end, those parameters relating similar aspects of the489

machining process have been averaged together to allow a more meaningful interpre-490

tation of the results.491

When looking for machining parameters that have the biggest effect on the qual-492

ity of a part, a correlation analysis can quickly reveal strong trends. Figure 10 shows493

the average correlation between the various selected machining parameters and the494

recorded quality test results. Based on the upper plot, selection of Tool Length is the495

most important parameter, closely followed by the Cutting Speed. Somewhat intu-496

itively, but also highlighted by the lower plot of Figure 10, the influence of Cutting497

Speed on quality is greatly influenced and exacerbated by Tool Length selection. This498

can be extrapolated to infer that parameter selection is not a one to one influence on499

the part quality; a confluence of various parameters can have complex end effects on500

the part quality.501

Despite noting that the effects of selecting one parameter may have influence over502

the effects of others, simple trends can easily be identified in analyses and be used503

to infer a quasi-optimal set of machining parameters; particularly if more in depth504

characterization of the NC-Code inputs and variations are made. Even when removing505

the confounding factor of Tool Length and only focusing on units produced with the506

Short Tool Length, there is a clear trend of better average quality with increasing507

Cutting Speed and Feed Rate (see Figure 11). This could be extrapolated such that508

one might expect even better quality if both were increased beyond the prescribed set509
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Figure 11. Effect of Speed and Feed Parameters on Quality

of values, and in fact this exactly what is observed with the Operator’s Choice’ units510

produced (19 and 20) represented by blue squares in Figure 11.511

A full detailing of the correlation to the various QIF tests to the recorded machining512

parameters is presented in Figure 12. From these results it is clear that the selection513

of tool length has the biggest effect on the quality of various hole diameters, followed514

closely by slot lengths. Interestingly, this and other observations made during this515

analysis were corroborated by the operators who noted that:516

• Longer tool lengths caused more vibration thus more chatter on the finish517

• Slower RPMs caused chips to gather in flutes of smaller diameter end mills518

causing swirls on finish519

• Parts 16-18, the lower RPMs caused some of the holes to cut oversized due to520

flexing of small diameter, long length end mills521

5. Gaps, Challenges, and Recommendations522

Several gaps and challenges were observed during our study. In particular, we were not523

able to fully automate the data alignment of the CAD (as-designed data), MTConnect524

(as-executed manufacturing data), and QIF (as-measured / as-inspected data) due to525

several reasons discussed in this section. However, time savings and knowledge were526

realized during the analysis of the all the data.527
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Figure 12. Correlation of Machining Parameters to Individual Quality Tests
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5.1. Gaps and Challenges528

5.1.1. Data Formats529

Fischer et al. (2015) and Trainer, Barnard Feeney, and Hedberg Jr (2015) showed530

that data can be mapped and aligned between data formats available in CAD, CAM,531

and CAI applications. However, considerable amount of technical experience and time532

is required to complete the mappings. In addition, we observed that the context or533

viewpoint of a data element could be different between each of the data formats. For534

example, a grouping of shape elements are considered a “feature” in the CAD appli-535

cation and data formats for design, but in the metrology data formats, the feature is536

defined with further context (e.g., hole, slot, pocket). This mismatch between view-537

points makes it difficult to quickly ascertain information and knowledge from aligning538

data sets retrieved from different phases of the product lifecycle.539

Further, we observed that there still remains little to no way to provide feedback to540

design, even in a model-based environment. The best case is still to use screen-shots541

with markup and then email them to the design authority. Industry needs a way to542

directly and efficiently capture feedback within the various data sets and then exchange543

that information between phases (e.g., design, manufacturing, quality) of the product544

lifecycle. However, this requires more than application support. The data formats used545

to exchange data between the phases of the lifecycle must support interoperability of546

the feedback data. To date, no standards-based data format supports iterative and547

incremental changes – analogous to “track changes” in a word-processing document548

– in data for the purpose of feedback. Commercial CAD verification and validation549

tools are available that provide a “change vector” by analyzing variation between one550

version of a CAD file and subsequent version. However, this does not provide a clear551

feedback mechanism for industry. Industry requires an explicit feedback mechanism552

supported by the various domain-specific standard-based data formats.553

5.1.2. Manufacturing Data Collection554

The only requirement of an MTConnect implementation is that the device of interest555

provide the data item AVAILABILITY, which indicates the ability of the device to556

provide data. Because of this requirement, there is no minimum set of data that557

one may expect from an MTConnect-compliant device. Most implementations of the558

standard are enabled by a vendor- or third-party-provided Adapter that communicates559

the native data from the device to the MTConnect Agent. This limits the user to data560

selected by the Adapter developer, which in turn may be limited by the data exposed561

by the device controller. Some vendors provide Adapters that provide a full feature562

set from the device or allow the user to select from a larger set of data items, but563

these types of Adapters are not commonly available in a wide variety of MTConnect-564

compliant devices. For example, the three-axis machining center used for this research565

had a limited set of available data items as shown in Table 4.566

Table 4 shows that position is not a data item that is supported by the MTConnect567

implementation of the machine used in this study. The lack of position data is a568

critical challenge when attempting to link design, manufacturing, and inspection since569

linking as-designed, as-planned, as-executed, and as-inspected data is done through570

the features of a part. Because we did not have position data, we had to integrate the571

as-executed data by relying on the current block number being executed as reported by572

our MTConnect implementation (see Section 3 and Figure 4 for more information).573

This approach allowed us to manually integrate data flows from different lifecycle574
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Table 4. Data available from Hurco VMX24 machining center

Category Data Item Description Units

Sample

ACCUMULATED TIME Program runtime sec
ACCUMULATED TIME Spindle time s
AVAILABILITY Availability of data n/a
PATH FEEDRATE (ACTUAL) Actual feedrate mm/s
ROTARY VELOCITY (ACTUAL) Actual spindle speed rev/min

Event

EMERGENCY STOP Emergency stop status n/a
EXECUTION Program status n/a
LINE Executed block number n/a
PART COUNT (ALL) # of completed cycles n/a
PATH FEEDRATE OVERRIDE Feed override %
PATH FEEDRATE OVERRIDE (RAPID) Rapid override %
PROGRAM Name of executed program n/a
PROGRAM EDIT NAME Name of edited program n/a
ROTARY VELOCITY OVERRIDE Spindle speed override %
TOOL NUMBER Current tool identifier %

stages. Future efforts to automate this integration would require the flexibility to575

obtain additional data items such as position.576

Another important challenge when collecting manufacturing data is the inability to577

control the sampling rate, which is dictated by the Adapter and implementation of the578

MTConnect standard for the device of interest. For example, the primary responsibility579

of a machine-tool controller is to manage the machining process. Providing data via580

an MTConnect Adapter is a secondary concern, which means that the sampling rate581

may decrease if the controller is executing a more complex toolpath. Similarly, legacy582

equipment may be limited in its ability to provide data at a reasonable sampling rate583

because the equipment itself lacks the capability due to age. Okuma provides Adapters584

that have the flexibility to increase the sampling rate, but this capability requires the585

user to decrease the number of data items that may be collected. The feasibility of586

such a trade off would be dependent on the use case of interest.587

5.1.3. Data Linking and Analysis588

The results of our research show that we were unable to explicitly link feature-to-589

feature between each data set collected from the different phases of the lifecycle. The590

root cause for this failure is because there is no persistent identification of features591

between the standards-based data formats. When we translated the CAD model from592

the proprietary CAD format to the neutral standards-based STEP AP242 format, the593

feature identifiers from the CAD system were lost. Further, the MTConnect identifiers594

are connected to data elements and do not contextualize any features that are linkable595

semantically back to the CAD data. Lastly, QIF supports a universally unique identifier596

(UUID) for each data element defined by QIF, but unless the application generating597

QIF Results uses the same plan, there is no way to generate QIF Results data sets598

from two different locations and have the same feature and characteristics identifiers599

between all the data sets.600

We were successful in visually linking and aligning the data sets collected during601

our research. However, all linking was completed manually using significant human602
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input, analysis, and inference. The visualization was helpful to analyze observations603

from the data, such as how spindle speed and feed rate related to part features during604

the fabrication process. But, an analyst would generally only want to generate visual605

analytics if a significant issue arises with the part in manufacturing or quality. Other-606

wise, the value gained from generating the visualizations are not worth the time and607

cost it requires to generate the visualizations.608

5.2. Positive Outcomes and Recommendations609

While several gaps and challenges were observed during our research, there were also610

successes and benefits identified. Specifically, the applicable standards (e.g., MTCon-611

nect, QIF) work great within their domain of expertise (e.g., fabrication, inspection).612

MTConnect provides a rich data dictionary to capture and analyze what is occurring613

during the execution of machining programs. The streaming MTConnect data not only614

allows an analyst to determine the status of the machine (e.g., availability, controller615

mode, level of utilization), but also variation of parameters (e.g., cutting path, spindle616

speed, feed rate) can be analyzed between part runs, such as dynamic time warping617

(Helu, Joseph, and Hedberg 2018).618

Moreover, QIF also provides a rich data dictionary, but only for metrology applica-619

tions. QIF enables the ability to define an inspection plan, capture results, and store620

metrology statistics. Our work and others (Fischer et al. 2015; Trainer, Barnard Feeney,621

and Hedberg Jr 2015; Morse et al. 2016) have shown that the data covered by QIF622

can be exchanged quickly and aggregated into commercially available metrology soft-623

ware for further analysis. QIF adoption among metrology solution providers is growing624

quickly and the standard is stable and mature for capturing and exchanging inspection-625

related information.626

However, the outcome of our research has led to two recommendations to harness627

further benefits. First, each domain (e.g., fabrication, inspection) needs better aligned628

adoption of the standards by solution providers. While MTConnect and QIF have629

seen steady adoption growth, the data elements that each commercial application pro-630

vides using the two standards’ data dictionaries varies from one application to the631

next. Industry needs the type of data retrievable from applications to be harmonized632

among the solution providers. One way this could be achieved is through implementer633

forums. For example, the CAx-IF2 brings CAD solution providers together to develop634

recommended practices for implementing ISO 10303 (STEP AP242) standards within635

data translators and validation tools. We have observed within the STEP community636

that the CAx-IF accelerates the adoption and implementation of the ISO 10303 appli-637

cation protocols within CAD tools. MTConnect and QIF would benefit from similar638

organizations and activities.639

Second, there is a need for standards harmonization across the domains, particu-640

larly in the area of identifying entities (e.g., persistent ID). While we were successful641

in manually generating visual analytics by overlaying the MTConnect and QIF data642

with the CAD geometry, we could not automatically align the data in a semantic way.643

Having persistent identification of entities between each data set would enable the abil-644

ity to automatically align and data mine the information to develop knowledge about645

what occurred through the cyber-physical transformation of the product throughout646

the lifecycle. An example of a persistent ID is a UUID attached to features and char-647

acteristics represented in a CAD model. Then, a CAM application could embed the648

2More information available at https://www.cax-if.org/
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UUIDs in the NC program, which could be captured using MTConnect in a similar649

way as g-code line number. For metrology, the UUIDs for features and characteristics650

could be stored as using the QIF Persistent Identifiers (QPID) definition in the QIF651

standard. Having the full chain of persistent identification would enable effective and652

efficient automated mapping between all the data sets. Manual alignments require653

significant human capital and an automatic data alignment must be achieved if indus-654

try is expected to adopt novel data analytic approaches for generating lifecycle-wide655

knowledge. Using a UUID as a persistent identifier mapped across multiple data sets656

could satisfy this requirement.657

6. Conclusions658

This paper set out to present the activities and results of testing several popular659

manufacturing standards used in the context of smart manufacturing. We presented660

a test of the open, consensus-based standards‘ ability to integrate lifecycle stages661

in a small-scale implementation of MBE. We conducted a design, build, inspect ex-662

periment to help inform the understanding and performance of the manufacturing663

standards. Studying data-mining methods, data-integration techniques, and imple-664

mentation schemes were some of the goals of our work. However, making significant665

progress in these goals were not achieved because our data integrations could not666

leverage automatic data-alignment strategies. The results of our work show that the667

popular data standards used in industry do not support automatic data alignment.668

Therefore, we pivoted to providing recommendations to the SDOs for enhancing the669

standards that we expect would enable automatic data-alignment capabilities. We also670

expect that once automatic data-alignment capabilities are realized, researchers should671

then be able to discover methods for implementing and transferring standards-based672

information integration to practice.673

We provided two recommendations to the SDOs. First, industry needs standardiza-674

tion of the data elements available across different implementations of the standards.675

The SDOs for MTConnect and QIF should consider requiring a select set of data el-676

ement types, while continuing to make other element types optional. Requiring a set677

of element types would ensure industry can extract a common baseline of data across678

all operations. Second, industry needs the standards to provide and/or harmonize the679

ability to generate persistent identifiers (IDs) of features across data sets to enable680

monitoring the realization of products as they move through the phases of the entire681

product lifecycle.682

The SDOs may partially address our recommendations by setting up implementer683

forums where solution providers and industry can come together to generate recom-684

mended practices for conforming to the standards. The forums would assist with har-685

monizing the implementations of each standard between the various solution providers686

who offer applications using the standards. Addressing the recommendations from our687

work herein would provide industry with a universal baseline of knowledge extraction688

and further support interoperability of data across the phases of the product lifecycle.689
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3D three-dimensional. 4, 7, 9703

ANSI American National Standards Institute. 5704

ASME American Society of Mechanical Engineers. 4705
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XML Extensible Markup Language. 5, 14738

References739

American Society of Mechanical Engineers. 2009. “Dimensioning and Tolerancing.” (ASME740

Y14.5-2009).741

American Society of Mechanical Engineers. 2012. “Digital Product Definition Data Practices.”742

(ASME Y14.41-2012).743

American Society of Mechanical Engineers. 2017. “Product Definition for Additive Manufac-744

turing [Draft Standard for Trial Use].” (ASME Y14.46-2017).745

American Society of Mechanical Engineers. 2019. “Digital Product Definition Data Practices.”746

New York.747

Carlisle, Mark. 2016. “Model-Based Enterprise Summit 2016.” Last accessed:748

21 April 2017, URL https://www.nist.gov/news-events/events/2016/04/749

model-based-enterprise-summit-2016.750

Chien, Chen-Fu, Wen-Chih Wang, and Jen-Chieh Cheng. 2007. “Data mining for yield en-751

hancement in semiconductor manufacturing and an empirical study.” Expert Systems with752

Applications 33 (1): 192–198.753

Childerhouse, P, and D R Towill. 2011. “Arcs of supply chain integration.” International754

Journal of Production Research 49 (24): 7441–7468.755

Digital Metrology Standards Consortium. 2018. “QIF Standard Version 3.0 (ANSI/DMSC QIF756

3.0).” Burleson TX. URL https://qifstandards.org/qif-download.757

Fischer, Kevin, Phil Rosche, Asa Trainer, Allison Barnard Feeney, and Thomas Hedberg Jr.758

2015. Investigating the Impact of Standards-Based Interoperability for Design to Manufac-759

turing and Quality in the Supply Chain. Report NISTGCR 15-1009. National Institute of760

Standards and Technology.761

Hardwick, Martin, and Will Sobel. 2017. “Enabling Automated CNC Measurement on the762

Digital Thread.” In Model-Based Enterprise Summit 2017, National Institute of Standards763

and Technology. URL https://www.nist.gov/file/361731.764

He, Shu-guang, Zhen He, G Alan Wang, and Li Li. 2009. “Quality Improvement using Data765

Mining in Manufacturing Processes.” In Data Mining and Knowledge Discovery in Real Life766

Applications, edited by Julio Ponce and Adem Karahoca. InTech.767

Hedberg, Thomas, Jr, Manas Bajaj, and Jaime A Camelio. 2020. “Using Graphs to Link Data768

Across the Product Lifecycle for Enabling Smart Manufacturing Digital Threads.” Journal769

of Computing and Information Science in Engineering 20 (1): 1–29.770

Hedberg Jr, Thomas, Allison Barnard Feeney, Moneer Helu, and Jaime A. Camelio. 2017a.771

“Towards a Lifecycle Information Framework and Technology in Manufacturing.” Journal772

of Computing and Information Science in Engineering 17 (2): 021010–021010–13.773

Hedberg Jr, Thomas, Michael E Sharp, Toby M Maw, Mostafizur M Rahman, Swati Jadhav,774

James J Whicker, Allison Barnard Feeney, and Moneer Helu. 2018. “A three component775

29

https://www.nist.gov/news-events/events/2016/04/model-based-enterprise-summit-2016
https://www.nist.gov/news-events/events/2016/04/model-based-enterprise-summit-2016
https://www.nist.gov/news-events/events/2016/04/model-based-enterprise-summit-2016
https://qifstandards.org/qif-download
https://www.nist.gov/file/361731


assembly with design, manufacturing, and inspection data from a collaboration between the776

National Institute of Standards and Technology and the Manufacturing Technology Centre.”777

NIST Journal of Research (NIST JRES) 1–2.778

Hedberg Jr, Thomas D., Nathan W. Hartman, Phil Rosche, and Kevin Fischer. 2017b. “Identi-779

fied research directions for using manufacturing knowledge earlier in the product life cycle.”780

International Journal of Production Research 55 (3): 819–827.781

Hedberg Jr, Thomas D., Joshua Lubell, Lyle Fischer, Larry Maggiano, and Allison782

Barnard Feeney. 2016. “Testing the Digital Thread in Support of Model-Based Manufactur-783

ing and Inspection.” Journal of Computing and Information Science in Engineering 16 (2):784

1–10.785

Helu, Moneer, Alex Joseph, and Thomas Hedberg. 2018. “A standards-based approach for786

linking as-planned to as-fabricated product data.” CIRP Annals 67 (1): 487 – 490.787

International Standards Organization. 2014. “Industrial automation systems and integration788

– Product data representation and exchange – Part 242: Application protocol: Managed789

model-based 3D engineering.” (ISO 10303-242).790

International Standards Organization. 2015. “Technical product documentation - Digital prod-791

uct definition data practices.” (ISO 16792).792

Joseph, Alex, Sainath Adapa, Nitin Madasu, and Subramanyam Ravishankar. 2017. “mtcon-793

nectR R Package.” Last accessed: 21 April 2017, URL https://cran.r-project.org/794

package=mtconnectR.795

Khabbazi, M R, Md Yusof Ismail, N Ismail, S A Mousavi, and H S Mirsanei. 2011. “Lot-base796

traceability requirements and functionality evaluation for small- to medium-sized enter-797

prises.” International Journal of Production Research 49 (3): 731–746.798

Kraft, Edward M. 2016. “The Air Force Digital Thread/Digital Twin - Life Cycle Integration799

and Use of Computational and Experimental Knowledge.” In 54th AIAA Aerospace Sciences800

Meeting, 2016, January 4, 2016 - January 8, 2016, San Diego, CA, United states: American801

Institute of Aeronautics and Astronautics Inc, AIAA.802

Liang, Yi-Hui. 2015. “Performance measurement of interorganizational information systems in803

the supply chain.” International Journal of Production Research 53 (18): 5484–5499.804

Lipman, Robert. 2017. “Test Case PMI Annotation Browser.” Last accessed: 25 April 2017,805

URL https://pages.nist.gov/CAD-PMI-Testing/models.html.806

Lipman, Robert, Joshua Lubell, Thomas Hedberg Jr, Allison Barnard Feeney, and Simon807

Frechette. 2017. “MBE PMI Validation and Conformance Testing Project.” Last accessed:808

25 April 2017, URL https://www.nist.gov/el/systems-integration-division-73400/809

mbe-pmi-validation-and-conformance-testing.810

Mason, R. J., M. Mostafizur Rahman, and T. M. M. Maw. 2017. “Analysis of the manufacturing811

signature using data mining.” Precision Engineering 47: 292–302.812

Maw, Toby M. M., James J. Whicker, and M. Mostafizur Rahman. 2017. Prediction of part813

quality using regression tree learning. Report. The Manufacturing Technology Centre.814

Mckay, K N. 2003. “Historical survey of manufacturing control practices from a production815

research perspective.” International Journal of Production Research 41 (3): 411–426.816

Morse, Edward, Saeed Heysiattalab, Allison Barnard-Feeney, and Thomas Hedberg Jr. 2016.817

“Interoperability: Linking Design and Tolerancing with Metrology.” Procedia CIRP 43: 13–818

16.819

MTConnect Institute. 2018. “MTConnect Standard Version 1.4.0 (ANSI/MTC1.4-2018).”820

McLean VA. URL https://www.mtconnect.org/s/ANSI{_}MTC1{_}4-2018.pdf.821

Sobel, Will. 2015. “MTConnect Architecture and Overview.” Last accessed: 25 June 2019, URL822

https://www.mtconnect.org/s/MTConnectTechnicalWorkshopAtNAMRC43-x6n1.pdf.823

Trainer, Asa, Allison Barnard Feeney, and Thomas Hedberg Jr. 2015. Validation for Down-824

stream Computer Aided Manufacturing and Coordinate Metrology Processes. Report NIST-825

GCR 16-003. National Institute of Standards and Technology.826

Trainer, Asa, Thomas Hedberg Jr, Allison Barnard Feeney, Kevin Fischer, and Phil Rosche.827

2016. “Gaps Analysis of Integrating Product Design, Manufacturing, and Quality Data828

in the Supply Chain using Model-Based Definition.” In 2016 Manufacturing Science and829

30

https://cran.r-project.org/package=mtconnectR
https://cran.r-project.org/package=mtconnectR
https://cran.r-project.org/package=mtconnectR
https://pages.nist.gov/CAD-PMI-Testing/models.html
https://www.nist.gov/el/systems-integration-division-73400/mbe-pmi-validation-and-conformance-testing
https://www.nist.gov/el/systems-integration-division-73400/mbe-pmi-validation-and-conformance-testing
https://www.nist.gov/el/systems-integration-division-73400/mbe-pmi-validation-and-conformance-testing
https://www.mtconnect.org/s/ANSI{_}MTC1{_}4-2018.pdf
https://www.mtconnect.org/s/MTConnectTechnicalWorkshopAtNAMRC43-x6n1.pdf


Engineering Conference, American Society of Mechanical Engineers.830

Venkatesh, Sid, Sidney Ly, Martin Manning, John Michaloski, and Fred Proctor. 2016. “Au-831

tomating Asset Knowledge With MTConnect.” In International Manufacturing Science and832

Engineering Conference, Vol. Volume 3: Joint MSEC-NAMRC Symposia, V003T08A016.833

ASME.834

Wang, X, S K Ong, and A Y C Nee. 2018. “A comprehensive survey of ubiquitous manufac-835

turing research.” International Journal of Production Research 56 (1-2): 604–628.836

Wardhani, R, and X Xu. 2016. “Model-based manufacturing based on STEP AP242.” In837

12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and838

Applications (MESA), Auckland, New Zealand, 1–5.839

Wu, Dazhong, J. Lane Thames, David W. Rosen, and Dirk Schaefer. 2013. “Enhancing the840

product realization process with cloud-based design and manufacturing systems.” Journal841

of Computing and Information Science in Engineering 13 (4).842

List of Tables843

1 DOE design matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12844

2 Process parameters for pocketing process of holes in the DOE . . . . . 12845

3 QIF Results for Aprox. 20 Assembly Units . . . . . . . . . . . . . . . . 14846

4 Data available from Hurco VMX24 machining center . . . . . . . . . . 25847

List of Figures848

1 Overview of basic MTConnect architecture; the standard only specifies849

the output of the Agent as highlighted by the red-dashed box (after850

Sobel (2015)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5851

2 Overview of basic QIF information architecture; around the QIF core852

library are the six QIF application-specific information models, Model-853

Based Definition (MBD), Plans, Resources, Rules, Results, and Statis-854

tics (reproduced from Digital Metrology Standards Consortium (2018)). 6855

3 Presentation of the Exploded View, as displayed inside the CAD system,856

of the assembly test case showing all components . . . . . . . . . . . . 10857

4 The flow of data and information within this investigation. The dia-858

gram shows data flows between the design, planning, and manufactur-859

ing phases. The data is then combined in the data preprocessing task860

to support the data mining and knowledge building activities. . . . . . 15861

5 QIF Test Results for Individual Box Units as Percent of Tolerance Span 16862

6 QIF Test Results for Individual Cover Units as Percent of Tolerance Span 17863

7 QIF Test Results for Individual Plate Units as Percent of Tolerance Span 18864

8 QIF Test Results for Individual Plate Units as Percent of Tolerance Span 19865

9 Difference Between Plate Units Input NC-Code Files . . . . . . . . . . 20866

10 Effect of Machining Parameters on Quality . . . . . . . . . . . . . . . 21867

11 Effect of Speed and Feed Parameters on Quality . . . . . . . . . . . . 22868

12 Correlation of Machining Parameters to Individual Quality Tests . . . 23869

31


	Introduction
	Background
	Manufacturing Standards
	Standards for Design Requirements in Digital Drawings 
	Standards for Design Information
	Standards for Manufacturing Information
	Standards for Quality and Inspection Information

	Technology for Manufacturing Integrating Information
	Model-Based Enterprise
	Data Mining


	Methodology
	Design of the Digital Assembly Definition
	Design of Experiments for Manufacturing Parameters
	Manufacturing and Inspection Planning and Execution
	Data and Information Flow

	Results
	QIF Results
	Machining Parameter Analysis

	Gaps, Challenges, and Recommendations
	Gaps and Challenges
	Data Formats
	Manufacturing Data Collection
	Data Linking and Analysis

	Positive Outcomes and Recommendations

	Conclusions

