
Sep. 14, 2019 (Final Rev) For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019

 https://www.comsol.com/conference2019/view-paper-file/xxxxx

1

Design of an intelligent PYTHON code to run coupled and license-free

finite-element and statistical analysis software for calibration of near-

field scanning microwave microscopes1

Jeffrey T. Fong2*, N. Alan Heckert3, James J. Filliben3, Pedro V. Marcal4, Samuel Berweger5, T. Mitchell

Wallis5, Kristen Genter5, and Pavel Kabos5

1. Contribution of the National Institute of Standards & Technology (NIST). Not subject to copyright.

2. Applied & Computational Mathematics Division, NIST, Gaithersburg, MD 20899-8910, U.S.A.

*Corresponding author contact, fong@nist.gov, or, fong70777@gmail.com

3. Statistical Engineering Division, NIST, Gaithersburg, MD 20899-8960, U.S.A.

4. MPact Corp., Oak Park, CA 91377, U.S.A.

5. Applied Physics Division, NIST, Boulder, CO 80301, U.S.A.

Abstract: To calibrate near-field scanning

microwave microscopes (NSMM) for defect

detection and characterization in semiconductors, it is

common to develop a parametric finite element

analysis (FEA) code to guide the microscope user on

how to optimize the settings of the instrument to

improve its performance. Two problems arise that

make the application of the FEA code difficult if not

impossible. The first problem is due to the

approximate nature of the FEA method and the

critical requirement that the accuracy of the FEA

solutions be mathematically verified during the entire

calibration process. The second problem is a pre-

requisite that the user's computer be licensed with the

specific FEA software at a sizable cost and training

time to the user. In this paper, we solve both

problems by designing an intelligent PYTHON code

that manages the seamless running of two license-

free codes, namely, a compiled parametric COMSOL

AC/DC-Module-based code that yields a series of

solutions at various finite element mesh densities as

input to a FEA-verification code written in a

statistical analysis software named DATAPLOT that

uses a nonlinear least squares method to check and

verify the FEA solution of the COMSOL code. An

example of a generic NSMM calibration code

running a coupled and license-free finite element and

statistical analysis software is presented and

discussed.

Keywords: Computational modeling, COMSOL,

DATAPLOT, electromagnetics, element type, FEM,

finite element method, logistic function, mesh

density, near-field scanning microwave microscopy,

nonlinear least squares method, PYTHON, statistical

analysis, uncertainty quantification.

Disclaimer: Certain commercial equipment,

materials, or software are identified in this paper in

order to specify the computational procedure

adequately. Such identification is not intended to

imply endorsement by NIST, nor to imply that the

equipment, materials, or software identified are

necessarily the best available for the purpose.

1. Introduction

To calibrate near-field scanning microwave

microscopes (NSMM), as shown schematically in

Fig. 1, for detection, sizing, and depth estimation of

surface and subsurface defects in semiconductors, it

is common to develop a parametric finite element

Figure 1. A near-field scanning microwave microscope

(NSMM) design based on a coaxial resonator. (a) A

schematic of the coaxial resonator, which is operated in

transmission mode. (b) A closer view of the prober tip,

which is connected to the center conductor of the resonator

and extends toward the sample through an opening at the

bottom of the resonator (after Gao and Xiang [2] as

reproduced in Fig. 7.6, p.115 of a book by Wallis and

Kabos [1]).

Sep. 14, 2019 (Final Rev) For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019

 https://www.comsol.com/conference2019/view-paper-file/xxxxx

2

analysis (FEA) code to guide the microscope user on

how to optimize the settings of the instrument to

improve its performance.

Two problems arise that make the application of

the FEA methodology difficult if not impossible.

The first problem is due to the approximate nature of

the FEA method and the critical requirement that the

accuracy of the FEA solutions be mathematically

verified during the entire calibration process (see,

e.g., refs. [3] through [7]). The second problem is a

pre-requisite that the user's computer be licensed with

a specific FEA software capable of solving the

calibration problem (such as COMSOL [8]) at a

sizable cost and training time to the user.
In this paper, we solve both problems by

formulating the conceptual design of an intelligent

PYTHON code that manages, as shown by Chollet

[9] and Fong, et al [10], the seamless running of two

license-free6 codes, namely, a compiled [11]

parametric COMSOL AC/DC-Module-based code

that yields a series of solutions at various finite

element mesh densities as input to a FEA-verification

code written in a statistical analysis software named

DATAPLOT [12] that uses a nonlinear least squares

logistic function fit method [6, 7] to verify the FEA

solution of the COMSOL code.

To present the design concept of an intelligent

PYTHON code for NSMM calibration, we choose to

use an example problem with a very simple sample

geometry, namely, a small spherical inclusion in a

semiconductor block of 2 um length, 1 um width, and

0.5 um thickness. The diameter of the inclusion is 25

nm, and the clear distance from the top of the sphere

to the top surface of the block is 33.3 nm.

In addition, we prescribe that the electrode radius

is 10 nm, the electrode voltage is 0.1 v, and the

operating frequency is 5 GHz.

To simplify the problem further, we also

prescribe the material properties of the block and the

inclusion without an estimate of uncertainty, namely,

The block electric conductivity = 1e-12 S/m.

The block dielectric constant = 11.7.

The inclusion electric conductivity = 0.01 S/m.

The inclusion relative permittivity = 20.

 In Section 2, we develop a parametric finite element

analysis (FEA) code using the AC/DC module of the

6COMSOL's license terms state that a code generated

by the COMSOL Compiler may be executed by

anyone without the need to access a license file.

Thus, the generated program can be run by anyone,

including those who do not have a paid COMSOL

subscription. In this paper we use the term "license-

free" when describing these particular terms-of-use

for a COMSOL Compiler-generated code. It does not

apply to DATAPLOT, a non-commercial code.

COMSOL code [8] and the COMSOL Compiler code

[11] to obtain an executable code that runs in any

Windows-based laptop without a COMSOL license.

In Section 3, we develop a FEA verification code

written in DATAPLOT [12] to check whether the

finite element solutions at increasing mesh densities

converge to an asymptotic solution with an

acceptable measure of uncertainty. In Section 4, we

design a PYTHON code to manage the running of a

coupled FEA code and a verification code such that a

verified FEA solution is achieved to a prescribed

level of uncertainty as required by the calibration

mission.

2. Finite Element Analysis Code for a Simple

NSMM Flaw Depth/Size Estimation Problem

In Figs. 2 and 3, we show the governing

equations and a list of 19 adjustable parameters for

the COMSOL FEA code of the simple NSMM

problem, respectively. In Figs. 4, 5, and 6, we show

Figure 2. Governing equations of the example problem as

shown in the COMSOL AC/DC Module [8] screen output.

Figure 3. A list of parameters in the COMSOL FEA code

that are designed to be changed by a user as needed.

Note: J is the current density,

Qj, the current source, , the

conductivity, E, the electric

field, , the frequency, D, the

electric flux density, Je, the

external current density, V, the

electric potential, and j = √-1.

Sep. 14, 2019 (Final Rev) For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019

 https://www.comsol.com/conference2019/view-paper-file/xxxxx

3

the typical sample geometry and mesh design. After

we completed the COMSOL code, we compiled it to

get an executable code that runs in a license-free

laptop (see Fig. 7 for a screen output display of the

executable code). Typical results of either the

original or the compiled code appear in Figs. 8 and 9.

Figure 4. A screen display of the semiconductor block

with a small spherical inclusion buried below the top.

Figure 5. A typical finite element mesh design for the

semiconductor block with a buried spherical inclusion where

all the elements are tetrahedrons. It is worth noting that

meshing in finite element analysis of electromagnetism

problems differs from that of structural problems in one

important feature, namely, the degrees of freedom of

electromagnetic elements are associated with edges, faces,

cells, not nodes. For brevity, we shall make no attempt in

this paper to explain in details how the meshing was done in

a COMSOL code except by referring to its manual [8].

Figure 6. An enlarged view of the finite element mesh

design for the buried spherical inclusion with a

simultaneous display of the surrounding mesh without the

presence of the inclusion. For details, see manual [8].

Figure 7. Screen output display of running a compiled

COMSOL FEA code after the original COMSOL code is

compiled. Note the presence of all adjustable parameters

and buttons to re-compute and to save results of a new run.

Figure 8. Impedance results of the first four runs at four

different finite element mesh densities to check

convergence of solutions.

Figure 9. Readings for a key result of the FEA runs for

four different mesh densities. When the probe is located

directly over the center of the spherical inclusion, the

values of the impedance correspond to four mesh densities

are: Mesh Ref. No. d.o.f. Impedance (million ohms)

 1 (coarser) 51,020 7.11

 2 52,058 7.14

 3 53,537 7.15

 4 (finer) 55,313 7.17

Sep. 14, 2019 (Final Rev) For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019

 https://www.comsol.com/conference2019/view-paper-file/xxxxx

4

3. A Finite Element Solution Verification Code

To obtain an asymptotic solution of a sequence

of FEA candidate solutions at increasing mesh

densities (or degrees of freedom, d.o.f.), we apply a

4-parameter nonlinear least-squares (NLLSQ)

logistic function fit method (see, e.g., Fong, et al. [6,

7]). A minimum of five candidate solutions is

required to run the fit method. For the results given

in Fig. 9, we had only four candidate solutions, so we

need to run the executable FEA code one more time

to generate a fifth candidate solution as follows:
Mesh Ref. No. d.o.f. Impedance (million ohms)

 1 (coarser) 51,020 7.11

 2 52,058 7.14

 3 53,537 7.15

 4 (finer) 55,313 7.17

 5 (new) 57,089 7.18
In Fig. 10, we show a plot of the NLLSQ fit of 5

points with an asymptotic solution = 7.186 M-ohms.

In Fig. 11, we re-plot the result of the 5-point fit with

Figure 10. A NLLSQ logistic function fit of 5 candidate

solutions yields an asymptotic solution = 7.186 M-ohms.

Figure 11. A re-plot of the NLLSQ fit of the 5 candidate

solutions with 95 % confidence limits and an estimate of

the uncertainty as defined for a million d.o.f. The

asymptotic solution now equals 7.186 +/- 1.006 M-ohms.

an estimate of uncertainty defined at one million

d.o.f. For the calibration purpose in mind, that

uncertainty (= 14 %) is too large, so we need to add

more points until the uncertainty is less than 2 %. In

Figs. 12-14, we show that the goal is reached where

the number of candidate solutions reaches nine.

Figure 12. A NLLSQ fit of 6 candidate solutions yields an

asymptotic solution equal to 7.189 +/- 0.414 M-ohms.

Figure 13. A NLLSQ fit of 7 candidate solutions yields an

asymptotic solution equal to 7.189 +/- 0.241 M-ohms.

Figure 14. A NLLSQ fit of 9 candidate solutions yields an

asymptotic solution equal to 7.189 +/- 0.115 M-ohms.

Sep. 14, 2019 (Final Rev) For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019

 https://www.comsol.com/conference2019/view-paper-file/xxxxx

5

4. Design of a PYTHON Calibration Code

As shown by Chollet [9], PYTHON is highly

suited as a language for writing AI codes in general,

because PYTHON code acts as a manager to call on

all types of application codes to run on different

platforms either sequentially, iteratively, or both.

For example, the following chunk of codes,

written in PYTHON, is part of a larger code that will

allow a user to run a COMSOL application code

named

"Fong_Kabos_app_Altasim_paid_license.exe":

Def InverseProgram() :

 self_m_fileInput=True

 print '*** Run ComsolManager.py '

 total_volume=0.0

 if self_m_fileInput :

 returncode=None

 try :

 z=y[0]+'.dat'

 comsol_data=os.path.join(dir_name,z)

 #returncode= call(['C:/

Fong_Kabos_app_Altasim_paid_license.exe' ,

comsol_data])

 returncode= subprocess.Popen(['C:/

Fong_Kabos_app_Altasim_paid_license.exe' ,

comsol_data])

 #subprocess.Popen.terminate()

 pass

 if returncode :

 print 'Failure with return code' ,returncode

 except :

 pass

InverseProgram()

In short, a PYTHON code can be written to run two

application codes, namely, a parametric FEA code to

solve an NSMM problem and a FEA verification

code to obtain an asymptotic solution within a

prescribed level of uncertainty. Since it is desirable

for all NSMM calibration codes to run on Windows-

based computers without FEA software licenses, we

show in this paper that with a compiled COMSOL

finite element code and an open-source DATAPLOT

statistical analysis code, it is feasible to design an

intelligent PYTHON code to calibrate instruments

such as the near-field scanning microwave

microscope.

5. A License-free Calibration Code

The availability of a compiler for COMSOL

FEA codes makes it possible for engineers to design

all kinds of parametric FEA codes that will run in any

Windows laptop without a FEA software license. In

Fig. 15, we show how to change the operating

frequency from 5 GHz to 2 GHz and re-compute to

get new results in a laptop without a software license.

The new results are given in Fig. 16. Using the

PYTHON code, we can obtain a FEA asymptotic

solution to any prescribed degree of uncertainty.

Figure 15. A screen display of the compiled COMSOL

code with 19 adjustable parameters and buttons to re-

compute, save new application, and create report.

Figure 16. Impedance results for the simple NSMM

spherical inclusion problem where the operating frequency

has just been altered from 5 GHz to 2 GHz. Since the run

only produced 4 candidate solutions, and the NLLSQ fit

method requires a minimum of 5 candidates, the intelligent

PYTHON code will automatically activate the executable

COMSOL code to produce a 5th point.

Sep. 14, 2019 (Final Rev) For: Proceedings of COMSOL Users Conference, Boston, Oct. 2-4. 2019

 https://www.comsol.com/conference2019/view-paper-file/xxxxx

6

6. Significance and Limitations of the

Conceptual Design of an Intelligent

Calibration Code

The conceptual design of an intelligent

PYTHON code to run license-free coupled FEA and

verification codes is significant in at least two

innovative aspects of engineering, namely, (a) it

removes a dependency on FEA license for heavy use

of candidate runs to achieve solution accuracy, and

(b) it provides the engineer access to a sophisticated

FEA solution verification tool that would otherwise

be unused for lack of lengthy training. It is obvious

that the idea of designing an intelligent calibration

code for NSMM is not limited only to a specimen

with a spherical inclusion, because the finite element

method is quite general. However, the proposed

design is not without limitations, chiefly among

which is the limited emphasis on seeking an

asymptotic solution based on mesh density variations.

It ignores uncertainty due to other factors such as

material properties, voltage and frequency accuracy.

7. Concluding Remarks

Finite element analysis (FEA) methodology is a

powerful tool to assist engineers and scientists in

calibrating precision instruments such as near-field

scanning microwave microscopes (NSMM). The

availability of a compiler for any FEA software to

convert the source code into an executable code that

runs in a laptop without a software license is a major

step forward to broaden the usage of FEA

methodology. The introduction of an intelligent

PYTHON code to run seamlessly both the FEA

executable code and a FEA verification code in order

to achieve a verified FEA asymptotic solution to a

prescribed degree of uncertainty is a much-needed

addition to the calibration group of the scientific

measurement community.

8. References

1. Wallis, T. M., and Kabos, P., Measurement

Techniques for Radio Frequency Nanoelectronics.

Cambridge University Press (2017).

2. Gao, C., and Xiang, X. -D., "Quantitative

Microwave Near-Field Microscopy of Dielectric

Properties," Review of Scientific Instruments 69, pp.

3846-3851 (1998).

3. Zienkiewicz, O. C., The Finite Element Method in

Engineering Science, 3rd ed., pp. 190-191. McGraw-

Hill (1977).

4. Zienkiewicz, O. C., and Taylor, R. L., The Finite

Element Method, 5th ed., Vol. 1: "The Basis,"

Sections 8.3 and 8.4, pp. 168-172. Butterworth-

Heinemann (2000).

5. Jin, J., The Finite Element Method in Electro-

magnetics, 2nd ed. Wiley (2002).

6. Fong, J. T., Heckert, N. A., Filliben, J. J., Marcal,

P. V., and Rainsberger, R., "Uncertainty of FEM

Solutions Using a Nonlinear Least Squares Fit

Method and a Design of Experiments Approach,"

Proc COMSOL Users' Conf, Oct. 7-9, 2015, Boston,

MA,www.comsol.com/ed/direct/conf/conference2015

papers/papers/ (2015).

7. Fong, J. T., Filliben, J. J., Heckert, N. A., Marcal,

P. V., Rainsberger, R., and Ma, L. "Uncertainty

Quantification of Stresses in a Cracked Pipe Elbow

Weldment Using a Logistic Function Fit, a Nonlinear

Least Squares Algorithm, and a Super-parametric

Method," Procedia Engineering, 130, pp. 135-149

(2015).

8. COMSOL, AC/DC Module User's Guide, Version

5.4, www.comsol.com (2019).

9. Chollet, F., 2017, Deep Learning with Python.

Manning Publications (2017).

10. Fong, J. T., Marcal, P. V., Rainsberger, R.,

Heckert, N. A., and Filliben, J. J., "Design of an

intelligent PYTHON code for validating crack

growth exponent by monitoring a crack of zig-zag

shape in a cracked pipe," Proc. ASME Pressure

Vessels and Piping Division Conf., July 14-19, 2019,

San Antonio, TX, U.S.A., Paper PVP2019-93502.

New York, NY: Amer. Soc. Mech. Engineers (2019).

11. COMSOL, Compiler Module User's Guide,

Version 5.4, www.comsol.com (2019).

12. Filliben, J. J., and Heckert, N. A., 2002, Dataplot:

A Statistical Data Analysis Software System, National

Institute of Standards & Technology, Gaithersburg,

MD 20899,

http://www.itl.nist.gov/div898/software/dataplot.html

, 2002.

9. Acknowledgment

We wish to thank Drs. Sergei Yushanov, Kyle

Koppenhoefer, Joshua Thomas, and Jeffrey

Crompton, all of Altasim Technologies, LLC,

Columbus, OH, for their technical assistance during

this investigation. In addition, we wish to thank

Altasim Technologies, LLC, for providing the first

author of this paper (J. T. Fong) access to a licensed

copy of the COMSOL Compiler module for

obtaining new research result regarding the

conversion of a COMSOL source code (extension

.mph) to a compiled application code (extension

.exe).

http://www.itl.nist.gov/div898/software/dataplot.html
http://www.itl.nist.gov/div898/software/dataplot.html

