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Abstract:   To calibrate near-field scanning 

microwave microscopes (NSMM) for defect 

detection and characterization in semiconductors, it is 

common to develop a parametric finite element 

analysis (FEA) code to guide the microscope user on 

how to optimize the settings of the instrument to 

improve its performance.   Two problems arise that 

make the application of the FEA code difficult if not 

impossible.  The first problem is due to the 

approximate nature of the FEA method and the 

critical requirement that the accuracy of the FEA 

solutions be mathematically verified during the entire 

calibration process.  The second problem is a pre-

requisite that the user's computer be licensed with the 

specific FEA software at a sizable cost and training 

time to the user.  In this paper, we solve both 

problems by designing an intelligent PYTHON code 

that manages the seamless running of two license-

free codes, namely, a compiled parametric COMSOL 

AC/DC-Module-based code that yields a series of 

solutions at various finite element mesh densities as 

input to a FEA-verification code written in a 

statistical analysis software named DATAPLOT that 

uses a nonlinear least squares method to check and 

verify the FEA solution of the COMSOL code.  An 

example of a generic NSMM calibration code 

running a coupled and license-free finite element and 

statistical analysis software is presented and 

discussed. 
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Disclaimer:   Certain commercial equipment, 

materials, or software are identified in this paper in 

order to specify the computational procedure 

adequately.  Such identification is not intended to 

imply endorsement by NIST, nor to imply that the 

equipment, materials, or software identified are 

necessarily the best available for the purpose. 

 

1. Introduction 
 

To calibrate near-field scanning microwave 

microscopes (NSMM), as shown schematically in 

Fig. 1, for detection, sizing, and depth estimation of 

surface and subsurface defects in semiconductors, it 

is common to develop a parametric finite element 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.  A near-field scanning microwave microscope 

(NSMM) design based on a coaxial resonator. (a) A 

schematic of the coaxial resonator, which is operated in 

transmission mode.  (b) A closer view of the prober tip, 

which is connected to the center conductor of the resonator 

and extends toward the sample through an opening at the 

bottom of the resonator (after Gao and Xiang [2] as 

reproduced in Fig. 7.6, p.115 of a book by Wallis and 

Kabos [1]). 
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analysis (FEA) code to guide the microscope user on 

how to optimize the settings of the instrument to 

improve its performance.    

Two problems arise that make the application of 

the FEA methodology difficult if not impossible.  

The first problem is due to the approximate nature of 

the FEA method and the critical requirement that the 

accuracy of the FEA solutions be mathematically 

verified during the entire calibration process (see, 

e.g., refs. [3] through [7]).  The second problem is a 

pre-requisite that the user's computer be licensed with 

a specific FEA software capable of solving the 

calibration problem (such as COMSOL [8]) at a 

sizable cost and training time to the user.   
In this paper, we solve both problems by 

formulating the conceptual design of an intelligent 

PYTHON code that manages, as shown by Chollet 

[9] and Fong, et al [10], the seamless running of two 

license-free6 codes, namely, a compiled [11] 

parametric COMSOL AC/DC-Module-based code 

that yields a series of solutions at various finite 

element mesh densities as input to a FEA-verification 

code written in a statistical analysis software named 

DATAPLOT [12] that uses a nonlinear least squares 

logistic function fit method [6, 7] to verify the FEA 

solution of the COMSOL code.   

To present the design concept of an intelligent 

PYTHON code for NSMM calibration, we choose to 

use an example problem with a very simple sample 

geometry, namely, a small spherical inclusion in a 

semiconductor block of 2 um length, 1 um width, and 

0.5 um thickness.  The diameter of the inclusion is 25 

nm, and the clear distance from the top of the sphere 

to the top surface of the block is 33.3 nm. 

In addition, we prescribe that the electrode radius 

is 10 nm, the electrode voltage is 0.1 v, and the 

operating frequency is 5 GHz. 

To simplify the problem further, we also 

prescribe the material properties of the block and the 

inclusion without an estimate of uncertainty, namely, 

The block electric conductivity = 1e-12 S/m. 

The block dielectric constant = 11.7. 

The inclusion electric conductivity = 0.01 S/m. 

The inclusion relative permittivity = 20. 

 In Section 2, we develop a parametric finite element 

analysis (FEA) code using the AC/DC module of the 

__________  
6COMSOL's license terms state that a code generated 

by the COMSOL Compiler may be executed by 

anyone without the need to access a license file. 

Thus, the generated program can be run by anyone, 

including those who do not have a paid COMSOL 

subscription. In this paper we use the term "license-

free" when describing these particular terms-of-use 

for a COMSOL Compiler-generated code. It does not 

apply to DATAPLOT, a non-commercial code. 

 
COMSOL code [8] and the COMSOL Compiler code 

[11] to obtain an executable code that runs in any 

Windows-based laptop without a COMSOL license.  

In Section 3, we develop a FEA verification code 

written in DATAPLOT [12] to check whether the 

finite element solutions at increasing mesh densities 

converge to an asymptotic solution with an 

acceptable measure of uncertainty.  In Section 4, we 

design a PYTHON code to manage the running of a 

coupled FEA code and a verification code such that a 

verified FEA solution is achieved to a prescribed 

level of uncertainty as required by the calibration 

mission.  

 

 

2. Finite Element Analysis Code for a Simple 

NSMM Flaw Depth/Size Estimation Problem 
 

In Figs. 2 and 3, we show the governing 

equations and a list of 19 adjustable parameters for 

the COMSOL FEA code of the simple NSMM 

problem, respectively.  In Figs. 4, 5, and 6, we show  

 

 

 

 

 

 

 
 

Figure 2.  Governing equations of the example problem as 

shown in the COMSOL AC/DC Module [8] screen output. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.  A list of parameters in the COMSOL FEA code 

that are designed to be changed by a user as needed. 

 

 

Note:  J is the current density, 

Qj, the current source, , the 

conductivity, E, the electric 

field, , the frequency, D, the 

electric flux density, Je, the 

external current density, V, the 

electric potential, and   j = √-1. 
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the typical sample geometry and mesh design.  After 

we completed the COMSOL code, we compiled it to 

get an executable code that runs in a license-free 

laptop (see Fig. 7 for a screen output display of the 

executable code).   Typical results of either the 

original or the compiled code appear in Figs. 8 and 9. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.  A screen display of the semiconductor block 

with a small spherical inclusion buried below the top. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.  A typical finite element mesh design for the 

semiconductor block with a buried spherical inclusion where 

all the elements are tetrahedrons.  It is worth noting that 

meshing in finite element analysis of electromagnetism 

problems differs from that of structural problems in one 

important feature, namely, the degrees of freedom of 

electromagnetic elements are associated with edges, faces, 

cells, not nodes. For brevity, we shall make no attempt in 

this paper to explain in details how the meshing was done in 

a COMSOL code except by referring to its manual [8]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  An enlarged view of the finite element mesh 

design for the buried spherical inclusion with a 

simultaneous display of the surrounding mesh without the 

presence of the inclusion. For details, see manual [8]. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7.  Screen output display of running a compiled 

COMSOL FEA code after the original COMSOL code is 

compiled.  Note the presence of all adjustable parameters 

and buttons to re-compute and to save results of a new run. 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Impedance results of the first four runs at four 

different finite element mesh densities to check 

convergence of solutions. 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  Readings for a key result of the FEA runs for 

four different mesh densities.  When the probe is located 

directly over the center of the spherical inclusion, the 

values of the impedance correspond to four mesh densities 

are:  Mesh Ref. No.       d.o.f.      Impedance (million ohms) 

              1 (coarser)      51,020 7.11 

              2      52,058 7.14 

              3      53,537 7.15 

              4 (finer)      55,313 7.17 
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3. A Finite Element Solution Verification Code 

 
To obtain an asymptotic solution of a sequence 

of FEA candidate solutions at increasing mesh 

densities (or degrees of freedom, d.o.f.), we apply a 

4-parameter nonlinear least-squares (NLLSQ) 

logistic function fit method (see, e.g., Fong, et al. [6, 

7]).  A minimum of five candidate solutions is 

required to run the fit method.  For the results given 

in Fig. 9, we had only four candidate solutions, so we 

need to run the executable FEA code one more time 

to generate a fifth candidate solution as follows: 
Mesh Ref. No.       d.o.f.     Impedance (million ohms) 

              1 (coarser)      51,020 7.11 

              2      52,058 7.14 

              3      53,537 7.15 

      4 (finer)      55,313 7.17 

      5 (new)      57,089 7.18 
In Fig. 10, we show a plot of the NLLSQ fit of 5 

points with an asymptotic solution = 7.186 M-ohms. 

In Fig. 11, we re-plot the result of the 5-point fit with 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 10.  A NLLSQ logistic function fit of 5 candidate 

solutions yields an asymptotic solution = 7.186 M-ohms. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 11.  A re-plot of the NLLSQ fit of the 5 candidate 

solutions with 95 % confidence limits and an estimate of 

the uncertainty as defined for a million d.o.f.  The 

asymptotic solution now equals 7.186 +/- 1.006 M-ohms. 

an estimate of uncertainty defined at one million 

d.o.f.  For the calibration purpose in mind, that 

uncertainty (= 14 %) is too large, so we need to add 

more points until the uncertainty is less than 2 %.  In 

Figs. 12-14, we show that the goal is reached where 

the number of candidate solutions reaches nine. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 12.  A NLLSQ fit of 6 candidate solutions yields an 

asymptotic solution equal to 7.189 +/- 0.414 M-ohms. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 13.  A NLLSQ fit of 7 candidate solutions yields an 

asymptotic solution equal to 7.189 +/- 0.241 M-ohms. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 14.  A NLLSQ fit of 9 candidate solutions yields an 

asymptotic solution equal to 7.189 +/- 0.115 M-ohms. 

 

 

 

 

 



Sep. 14, 2019 (Final Rev)                           For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019 

                                                                                https://www.comsol.com/conference2019/view-paper-file/xxxxx 

5 

 

4. Design of a PYTHON Calibration Code 

 

As shown by Chollet [9], PYTHON is highly 

suited as a language for writing AI codes in general, 

because PYTHON code acts as a manager to call on 

all types of application codes to run on different 

platforms either sequentially, iteratively, or both. 

For example, the following chunk of codes, 

written in PYTHON, is part of a larger code that will 

allow a user to run a COMSOL application code 

named    

"Fong_Kabos_app_Altasim_paid_license.exe": 

 

Def InverseProgram() : 

  self_m_fileInput=True 

  print '***  Run ComsolManager.py ' 

  total_volume=0.0 

  if self_m_fileInput : 

    returncode=None 

    try : 

      z=y[0]+'.dat' 

      comsol_data=os.path.join(dir_name,z) 

      #returncode= call(['C:/ 

Fong_Kabos_app_Altasim_paid_license.exe' , 

comsol_data]) 

      returncode= subprocess.Popen(['C:/ 

Fong_Kabos_app_Altasim_paid_license.exe' ,  

comsol_data]) 

      #subprocess.Popen.terminate() 

      pass 

      if returncode : 

        print 'Failure with return code' ,returncode 

    except : 

      pass 

InverseProgram()   

 

In short, a PYTHON code can be written to run two 

application codes, namely, a parametric FEA code to 

solve an NSMM problem and a FEA verification 

code to obtain an asymptotic solution within a 

prescribed level of uncertainty.  Since it is desirable 

for all NSMM calibration codes to run on Windows-

based computers without FEA software licenses, we 

show in this paper that with a compiled COMSOL 

finite element code and an open-source DATAPLOT 

statistical analysis code, it is feasible to design an  

intelligent PYTHON code to calibrate instruments 

such as the near-field scanning microwave 

microscope.               

 

 

 

 

 

 

 

5. A License-free Calibration Code 
 

The availability of a compiler for COMSOL 

FEA codes makes it possible for engineers to design 

all kinds of parametric FEA codes that will run in any 

Windows laptop without a FEA software license.  In 

Fig. 15, we show how to change the operating 

frequency from 5 GHz to 2 GHz and re-compute to 

get new results in a laptop without a software license.  

The new results are given in Fig. 16.  Using the 

PYTHON code, we can obtain a FEA asymptotic 

solution to any prescribed degree of uncertainty. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  A screen display of the compiled COMSOL 

code with 19 adjustable parameters and buttons to re-

compute, save new application, and create report. 

 

 

 

 

 

 

 

 

 
 

 

Figure 16.  Impedance results for the simple NSMM 

spherical inclusion problem where the operating frequency 

has just been altered from 5 GHz to 2 GHz.  Since the run 

only produced 4 candidate solutions, and the NLLSQ fit 

method requires a minimum of 5 candidates, the intelligent 

PYTHON code will automatically activate the executable 

COMSOL code to produce a 5th point.   
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6. Significance and Limitations of the 

Conceptual Design of an Intelligent 

Calibration Code 
 

The conceptual design of an intelligent 

PYTHON code to run license-free coupled FEA and 

verification codes is significant in at least two 

innovative aspects of engineering, namely, (a) it 

removes a dependency on FEA license for heavy use 

of candidate runs to achieve solution accuracy, and 

(b) it provides the engineer access to a sophisticated 

FEA solution verification tool that would otherwise 

be unused for lack of lengthy training.  It is obvious 

that the idea of designing an intelligent calibration 

code for NSMM is not limited only to a specimen 

with a spherical inclusion, because the finite element 

method is quite general. However, the proposed 

design is not without limitations, chiefly among 

which is the limited emphasis on seeking an 

asymptotic solution based on mesh density variations.  

It ignores uncertainty due to other factors such as 

material properties, voltage and frequency accuracy. 

 

 

7. Concluding Remarks 
 

Finite element analysis (FEA) methodology is a 

powerful tool to assist engineers and scientists in 

calibrating precision instruments such as near-field 

scanning microwave microscopes (NSMM).  The 

availability of a compiler for any FEA software to 

convert the source code into an executable code that 

runs in a laptop without a software license is a major 

step forward to broaden the usage of FEA 

methodology.  The introduction of an intelligent 

PYTHON code to run seamlessly both the FEA 

executable code and a FEA verification code in order 

to achieve a verified FEA asymptotic solution to a 

prescribed degree of uncertainty is a much-needed 

addition to the calibration group of the scientific 

measurement community.  
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