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ABSTRACT 

Microfabricated mechanical resonators enable precision measurement techniques from atomic 

force microscopy to emerging quantum applications. The resonance frequency-based physical 

sensing combines high precision with long-term stability. However, widely-used Si3N4 resonators 

suffer from frequency sensitivity to temperature due to the differential thermal expansion vs. the 

Si substrates. Here we experimentally demonstrate temperature- and residual stress-insensitive 

16.51 MHz tuning fork nanobeam resonators with nonlinear clamps defining the stress and 
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frequency by design, achieving low fractional frequency sensitivity of (2.5 ± 0.8)×10-6 K-1, a 72 

reduction. On-chip optical readout of resonator thermomechanical fluctuations allows precision 

frequency measurement without any external excitation at the thermodynamically-limited 

frequency Allan deviation of ≈ 7 Hz/Hz1/2 and (relative) bias stability of ≈ 10 Hz (≈ 0.610-6)  

above 1 s averaging, remarkably, on par with state-of-the-art driven devices of similar mass. Both 

the resonator stabilization and the passive frequency readout can benefit a wide variety of 

micromechanical sensors. 
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Mechanical instruments have been used as measurement tools for hundreds of years. With 

the advent of micro/nanofabrication, micro/nano-electro-mechanical systems (M/NEMS) have 

helped to advance our fundamental understanding of mesoscale physics and found a broad range 

of commercial applications, such as inertial sensing in automobiles and smartphones. While some 

of these sensors detect external forces or torques by converting them directly into mechanical 
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displacements, a widely-used high-performance alternative is to convert the unknown parameter, 

such as an added mass and a force or a torque gradient, into a change in the frequency of a high-

quality factor mechanical resonator. This modality is the basis of frequency-modulated atomic 

force microscopy (FM-AFM)1 and was used in a variety of demanding experiments operating in 

vacuum2,3, air4 or even liquid5. Frequency-based sensing provides a high measurement accuracy, 

dynamic range and sensitivity with stability over a long averaging time, all of which are 

determined by the high-quality mechanical system, while being immune to the nonlinearity, low-

frequency noise, and gain and bias drift in the electro- or opto-mechanical displacement detection. 

In most of the cases, high frequency – quality factor (fQ) products are beneficial for 

frequency-modulated schemes. Increasing the resonance frequency enables higher dynamic range, 

while lowering the dissipation and associated thermodynamic Langevin force noise power 

improves the fundamental limits on the frequency measurement uncertainty for a given excitation 

force. Nanomechanical resonators made of high intrinsic tensile stress silicon nitride (Si3N4) have 

shown great potential for such sensing applications6 because of their high mechanical quality 

factors, high frequencies, and facile fabrication. Stress engineering has been applied to increase 

fQ products of nanoscale Si3N4 tuning forks7 and has been recently combined with dissipation-

dilution to achieve breakthrough improvements in fQ, reaching 1014 to 1015 range8,9, sufficient in 

principle to observe quantum-mechanical behavior at room temperature. 

These advances open exciting opportunities for on-chip motion metrology and sensing. 

However, the frequency of such devices is determined by both designed geometry and the intrinsic 

stress ( 𝜎0 ). Unfortunately, 𝜎0  varies with different fabrication processes10. Additionally, the 

frequency of the mode of interest in the conventional stress-engineered doubly-clamped or drum-

head design geometries is strongly influenced by temperature due to the difference of the 
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coefficient of thermal expansion (CTE) between the Si3N4 device layer and the Si substrate most 

commonly used for such devices. The differential Si - Si3N4 CTE  results in a strong temperature 

dependence of the Si3N4 stress for rigidly clamped spatially-extended device11. Therefore any 

uncontrolled temperature changes induce undesirable frequency fluctuations12, requiring 

differential sensing schemes. The majority of current technical approaches for compensating 

temperature-induced frequency variation rely on matching different materials13 or active 

temperature control14.  

In this study, we show that doubly-clamped tensile mechanical resonators can be made 

insensitive to residual stress and temperature variation by using a completely passive stress-

engineered clamp co-fabricated from the same planar tensile-stress film. The clamp is designed to 

apply a predetermined amount of stress (exceeding the residual stress of the film, if desired), and 

maintain the resonator stress irrespective of the value of the residual stress or its thermally-induced 

variation due to the differential CTE. The experimentally measured frequency sensitivity to 

temperature of nanoscale Si3N4 tuning forks is lowered from 5050 Hz/K ± 40 Hz/K with fm ≈ 27.76 

MHz for a reference uncompensated fork to -42 Hz/K ± 14 Hz/K at fm ≈ 16.51 MHz for a tuning 

fork with the compensating clamp, achieving a fractional frequency sensitivity of (2.5 ± 0.8)10-6 

K-1, an  72 times reduction. All reported statistical uncertainties are one standard deviation over 

multiple measurements unless otherwise noted. Remarkably, we measure low frequency Allan 

deviation 𝜎𝑓 ≈ 10 Hz (
𝜎𝑓

𝑓𝑚
 ≈ 0.60×10-6) for ≥ 1 s averaging without any applied drive force, by only 

detecting the motion of the thermodynamically fluctuating mechanical resonator with a sensitive 

integrated cavity optomechanical readout. The measured resonator line width of ≈ 600 Hz, the 

measured Allan deviation slope and bias stability are shown to be unaffected by the temperature-

compensating clamping mechanism. 
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Scanning electron microscopy (SEM) images of temperature compensated and 

uncompensated tuning forks are shown in Figures 1(a) and (b), respectively. Each device consists 

of a tuning fork mechanical resonator and a microdisk optical resonator for near-field optical 

Figure 1. False-color electron micrographs of a tuning fork (a) with and (b) without temperature 

compensation. Bottom inset: Straightened nonlinear springs. Top inset: integrated photonic readout 

– microdisk optical resonator evanescently coupled to a tuning fork nanobeam. (c) Working principle 

of stress tuning during release. The schematic of the symmetric compensated device is shown as half. 

Before undercut, the nonlinear clamps provide less residual stress due to the curved springs. After 

undercut, the springs are fully stretched, providing stress equal to the stress of tension bar. (d) 

Working principle of temperature compensation after release. For optimally compensated devices, 

the extra stress of clamps and tension bar cancel each other, resulting in a temperature insensitive 

fork. (e) Numerical simulation of tuning fork beam stress and frequency vs. Si3N4 film initial 

(residual) stress. Different clamp geometries produce positive (red), neutral (green) and negative 

(purple) residual stress dependence above the threshold residual stress value of ≈ 0.4 GPa. Inset: The 

simulated tuning fork in-plane squeezing mode shape with exaggerated deformation.  
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readout of the tuning fork mechanical motion7. The uncompensated tuning fork consists of two 

parallel cantilever beams, and is doubly clamped with a long tension bar on the right. By 

comparison, the compensated tuning fork has two additional inclined-clamp bars, resulting in a Y-

shaped clamp at the right end of the tuning fork. Each of the inclined clamps is attached to the 

supporting structure by an array of geometrically nonlinear springs. All the devices are fabricated 

in a 250 nm thick stoichiometric Si3N4 layer, which is grown by low-pressure chemical vapor 

deposition (LPCVD) on a 3 μm thick silicon dioxide (SiO2) layer on a silicon substrate. We first 

used electron-beam (E-beam) lithography to define the geometry in a layer of positive tone E-

beam resist. The pattern was then transferred to the Si3N4 film by a CHF3/Ar/O2 inductively-

coupled plasma reactive ion etch (ICP RIE). Device fabrication is finished by a buffered oxide 

etch (BOE) undercut, which selectively removes the SiO2 to release the device with minimal 

etching of Si3N4. 

The nominal length and width of the tuning fork beams are 20 μm and 150 nm, 

respectively, in all the fabricated devices. The tension bar on the right-hand side of the tuning fork 

is 80 μm long. In the uncompensated device, the tension bar shrinks after device release due to the 

redistribution of the initially uniform Si3N4 stress, such that the stress in the tuning fork beam 

increases, as shown in Figure 1(c). Because the length of the tension bar determines the final stress 

in the tuning fork after undercut, one can tune the fork mechanical frequency simply by the design 

of the tension bar. This design-enabled tuning has been demonstrated in our previous work to 

achieve an up-to-three-fold stress increase, compared with the intrinsic Si3N4 film stress7 

In the temperature-compensated device (shown in Figure 1(a)), the Y-shaped clamp 

includes two symmetric clamp beams inclined  ±120° relative to the tension bar. Opposite the bar, 

each clamp beam is connected to the frame and the substrate via an array of 22 geometrically 
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nonlinear springs. The springs are curved before undercut with the shape defined by one period of 

a cosine function as 𝐴0cos(2𝜋𝑥/𝐿), where 𝐴0 = 0.48 μm is the amplitude of the cosine geometry, 

L = 20 μm is the length of the springs and x is the position along the longitudinal direction. They 

are designed to greatly and abruptly increase in stiffness at a strain value predetermined by the 

shape parameters 𝐴0 and L. This is achieved by choosing a curve that is as smooth as possible and 

choosing the narrowest width we can confidently fabricate for each curved beam to minimize 

initial stiffness. For the cosine shape, the total length along the beam is approximately 𝐿 + 𝜋2 𝐴0
2

𝐿
, 

therefore the transition is occurring at the nominal displacement of approximately 𝜋2 𝐴0
2

𝐿
 = 0.11 

μm (Supplementary Information). The ratio of the combined width of the nonlinear springs to the 

tension bar width affects the balancing point after release and the temperature response of the 

tuning fork. 

These additional inclined-clamps and the curved springs allow the tuning fork beam stress 

to be insensitive to the intrinsic Si3N4 stress while retaining the stress tuning capability enabled by 

the tension bar. During the release process (upper panel of Figure 1(c)), the tension bar first 

shrinks, as in the uncompensated device, stretching the tuning fork beams and straightening the 

curved springs in the inclined clamps. As a result, the tension bar increases the tuning fork beam 

stress and frequency similar to that in the uncompensated device. However, when the intrinsic 

Si3N4 film stress is large enough to fully straighten the nonlinear springs, their stiffness increases. 

The symmetric, inclined clamps then provide an effective balancing force in the opposite direction 

of the stretching force produced by the tension bar (lower panel of Figure 1(c)). Depending on the 

width of the elements, with the further increase in the residual stress the right-hand end-point of 

the compensated tuning fork can be designed to move left, right or stay fixed relative to the left-

hand end-point. Hence the tuning fork beam stress as well as mechanical frequency can be 
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determined by the design geometry insensitive to the initial, residual Si3N4 film stress. Thanks to 

the nonlinear temperature compensation clamps, the stretched tuning fork not only benefits from 

the stress-tuning-induced high frequency-quality factor product, but also becomes independent 

from the intrinsic stress and the ambient temperature variations. 

 

The stress insensitivity of the frequency enabled by the clamp design is illustrated by the 

results of Finite-Element-Method (FEM) simulations for typical clamp geometries.  Figure 1(e) 

depicts the modeled final beam stresses and mechanical frequencies of devices with different 

compensation level for different Si3N4 initial film stress. In the uncompensated device, the beam 

stress is linearly proportional to the intrinsic stress, σ  3.3 σ0.  In the compensated device, the 

beam stress in the tuning fork increases similarly for small intrinsic stress, before the nonlinear 

springs are fully straightened. When the intrinsic stress is above the threshold value (≈ 0.4 GPa) at 

which the nonlinear springs become straight and stiff, the beam stress becomes much less sensitive 

to the change of intrinsic stress as the inclined clamp beams counter-balance the tension bar. Note 

that the  1 GPa ‘clamped’ stress value (and the corresponding ‘clamped’ frequency) is below that 

of the uncompensated device. However, the compensated device beam stress still significantly 

exceeds the residual stress for most of the horizontal axis range in the figure, thus the stress 

engineering ability is retained.  

By changing the width ratio between the tension bar to the nonlinear spring, we can 

manipulate the balancing and the response of tuning forks to temperature. As a result, large, 

optimal, and small ratios of tension bar to nonlinear spring width produce under-compensated, 

optimally compensated, and over-compensated tuning forks, respectively. In Figure 1(e), the under 

(red), optimal (green), and over (purple) compensation in the simulation are achieved by fixing the 
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nonlinear spring width to 180 nm and varying the tension bar width to be 4 µm, 3.4 µm, and 3.1 

µm, respectively. Note that in the optimally-compensated device, the beam stress is almost 

constant after the nonlinear springs become fully straightened: the final beam stress in this device 

is determined by the clamp geometry only (the threshold displacement required to straighten the 

nonlinear spring) and is insensitive to the exact value of the Si3N4 intrinsic film stress. 

The stress and frequency variations due to differential CTE are equivalent to variation due 

to the change in the residual stress: in a device prior to release the thermal expansion of the 

substrate results in a change in the thin film stress with a change in temperature. As illustrated in 

Figure 1(d), the optimally balanced Y clamp can be designed to maintain the constant strain of the 

Figure 2. (a) Experimentally measured microdisk cavity mode optical spectrum with quality factor 

of 5.30×105. During the measurement, the laser wavelength (𝜆0) is fixed on the shoulder of the 

degenerate optical modes. The motion of the fork modulates the resonance of the optical mode, 

inducing varying transmission intensity proportional to the relative position of the fork. (b) 

mechanical vibration power spectral density for the compensated fork in air. (c),(d) mechanical 

spectra, in vacuum, of the compensated and uncompensated devices, respectively. Black solid lines 

are theoretical fit. 
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tuning fork despite such differential thermal expansion of the nitride film relative to the Si 

substrate. Note that for resonator film materials with significant variation of the Youngs modulus 

with temperature the clamp can be modified to compensate for the linear part of such variation, 

maintaining constant nanoresonator stress rather than strain. However, this comes at the expense 

of non-zero sensitivity to the initial residual stress in the film. 

While the described stress control approach relies on a tensile initial residual stress, the 

resulting temperature-insensitive stress in the resonator may be engineered to be compressive as 

well as tensile, if desired. To achieve this reversal, the nonlinear clamps would be replaced by 

tension bars while the tension bar would be replaced by an appropriately sized nonlinear clamp 

including nonlinear springs. This arrangement may help achieve and maintain a tensile stress lower 

than the initial stress, a zero stress or a compressive stress in the tuning fork.  The idea may be 

applied to devices such as buckled beams memory units15. 

To experimentally validate the approach, we have investigated the temperature dependence 

of fork frequency for designs with a varying ratio between the nonlinear spring and the tension bar 

widths. We have fabricated and tested devices with the nominal tension bar width varying from 

2.9 μm to 3.4 μm and nonlinear spring widths varied from 170 nm to 245 nm.  

The mechanical frequencies of the tuning forks are measured through a near-field cavity-

optomechanical readout16. Each tuning fork is near-field coupled across a  150 nm gap to a Si3N4 

microdisk optical cavity. The disk has a nominal diameter of 14 μm and supports whispering-

gallery (WGM) optical modes (Figure 2(a)). The tuning fork beam motion shifts the optical mode 

center frequency. When the interrogation laser is tuned to the shoulder of the optical resonance 

near the point of the highest slope, the transmitted optical intensity is modulated proportional to 

the mechanical displacement. The optomechanical coupling parameter gom/2π between the tuning 
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fork in-plane squeezing mechanical mode and the microdisk WGM is calculated to be  140 

MHz/nm, which indicates the optical mode frequency shift per unit modal displacement of the 

mechanical resonator. This near-field optical readout yields  1 fm/Hz1/2 displacement resolution16 

and enables a monolithic, robust, and fiber-pigtailed sensor technology17.  

To measure the mechanical frequencies, light was emitted from a 1300 nm wavelength 

band tunable laser and evanescently coupled to the optical microdisk resonator through a fiber 

taper helix probe18. The transmitted light intensity was measured by a photodetector (PD), with 

the output split into two channels. One channel connected to a data acquisition (DAQ) board for 

swept-wavelength spectroscopy of the optical cavity modes (Figure 2(a)). The other channel 

connected to an Electrical Spectrum Analyzer (ESA) to measure the mechanical power spectral 

density in air (Figure 2(b)) and extract the resonance frequency. In the subsequent tests of the 

frequency stability, the devices were placed in a vacuum chamber and a lock-in amplifier was used 

to capture time-domain mechanical motion, with root mean square of power spectral densities 

shown in Figure 2(c,d).  
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Since the optomechanical transduction noise is well below the random motion of the tuning 

fork driven by thermomechanical noise7,19, the mechanical frequencies were measured from the 

thermal motion spectra of the tuning forks without external excitation. The temperature was stably 

controlled within ± 0.1 K by a ceramic heater with a proportional–integral–derivative (PID) 

controller. The device was enclosed inside an acrylic chamber, with desiccant boxes placed in the 

chamber and constant desiccated air flowing through the chamber, to minimize the influence from 

moisture on the devices. At room temperature the frequencies of the first-order squeezing mode 

Figure 3. Experimentally measured temperature-induced frequency shift. The lines of the slopes 

from large to small corresponds to uncompensated devices to over-compensated devices. As the 

temperature is swept up and down, no large hysteresis shows on any line. The one standard 

deviation statistical uncertainties for the temperature sensitivity are determined by the linear least 

squares fits. The table shows the values of device parameters and temperature sensitivities. 
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were 𝑓01  16.51 MHz and 𝑓02   27.76 MHz for the compensated and uncompensated tuning 

forks, respectively.  

To verify the temperature compensation effect, the mechanical frequency shifts of different 

devices over the temperature range between 308 K (35 °C) and 355 K (82 °C) were measured as 

shown in Figure 3. Each measurement includes a downward followed by an upward temperature 

sweep and minimum hysteresis was found during the experiment. The table shows the designed 

values of nonlinear spring width (nlin. W), tension bar width (t.bar W), tension bar to nonlinear 

spring width ratio (t.bar W/nlin. W), measured temperature sensitivities (slope), and temperature 

sensitivity slope uncertainties (slope uncert.) for all the measured devices.  

The resonant frequency of the uncompensated device increased linearly with temperature 

at the rate of 5050 Hz/K ± 40 Hz/K. For a beam vibration dominated by the tensile stress, the 

fundamental mode resonant frequency fm as a function of temperature T can be described as12: 

𝑓𝑚(𝑇) =
1

2𝐿
√

𝜎(𝑇0) − 𝐴𝐸(𝛼𝑏𝑒𝑎𝑚 − 𝛼𝑠𝑢𝑏)(𝑇 − 𝑇0)

𝜌
 (1) 

where L is the beam length, 𝜎(𝑇0) is the tensile stress along the beam at reference temperature T0, 

ρ is the density of the beam, E is the Young’s modulus of the beam material, and αbeam and αsub are 

the CTE of the beam and substrate, respectively. Note that for the tuning fork with a tension bar, 

the stress is amplified relative to the residual stress 𝜎𝑜 by an amplification ratio 𝐴 =  𝜎(𝑇0) 𝜎𝑜⁄  

and the stress variation due to differential CTE is similarly amplified.  

Since the CTE of the Si substrate ( 2.6×10-6 K-1) is larger than that of Si3N4 device layer 

( 1.610-6 K-1), the fm increases as temperature increases. For uncompensated device 𝜎(𝑇0)  1.81 

GPa (calculated by FEM) is large relative to the thermal variation, and therefore we need to 

consider only the linear term: the temperature sensitivity can be then calculated as 
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𝑆 =
𝜕𝑓𝑚

𝜕𝑇
|

𝑇=𝑇0

= −
𝐴𝐸(𝛼𝑏𝑒𝑎𝑚 − 𝛼𝑠𝑢𝑏)

4𝐿√𝜌𝜎(𝑇0)
 (2) 

By using FEM-calculated values of A  3.12, E  310 GPa and ρ  3000 kg/m3 for the Si3N4 film, 

the uncompensated fork temperature sensitivity is calculated to be  5200 Hz/K, which also 

matches the experiment. 

For compensated devices, the resonant frequencies are also linearly-proportional to the 

temperature change but with much lower temperature sensitivity. Given the measured frequency 

of the uncompensated device, the residual stress is well above the threshold and the nonlinear 

springs are fully deployed as designed. Five temperature compensation strengths are 

experimentally demonstrated using different tension-bar to nonlinear spring width ratios. As 

shown in Figure 3 and the table, the frequency variation with temperature decreases, crosses zero 

and becomes negative with decreasing of tension bar to nonlinear spring ratio, illustrating 

engineering the temperature sensitivity by geometry design. The minimum temperature sensitivity 

of -42 Hz/K ± 14 Hz/K (fractional frequency sensitivity of (2.5 ± 0.8)10-6 K-1) is measured. 

Comparing to the uncompensated tuning fork, which has 5050 Hz/K ± 400 Hz/K (fractional 

sensitivity (182 ± 1)10-6 K-1), the temperature sensitivity is reduced by a factor of  72 using the 

passive temperature compensation design. In all cases, the temperature sensitivity is independent 

of temperature over the experimental temperature range of ≈ 50 K. 
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Such tuning forks can be used as frequency-readout displacement sensors in larger 

microsystems. For example, the compensating Y clamp can be anchored to the stationary substrate, 

while the left-hand side of the tuning fork can be attached to a larger, 100 m or millimeter-scale 

movable proof mass of a micromachined accelerometer. The fork resonator frequency will change 

proportional to the proof mass displacement, providing a sensitive, stable and high dynamic range 

motion readout. Although our devices have not yet been tested directly as mechanical motion 

sensors, the displacement sensitivity of the resonance frequency is numerically and analytically 

estimated to be  51 kHz/nm for the uncompensated fork and  74 kHz/nm for the compensated 

fork based on the device dimension and resonant frequency measured in the experiments. 

Therefore, we have further investigated the frequency noise and stability (and the corresponding 

achievable displacement readout noise and stability) for our devices and any effects the 

compensating Y clamp may have on these performance parameters. The measurements are 

performed in vacuum to lower the resonator dissipation rate by eliminating air damping to improve 

the thermodynamically-limited frequency measurement uncertainty. 
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Fig. 4 (a), (b) show the in-phase component of the lockin-detected mechanical 

displacement signal of the optimally compensated (Dev1) and the uncompensated (Dev2) device, 

respectively. No driving forces are applied and the devices are only subject to thermodynamic 

fluctuations at room temperature. The corresponding response in the frequency domain is shown 

in Fig. 2 (c), (d), where the Lorentz fit gives the mechanical damping of Dev1 and Dev2, ΓD1 2𝜋⁄ =

(604.7 ± 9.3) Hz and ΓD2 2𝜋⁄ = (630.1 ± 15.6) Hz, respectively.  Fig, 4 (c), (d) present the 

distribution of the time-domain signal amplitude squared 𝑅2, which is a straight line in log scale 

indicating that, as expected, the energy obeys the Maxwell-Boltzmann distribution ( exp[-

R2/(2kBT)]), where kB is the Boltzmann constant and  is a constant determined by the readout 

Figure 4. Time domain in-phase component of thermal mechanical vibration signal for (a) 

compensated and (b) uncompensated tuning forks. Boltzmann-distributed square of the vibration 

amplitude for (c) compensated and (d) uncompensated resonator. (e) Normalized energy 

autocorrelation calculated from time domain signal of the compensated (red) and uncompensated 

(blue) device. Red (blue) dash line is corresponding exponential fit for the compensated 

(uncompensated) device. Compensated and uncompensated decay times are similar and agree with 

the resonance line widths. Error bars are comparable with the size of dots.  (f). Experimentally 

measured frequency Allan deviation for compensated and uncompensated tuning forks driven 

solely by thermal fluctuations, without external excitation. Right-hand-side axis shows the 

corresponding achievable displacement imprecision when used as an on-chip displacement sensor. 

Different calculated frequency sensitivities to displacement for compensated and uncompensated 

devices result in different scale multipliers: 1.00× (uncompensated) and 1.45× (compensated). The 

uncertainties for Allan deviation are determined by Chi-Squared Confidence Intervals23. 
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gain, illustrating readout linearity. Fig. 4 (e) shows that the energy autocorrelation, 

〈𝑅2(𝑡0)𝑅2(𝑡0 + 𝑡)〉 − 〈𝑅2(𝑡)〉2 of Dev1 and Dev2 in log scale is a linear function of 𝑡.  Linear fits 

of the autocorrelations show that the energy relaxation time of the Dev1 and Dev2 are 𝑇1,D1 =

0.270 ms ± 0.004 ms and 𝑇1,D2 = 0.257 ms ± 0.003 ms, showing an energy dissipation rate of 

Γ0,D1 2𝜋⁄ = 590.2 Hz ± 8.5 Hz and Γ0,D2 2𝜋⁄ = 620.3 Hz ± 7.8 Hz. These values are close to 

the damping rates obtained from the fits to the spectra in Figure 2, indicating that the devices are 

not subject to much dephasing. In addition, the mechanical damping of both devices are 

approximately equal, showing that the Y-shape compensation structures do not add much extra 

dissipation to the system. 

The precision of these devices as frequency-based sensors depends on their frequency 

stability and our ability to precisely measure their frequency. While typically such sensors are 

driven to a large amplitude in order to lower the frequency measurement imprecision20, here we 

extract the frequency from the time-domain signal of thermal mechanical motion, precisely 

measured with the integrated cavity optomechanical readout. Its Allan deviation, shown in Figure 

4 (f), illustrates that the uncertainly of such frequency measurement can be remarkably low, useful 

for practical applications. The data for averaging times below 0.1 s agrees precisely with the 

thermodynamic frequency uncertainty limit (Cramer-Rao lower bound) for undriven resonator 

subject to thermal noise21: 

𝐶𝑅𝐿𝐵(𝑓) =
1

2𝜋
√

𝛤

2𝜏
(3) 

where 𝜏 is length of averaging time for the Allan deviation and the Γ 2𝜋⁄  = 620 Hz is used, based 

on the measured values. 



 

 

18 

In the experiment, the frequency 𝑓(𝑡) is calculated from phase difference between each 

two adjacent lockin data points22: 

𝑓𝑖(𝑡) =
𝜑𝑖+1 − 𝜑𝑖

2𝜋 𝑑𝑡
=

𝑥𝑖+1 − 𝑥𝑖

2𝜋 𝑑𝑡 |𝑥𝑖|
(4) 

where 𝜑𝑖 is the phase of a complex-valued lockin data sample 𝑥𝑖, and 𝑑𝑡 ≪ 1 Γ⁄  represents the 

sampling interval. Subject to thermal diffusion during the short time 𝑑𝑡, the variance 𝜎d𝑡
2  of 

𝑥𝑖+1 − 𝑥𝑖 is a constant. Therefore, for a sample 𝑥𝑖, the estimated frequency, 𝑓𝑖(𝑡) has a variance 

proportional to 1/|𝑥𝑖|
2 , i.e. the frequency estimation is more certain for samples with larger 

amplitude. Given a series of 𝑓𝑖(𝑡) over the n-th time interval of length 𝜏 the best estimate of the 

frequency from that time interval is the inverse-variance-weighted average: 

𝑓𝑛𝜏
̅̅ ̅̅ (𝜏) =

〈|𝑥𝑖|
2𝑓𝑖(𝑡)〉𝑛𝜏

〈|𝑥𝑖|2〉𝑛𝜏

(5) 

where 〈… 〉𝑛𝜏 represents average of the data in a time interval [(𝑛 − 1)𝜏, 𝑛𝜏]. 

Similarly, we calculate the Allan variance as a weighted average: 

𝜎𝜏
2(𝜏) =

1

2
〈𝑊𝑛𝜏

2 [𝑓(𝑛+1)𝜏
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝜏) − 𝑓𝑛𝜏

̅̅ ̅̅ (𝜏)]
2

〉𝑇0
(6) 

where 〈… 〉𝑇0
 represents average of the data over the full-time trace of length 𝑇0 and 𝑊𝑛𝜏 represents 

the weight of each element. The weights are 𝑊𝑛𝜏 = 〈|𝑥𝑖|2〉𝑛𝜏/〈|𝑥𝑖|
2〉𝑇0

 and tend to conventional 

unity weights for the  𝜏 > 1 Γ⁄ , while deviating from unity at small 𝜏 . Although there is no 

significant difference between weighted and unweighted Allan deviation for 𝜏 > 1 Γ⁄ , for short 

time scales  the widely used unweighted Allan deviation is only appropriate for driven resonators, 

where 𝑊𝑛𝜏 ≈ 1 on all time scales.  

Fig.4 (f) shows the Allan deviation of the two devices. At 𝜏 ≲ 100 ms, the frequency 

stability reaches the thermodynamic limit for resonators without drive. Note that this undriven 

limit is easier to reach compared to the thermodynamic limit under maximum drive still producing 
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linear response19,20. At 𝜏 ≳  100 ms, the Allan deviation is above the thermodynamic limit, 

indicative of a long-term frequency fluctuation process, such as commonly observed in many 

nanomechanical devices19,20. Both devices present similar bias stability of ≈ 10 Hz at 𝜏 of ≈ 1 s to 

10 s. The temperature compensation is achieved without degrading frequency noise and stability 

compared to the uncompensated control device. The ability to measure the relative frequency 

stability of ≈ 0.60×10-6 in 1 s bandwidth for the compensated device without any applied drive 

force is noteworthy, being on par with state-of-the-art driven devices of similar mass19. Finally, 

given the modeled sensitivity to displacement, this corresponds to the ≈ 200 fm displacement 

imprecision for a 1 s measurement. 

We have demonstrated a passive way to maintain the pre-defined tensile stress and 

resonance frequency in doubly-clamped nanofabricated mechanical resonators over a broad range 

of initial tensile material stress and operating temperature, regardless of the CTE mismatch with 

the substrate. This is achieved by attaching the resonator at one end to a special stress-engineered 

nonlinear compensating clamp, co-fabricated from the same tensile film. A broadly-used Si3N4 on 

Si nanofabrication platform is used to demonstrate stabilizing a ≈ 16.51 MHz, high-Q nanoscale 

tuning fork resonator, reducing its relative frequency temperature sensitivity by  72 times, down 

to (2.5 ± 0.8)10-6 K-1 at room temperature. Using a sensitive integrated cavity optomechanical 

readout to passively detect the motion of undriven, thermodynamically fluctuating resonator, we 

show that the frequency uncertainty remains at the thermodynamic limit of ≈ 7 Hz/Hz1/2 for up to 

0.1 s averaging, and the frequency (relative) bias stability is ≈ 10 Hz (≈ 0.60×10-6) above 1 s 

averaging. Importantly, the resonator dissipation rate, frequency noise and bias stability are 

unaffected by the stress stabilization and temperature compensation mechanism. This universal 

nonlinear clamp approach can be directly integrated with various existing tensile MEMS/NEMS 
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resonators for temperature/stress compensation. Additionally, the described temperature-

compensated resonant transducer, operable without external drive, introduces a novel approach for 

practical, high-precision, low-drift on-chip displacement measurement for MEMS sensor 

applications. 
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The finite-element-method (FEM) is done on commercial software. The 

geometry parameters used in the simulation are the same as the nominal dimensions 

listed in the main text, for example, the size of the tuning fork is 20 μm long, 150 

nm wide and 250 nm thick. Figure S1 shows the top view of the simulated geometry 

with a thickness of 250 nm. Thanks to the symmetry, only half of the geometry is 

considered to speed up the simulation process.  

 

Figure S2 The geometry used in FEM simulation. Only half of the geometry is 

considered to speed up the process. 

The material of the structure is Si3N4 with Young’s modulus E  310 GPa and 

mass density ρ  3000 kg/m3. The coefficient of thermal expansion (CTE) of the Si 

substrate is  2.6×10-6 K-1 and the Si3N4 device layer is  1.6×10-6 K-1. 

The used mesh type is the free tetrahedral mesh and the mesh size is with a 

minimum element size of 0.5 nm. The mesh convergence of the simulation is 

confirmed. 

The physics model is standard and routine. The simulation is done on the solid 

mechanics module with a pre-stressed analysis interface. The boundary conditions 

are listed as follows. The initial stress is pre-applied to the whole structure. The 

boundary labeled by the red dash line is set to be symmetry boundary condition. The 

green boundaries (anchored on the substrate) are set to be fixed. Other boundaries 

are set to be free.  Next, we solve this stationary problem with the FEM. The solver 

we used is a MUltifrontal Massively Parallel sparse direct (MUMPS) iterative solver 

that takes the geometric nonlinearity into account1. It covers the geometric 
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nonlinearity, i.e. the deformed-geometry-based “spring constant”. After the system 

reaches the equilibrium, we extract the tensile stress on the tuning fork. Finally, we 

numerically solve the pre-stressed eigenvalue (eigenfrequency) problem by FEM 

using the calculated tensile stress from the previous step2. We repeat the above steps 

and sweep the initial stress applied and obtain Figure 1 (e). Lines with different color 

corresponds to the different ratios between the width of springs and tension bar.  

The stress and frequency variations due to CTE can be analyzed by applying 

a pre-calculated displacement from CTE on the green boundaries. However, The 

stress and frequency variations due to CTE are equivalent to variation due to the 

change in the residual (initial) stress: in a device prior to release the thermal 

expansion of the substrate results in a change in the thin film stress with a change in 

temperature. Therefore, we do not repeatedly show temperature analysis again.  

Force-displacement relation of the nonlinear springs 

The nonlinear springs consist of 22 springs which are 180 nm wide and 

L = 20 μm long, respectively. The nonlinear springs are curved before undercut with 

the shape of a period of a cosine function as 𝐴0cos(2𝜋𝑥/𝐿), where 𝐴0 = 0.48 μm, 

giving the undeformed beam length of approximately 𝐿 + 𝜋2 𝐴0
2

𝐿
 ≈ 20.11 μm. Figure 

S2 (a) presents the top view of the nonlinear springs. 
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Figure S3 Nonlinear spring simulation. (a) Top view of the nonlinear springs 

used in the simulation. (b) Total deformation of the nonlinear springs. Colors 

label the displacement magnitude. (c) Force-displacement curve of the 

nonlinear springs. (d) Nonlinear spring constant as a function of displacement. 

Using FEM, we simulate the force-displacement curve along the x-axis shown 

in Figure S2 (c). By doing a derivative on it, we obtain the nonlinear spring constant 

as a function of displacement shown as Figure S2 (d). A transition occurs 

approximately at the displacement of 𝜋2 𝐴0
2

𝐿
  0.11 μm, the difference between the 

spring length and the initial distance between the spring ends L. Below this 

displacement the nonlinear springs are not fully straightened. The geometric 

nonlinearity gives rise to a displacement dependent spring constant. As the springs 

are fully straightened at  0.18 μm, the geometric nonlinearity disappears, and the 

spring constant keeps as a constant, more than an order of magnitude stiffer than the 

zero-displacement state. Figure S2 (b) shows the simulated total displacement of the 

springs. The dash lines represent their original position.  The center of the springs 

has the largest lateral displacement in the y-direction.  
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The full system can be usefully understood as a set of connected springs 

shown in Figure S3. Design of each spring is characterized by its stiffness and the 

initial (as-fabricated) length. To calculate the behavior upon release, first, the 

residual stress can be used to calculate the “zero-load”  length of each spring, for 

which the spring would apply zero force. From that zero-load length the springs need 

to be stretched to meet at an equilibrium point o, at which the four springs have to 

apply a zero net force. As shown in Figure S2, 𝑘𝑛𝑠 ≈ 0 until it is stretched by a 

distance   0.11 μm, after which the stiffness is constant,  comparable to 𝑘𝑏𝑎𝑟 and 

substantially larger than 𝑘𝑓𝑜𝑟𝑘. The sysem then behaves elastically, with the lengths 

and stiffnesses (mostly of the tension bar and nonlinear clamps) contloling the 

location of o as a function of stress and/or isotropic stretching of the substrate with 

the attached anchor points. Compensation is achieved when o is moving to the left 

with increasing tensile stress and/or increasing stretch of the substrate, maintaining 

a constant stress in the tuning fork.  

 

Figure S4 Schematic of the system. 𝑘𝑛𝑠, 𝑘𝑓𝑜𝑟𝑘 and 𝑘𝑏𝑎𝑟 represent the spring 

constants of nonlinear springs, tuning fork and tension bar, respectively.  

It is noteworthy that although this simple analysis is helpful to qualitatively 

understand how the compensation works, it is still necessary to do the quantitative 

complete stress analysis, as shown in the previous section, for obtaining the optimal 

compensation. 
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