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Abstract—We present a sensitivity-analysis and a Monte-Carlo 

algorithm for evaluating the uncertainty of multivariate 

microwave calibration models with regression residuals. We then 

use synthetic data to verify the performance of the algorithms and 

explore their limitations in the presence of correlated errors. The 

uncertainties we evaluate can be used to estimate the total 

uncertainty of a calibrated measurement when combined with the 

prediction intervals for that measurement. 

 
Index Terms— Coupling corrections, microwave calibration, 

on-wafer measurement, uncertainty. 

I. INTRODUCTION 

HILE the two current supplements to The Guide to the 

Expression of Uncertainty in Measurement [1] treat 

Monte-Carlo techniques [2] and multivariate data sets [3], 

neither treats the use of regression residuals to evaluate 

uncertainty. However, regression residuals are extremely 

important in the microwave measurement and other fields for 

estimating errors in incomplete models, which often are 

attributed to either incompletely characterized calibration 

artifacts or incompletely understood sources of error in an 

experiment or a data set. This paper helps fill this gap by 1) 

developing algorithms for evaluating uncertainty with 

regression residuals arising from incomplete multivariate 

regression models, 2) accounting for the uncertainty of the 

algorithms’ input quantities and 3) exploring the advantages 

and disadvantages of these algorithms for evaluating the 

uncertainty of microwave calibrations. 

Often microwave calibration models are well-enough 

understood to accurately predict their performance from first 

principles. In these situations, a complete understanding of the 

behavior of the calibration artifacts and their uncertainties and 

the calibration model can be used to predict the error in 

calibrated measurements of a device under test (DUT) with the 

procedures recommended in [1]. 

However, many microwave calibration models are not 

completely understood, and it becomes very difficult to 

accurately predict their performance from first principles. 

Examples include on-wafer calibrations in the presence of 

probe-to-probe coupling [4] and calibrations for over-the-air 

tests [5]. 

Even when the calibrations are well understood, the sources 
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of errors in the calibrations may be difficult to characterize, 

particularly when there are many error mechanisms to be 

considered. For example, while classic vector-network-

analyzer (VNA) calibrations are quite well understood, 

characterizing even a simple 50 Ω load requires measuring all 

of the connector dimensions, dimensions of the access line, and 

the dimensions and material parameters of the resistive 

elements and the substrates on which they are fabricated, and 

performing complex simulations to characterize from first 

principles [6]. Establishing calibrations in an on-wafer setting 

can be just as challenging [7]. In these situations, evaluating 

uncertainty from regression residuals is often useful. 

In [8], we discussed a general approach for using regression 

residuals to calculate the uncertainty in corrected microwave 

results. In that work we discussed three types of error that must 

be combined to arrive at the total uncertainty of the 

measurement of a DUT: 1) errors present in the input data used 

in the calibrations that do not lead to regression residuals, 2) 

uncertainty in the calibration model due to uncertainty in the 

coefficients describing the calibration model based on the 

calibration’s regression residuals, and 3) prediction intervals 

characterizing the remaining uncertainty in the measurement of 

the DUT based on a set of independent experiments. 

In this paper, we focus on algorithms that evaluate the 

uncertainty of microwave calibration models (i.e. error type 2 

in the last paragraph), by which we mean the impact on the 

modeled values of the uncertainty of the coefficients describing 

the model. These uncertainties are commonly characterized 

with “confidence intervals” or “confidence bands” in the 

regression literature (e.g. [8-17]) to differentiate the error in the 

model associated with prediction intervals, which characterize 

the uncertainty of the value of a new data point around the 

regressed curve (i.e. the estimated variation of the DUT results 

around the calibrated result) and are typically determined with 

Type B methods in The Guide to the Expression of Uncertainty 

in Measurement [1]. However, to avoid confusion with the 

conventional statistical use of the term confidence interval, we 

will simply refer to the uncertainty in the calibration model due 

to uncertainty in the coefficients describing the calibration 

model as the “uncertainty of the calibration model” in this 

paper. Likewise, we will reserve the use of the term confidence 

interval to refer to the probability that a population parameter 

falls inside the interval. This is the conventional use of the term 
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in the statistics community [1].  

When applied to regression problems, Monte-Carlo 

jackknife and bootstrap algorithms are often used to evaluate 

the uncertainty of models (i.e. error type 2 above) because they 

can leverage regression residuals and simultaneously account 

for nonlinearity in the propagation of uncertainty. For example, 

bootstrap methods are very useful for evaluating the statistics 

of economic models [18] and models in biology [19], where 

models are also difficult to understand and quantify. 

Jackknife and bootstrap algorithms are based on repeatedly 

sampling from regression residuals to evaluate the variability of 

the underlying regression models. However, they differ with 

respect to their resampling plans. The jackknife was one of the 

earliest approaches to evaluating the variance of a model from 

regression residuals. The jackknife is based on systematically 

removing each observation used in a regression problem and 

recalculating the result to evaluate the statistics of the model 

parameters. Bootstrapping was developed later and uses 

random sampling with replacement. Parametric bootstrapping 

is based on resampling under the assumption that the original 

data set is a realization of a random sample from a distribution 

of a specific parametric type. This is the approach that we 

follow in this paper. We remark that bootstrap and jackknife 

methods are used commonly-enough in statistics that even 

Wikipedia contains introductions to the methods [20, 21]. 

References [22-24] offer more in-depth explanations of the 

jackknife and bootstrap approaches to utilizing regression 

residuals and a variety of other statistical estimation problems. 

In [25], Wu presents an excellent summary of jackknife and 

bootstrapping algorithms for univariate regression problems, 

and discusses contributions made by Efron [26], Freedman 

[27], and others. One of Wu’s most important contributions in 

[25] was the development of “local” weighting functions used 

to adjust the variance of the residuals used in jackknife and 

bootstrapping algorithms to better reproduce the actual variance 

of the quantities calculated by the algorithm. While Wu 

primarily focused on algorithms for linear problems, he also 

briefly discussed extensions to nonlinear problems. Freedman 

[27, 28] also extended some of his univariate results to 

multivariate regression problems. Building on the contributions 

of Wu [25] and Freedman [27, 28], Eck [29] formalized 

Freedman’s extensions of bootstrap procedures to multivariate 

linear regression problems and offered detailed proofs of their 

validity. 

 Finding the sample mean and evaluating the uncertainty in 

this value as an estimate of the population mean can be 

considered a special case of a linear regression problem with a 

single variable in the model (i.e., the mean of the inputs). 

References [30] and [31] treat the problem of evaluating the 

uncertainty in the mean of multivariate input quantities with 

associated Monte-Carlo samples that approximate their 

uncertainty, which is not treated in The Guide to the Expression 

of Uncertainty in Measurement [1] or its supplements  [2, 3]. 

Because the algorithm allows for inputs with  associated Monte-

Carlo samples that approximate their uncertainty, it is suitable 

for use in the NIST Microwave Uncertainty Framework [32] 

and other similar software packages [33-35] designed for 

microwave calibration problems. These software packages are 

designed for ease of use and allow uncertainties to be 

propagated through complicated nonlinear problems [36, 37] 

when constructing complex traceability paths. This contrasts 

with Eck, Freedman and Wu, who do not incorporate inputs 

with associated uncertainty. 

While the sensitivity analysis we summarize in Section II-A 

is quite straight forward, the Monte-Carlo bootstrap algorithm 

we develop in Section II-B is more complex and departs from 

prior work. Table I compares some of the prior work on 

bootstrap algorithms to the bootstrap algorithm we develop in 

this paper, which is the only one of the four that accepts inputs 

with uncertainty, is applicable to linear and nonlinear 

multivariate regression problems and supports local weighting 

to account for limited degrees of freedom in the input data (see 

Section III-C). 

As we mentioned earlier, in this paper we will focus 

primarily on uncertainty of microwave calibration models (i.e. 

error type 2 above) and test the sensitivity-analysis and Monte-

Carlo bootstrap algorithms with synthetic data on an important 

problem in on-wafer microwave calibration: the evaluation of 

uncertainty in microwave on-wafer coupling corrections as 

formulated in [4]. We chose this problem because there are no 

well-established models for determining the errors in these 

calibrations from first principles.  

We will also verify some of the considerations discussed in 

[8] for summing the uncertainty of the microwave calibration 

models (i.e. error type 2 above) and the remaining uncertainty 

(i.e. error type 3 above) associated with the prediction intervals. 

While we will construct our algorithms to accurately propagate 

input errors through the algorithms (i.e. error type 1 above), we 

will examine and verify this aspect of the performance of these 

algorithms in a separate publication. 

II. UNCERTAINTY-EVALUATION ALGORITHMS 

Most microwave calibration models, and many calibration 

models in other fields, can be written in the form 𝑦 = 𝑓(𝛽; 𝑥) +
휀, where f is the calibration model and the β are usually referred 

to as calibration coefficients. In microwave problems, the 

calibration model f is almost always a vector function 

describing the way in which uncorrected vectors of 

measurements x are transformed into corrected vectors 

measurements y. The error term 휀 captures the inability of the 

calibration model f to perfectly calibrate the corrected 

measurements y. Regression algorithms are often used to derive 

an estimate �̂� for the calibration coefficients β that define the 

TABLE I 

COMPARISON TO PRIOR BOOTSTRAP ALGORITHMS 

 Wu [25] Eck [29]  Frey [30] This Work 

Dimension Univariate Multivariate Multivariate Multivariate 

Problem type Regression Regression Mean Regression 

Regression Nonlinear Linear Linear Nonlinear 

Input uncert. No No Yes Yes 

Weighting Local None Global Local 
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calibration model. 

In calibration problems, the goal is to evaluate the 

uncertainty in an estimate �̂�DUT of a calibrated measurement 

from a specific measurement 𝑥DUT using 𝑦DUT ≈ 𝑓(�̂�; 𝑥DUT). 

Evaluating the uncertainty in the calibration model f, which 

arises from the uncertainty of �̂�, is the principal goal of this 

paper. However, the uncertainty of �̂� is of direct interest when 

regression is used to solve for physical parameters, such as 

occurs in transistor-model parameter extraction and calculating 

dielectric constants from resonator and transmission-line 

measurements. The methods that we discuss here are equally 

applicable to this set of problems. 

While sensitivity analyses are unable to evaluate probability 

distribution functions and statistical bias in nonlinear statistical 

problems, they allow us to evaluate the impact of each 

uncertainty mechanism separately and can be made very 

efficient. Monte-Carlo analyses, on the other hand, are ideally 

suited to non-linear statistical problems1 and evaluate the 

probability distributions of variables they determine, even if 

they cannot be performed as efficiently as sensitivity analyses. 

These considerations motivated the development of both a 

sensitivity-analysis and a Monte-Carlo algorithm to support the 

broad range of calibration algorithms supported by the NIST 

Microwave Uncertainty Framework [32] and other similar 

packages [33-35]. 

A. Sensitivity-Analysis Algorithm 

For most microwave calibration problems, we perform the 

calibration by collecting frequency-dependent measurements xi 

of I calibration artifacts, where i = 1, 2, …, I. We then optimize 

the calibration coefficients β at each frequency to best map the 

I measurements xi of the calibration artifacts into the I responses 

yi that we expect based on our physical understanding of the 

electrical behavior of the calibration artifacts. Thus, the yi, 

which are column vectors of size R, are usually well 

understood. In the case of vector network analyzer calibrations, 

models for the calibration artifacts are often derived from 

electrical models of the behavior of the artifact based on its 

physical characteristics, such as its mechanical dimensions, 

metal conductivity and dielectric constants. 

Most often, we find our nominal estimate �̂� for the calibration 

coefficients β by minimizing the sum of squares of the vector-

residuals 휀𝑖 in 

 𝑦𝑖 = 𝑓(�̂�;  𝑥𝑖) + 휀𝑖 (1) 

for the i = 1, 2, …, I calibration artifacts. Here f is a known 

vector function of size R describing the way in which the 

calibration transforms uncorrected measurements xDUT of a 

device under test into corrected measurements yDUT of the 

device under test. Furthermore, we are usually interested in 

evaluating the uncertainty of the corrected measurements y 

given the accuracy with which we know the actual electrical 

properties of the calibration artifacts. Thus, we see that the 

 
1 The importance of nonlinear statistical analyses in microwave engineering 

should not be underestimated, as even linear electrical circuits display non-
linear behavior in the statistical sense. This is because electrical linearity 

between the input and output of the circuit is not enough to ensure that the 

definitions yi of the calibration artifacts share the same space as 

the corrected measurements yDUT of a device under test and we 

are interested in the uncertainty of both the yi and the yDUT, as 

well as any uncertainty of the uncorrected measurements xi and 

the xDUT. that may give rise to additional uncertainty in �̂� and 

yDUT. 

The estimated values �̂�𝑖 of the yi based on  �̂� are given by 

 �̂�𝑖 = 𝑓(�̂�;  𝑥𝑖) . (2) 

Thus, we can express the regression residuals 휀𝑖 as 

 휀𝑖 = 𝑦𝑖 −  �̂�𝑖 . (3) 

We now use the regression residuals 휀𝑖 to approximate the 

variance of yi. If P is the total number of complex values we 

estimate in β at each frequency, I is the number of measurement 

pairs (xi, yi) and R is the dimension of the yi, we have IR 

complex observations and IR - P degrees of freedom that we 

can use to estimate β. Thus, (𝐼𝑅 (𝐼𝑅 − 𝑃)⁄ ) var(휀𝑖) is an 

unbiased estimator for var(𝑦𝑖) [38, 39]. Finally, if we use the 

regression residual 휀𝑖 to approximate the square root of the 

variance of 𝑦𝑖 − �̂�𝑖, we can estimate the standard uncertainty of 

yi with √𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  휀𝑖  and associate 2(IR - P) degrees of 

freedom with that estimate [38, 40, 41].  The factor of two in 

the associated degrees of freedom is needed to account for the 

real and imaginary parts of each complex number. 

1) Sensitivity-Analysis-Algorithm Implementation 

We implemented the sensitivity-analysis algorithm by, for 

each i, finding the �̂�𝑖 that minimizes the sum of squares of the I 

residuals ∆𝑖𝑗 in 

 𝑦𝑗 + 𝛿𝑖𝑗  √𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  휀𝑖 = 𝑓(�̂�𝑖;  𝑥𝑗) +  ∆𝑖𝑗 , (4) 

where j = 1, 2,…, I, δij is the Kronecker delta (δij = 1 if i = j and 

δij = 0 if i ≠ j), the residuals 휀𝑖 were minimized in (1) and (3) 

during the regression that solved for �̂�, and the new residuals 

∆𝑖𝑗 are the residuals of the regression used to find the �̂�𝑖 in (4). 

Note that �̂�𝑖 −  �̂� estimates the impact of the ith residual on �̂�. 

As we are already estimating the standard uncertainty of yi with 

√𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  휀𝑖  and assuming linearity, we can identify the  

�̂�𝑖 − �̂� as the linear approximation of the standard uncertainty 

of the component of uncertainty of �̂� due to the ith residual. 

Given that √𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  휀𝑖  had 2(IR - P) degrees of freedom 

associated with it, this component of uncertainty in �̂� also has 

2(IR - P) degrees of freedom associated with it. 

 Finally, we note that the newer statistical tools used in the 

microwave community to evaluate uncertainties and track 

correlations [32-35] simply add components of the uncertainty 

in the inputs from the sensitivity-analysis to the components of 

the uncertainty at the output, and we do not need to include this 

functionality explicitly in the sensitivity-analysis algorithm we 

outlined in this section. This is justified because the sensitivity 

analysis is based on assumptions of linearity. The Monte-Carlo 

response of the circuit is linear in each of the error mechanisms included in the 

error analysis, which is the criterion for linearity in the statistical sense, not just 
linearity in the inputs to the electrical circuit. 
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bootstrap algorithm we discuss next is specifically designed to 

avoid assumptions of linear error propagation.   

B. Monte-Carlo-Analysis Algorithm 

We also implemented a frequentist (as contrasted to a 

Bayesian) Monte-Carlo bootstrap algorithm to evaluate the 

uncertainty in calibration models. The bootstrap algorithm must 

account not only for the residuals observed in the regression 

process, but also for input quantities with associated Monte-

Carlo samples approximating their uncertainty that do not 

manifest themselves as regression residuals. 

We start by indexing both the Q Monte-Carlo samples 

associated with the input quantities to this algorithm and the Q 

Monte-Carlo bootstrap realizations this algorithm produces 

with the same superscript q = 1, 2, …, Q. Thus, xi
q corresponds 

to the qth Monte-Carlo sample approximating the uncertainty of 

the uncorrected incoming measurements, while yi
q corresponds 

to the qth Monte-Carlo sample approximating the uncertainty of 

the incoming model for the electrical behavior of the ith 

calibration artifact. 

Wu [25], Efron [26], Freedman [27, 28], Eck [29], and others 

use the nominal residuals 휀𝑖 to form the Monte-Carlo bootstrap 

samples. As we wish to account for possible statistical bias 

introduced by the Monte-Carlo samples associated with the 

algorithm’s inputs, we depart from this conventional approach 

and follow Frey, et al. [30, 31] to account for the variability of 

the xi
q and yi

q as we form Monte-Carlo samples that will 

simulate the randomness of the multivariate residuals 휀𝑖 we 

observe in the calibration procedure. Thus, we use a two-step 

procedure. In the first step, we use the Monte-Carlo samples xi
q 

and yi
q associated with the xi and the yi to evaluate the residuals. 

In the second step, we use the residuals evaluated in the first 

step to perform the Monte-Carlo bootstrap.  

1) Residual Evaluation 

Neither Wu [25], Efron [26], Freedman [27, 28] or Eck [29] 

account for the Monte-Carlo samples xi
q and yi

q that are input 

into the regression problem. This forces us to change our 

resampling scheme to account for statistical bias and problems 

in which we have a limited number of measurements, as 

described below. 

To evaluate the residuals while accounting for possible 

statistical bias in the input Monte-Carlo samples xi
q and yi

q, we 

follow [30, 31] and perform Q regressions to find the Q model 

parameters �̂�𝑞 by minimizing the sum of squares of the vector-

residuals 휀𝑖
𝑞
 in 

 𝑦𝑖
𝑞

= 𝑓(�̂�𝑞;  𝑥𝑖
𝑞

) +  휀𝑖
𝑞
  (5) 

for each q. We then form the qth Monte-Carlo estimate �̂�𝑖
𝑞
 for yi 

from the qth set of calibration parameters �̂�𝑞 with 

 �̂�𝑖
𝑞

= 𝑓(�̂�𝑞;  𝑥𝑖
𝑞

) . (6) 

 Now, instead of relying on the nominal residuals 휀𝑖 = 𝑦𝑖 −
 �̂�𝑖 from (3), as was done by Wu [25], Efron [26], Freedman 

[27, 28] and Eck [29], or the residuals 휀𝑖
𝑞

=  𝑦𝑖
𝑞

− �̂�𝑖
𝑞
calculated 

from (6) at each Monte-Carlo iteration, we calculate the mean 

휀𝑖
∙ of the Q Monte-Carlo realizations of the ith residual 

 휀𝑖
∙ =  

1

𝑄
∑ (𝑦𝑖

𝑞
− �̂�𝑖

𝑞
)𝑞 − 휀∙

∙ ,  (7) 

where 

 휀∙
∙ =  

1

𝐼𝑄
∑ (𝑦𝑖

𝑞
−  �̂�𝑖

𝑞
)𝑖,𝑞 =  

1

𝐼𝑄
∑ 휀𝑖

𝑞
𝑖,𝑞  . (8) 

 The means 휀𝑖
∙ of the residuals 휀𝑖

𝑞
 allow us to capture the 

statistical bias missing in the nominal residuals 휀𝑖 = 𝑦𝑖 − �̂�𝑖 

from (3) and have lower variance than the 휀𝑖
𝑞
 calculated from 

(6) [30]. The 휀𝑖
∙ will be used in the next step of the algorithm to 

form Monte-Carlo bootstrap samples that simulate the 

randomness of the residuals in independent measurements. 

2) Monte-Carlo Bootstrap Procedure 

 Now that we have determined the 휀𝑖
∙, we perform an 

additional Monte-Carlo parametric bootstrap procedure across 

the q. Because we often don’t have many measurements, we do 

not use sampling with replacement, as is typically done [26]. 

Instead, we form the qth Monte-Carlo parametric bootstrap 

sample yi
q* (see Section 5.2 of [24]) with 

 𝑦𝑖
𝑞∗

= 𝑦𝑖
𝑞

+ √
𝐼𝑅

𝐼𝑅−𝑃
 휀𝑖

∙𝑁𝑖
𝑞

(0,1) , (9) 

where the yi
q*, yi

q and 휀𝑖
∙ are all vectors of the same dimension 

R, Ni
q is the qth draw from the ith scalar Gaussian distribution 

(see Appendix I for a discussion of other sampling 

distributions) with mean 0 and variance 1, and we use the factor 

√𝐼𝑅/(𝐼𝑅 − 𝑃) in (9) to again compensate for the finite number 

of degrees of freedom available in the IR observations. 

 The first Monte-Carlo sample 𝑦𝑖
𝑞
 in (9) captures 

uncertainty associated with the incoming yi, while the second 

term in (9) is used to simulate the randomness of the residuals. 

The two terms in equation (9) capture the overall uncertainty in 

the model. The first term in (9) must be included to account for 

systematic error present in the calibration. The second term in 

(9) must be included to account for the error due to the lack of 

fit to the model, the principle goal of the algorithm. Neither can 

be neglected. 

disk

disk

disk

Generate calibration-artifact coupling levels consistent with selected calibration coefs.

Save ideal calibration coefficients

For ntrial = 1 to Ntrials

Add random errors to ideal measurements

Solve for perturbed calibration coefficients, save

Assess actual statistics

Evaluate uncertainty with algorithms of Section II, save

Determine accuracy of uncertainties eval. by alg. of Sec. II

Compare actual statistics to evaluated uncertainties

Select coupling levels and set associated calibration coefficients

 
 
Fig. 1.  Simulator flow chart. 
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 Finally, the 𝑦𝑖
𝑞∗

are used to find the bootstrap solutions �̂�𝑞∗ 

by minimizing the sum of the squares of the ∆𝑖
𝑞
 in2 

 𝑦𝑖
𝑞∗

= 𝑓(�̂�𝑞∗;  𝑥𝑖
𝑞

) +  ∆𝑖
𝑞
 . (10) 

 In summary, the incoming Monte-Carlo samples yi
q in (9) 

and xi
q in (10) serve to propagate the uncertainty in the xi and yi 

through the bootstrap algorithm to the �̂�𝑞∗. The second term 

√𝐼𝑅/(𝐼𝑅 − 𝑃) 휀𝑖
∙𝑁𝑖

𝑞
(0,1) in (9) simulates the randomness of 

the residuals in the model. And, finally, we use the means 휀𝑖
∙  in 

(9) to include the systematic bias captured in the Monte-Carlo 

samples xi
q and yi

q approximating the uncertainty in the inputs 

xi and yi. This also takes advantage of the fact that the means 휀𝑖
∙  

have a higher number of degrees of freedom than the 휀𝑖
𝑞

=
 𝑦𝑖

𝑞
−  �̂�𝑖

𝑞
, which may add excess variability to the residuals 

[30, 31]. 

 Now, not only can we evaluate the uncertainty of the model 

with the Monte-Carlo bootstrap results  �̂�𝑞∗, but we can also 

evaluate the uncertainty of calibrated measurements of a DUT 

due to uncertainty in the model with the bootstrap samples �̂�DUT
𝑞∗

 

calculated from 

 �̂�DUT
𝑞∗

= 𝑓(�̂�𝑞∗;  𝑥DUT
𝑞

) . (11) 

Furthermore, the uncertainties we evaluate in both  �̂�𝑞∗ and 

�̂�DUT
𝑞∗

 include components of uncertainty in the inputs to the 

calibration algorithm and statistical bias the uncertainty in these 

inputs may add to the residuals. 

III. SIMULATIONS 

After integrating the two general algorithms for estimating 

the uncertainty of calibration models described in the last 

section into the Microwave Uncertainty Framework [32], we 

applied the algorithms to the specific problem of correcting for 

coupling in on-wafer calibrations treated in [4]. This coupling-

correction algorithm estimates the four complex coupling 

coefficients of the 16-term VNA error-correction model of [42]. 

Thus, the total number of complex numbers P we estimate in β 

at each frequency is four. 

We don’t expect the two algorithms we developed in the last 

section to evaluate the uncertainties we are looking for 

perfectly. Thus, we wrote a simulator tool to investigate the 

ability of the algorithms to evaluate the uncertainty of the 

coupling-correction calibration model. The flowchart for the 

simulator is sketched in Fig. 1 and details of the “internal” 

coupling model we used may be found in [4]. The simulator 

generates a synthetic calibration and DUT data with random 

errors designed to simulate various physical errors, allowing us 

to verify our implementation of the sensitivity-analysis and 

Monte-Carlo algorithms described in the preceding section and 

explore their advantages and disadvantages. The simulator then 

tests the ability of the algorithms to accurately evaluate, on 

average, calibration coefficients and transmission through a 

DUT and the variance of these quantities when on-wafer 

coupling corrections are applied to noisy synthetic data. 

 

  

 
2 Note that the residuals ∆𝑖

𝑞
 in (10) are not equal to the residuals 휀𝑖

𝑞
=  𝑦𝑖

𝑞
−

 �̂�𝑖
𝑞
calculated in (6). The residuals 휀𝑖

𝑞
 were minimized in (6) to find the 

calibration parameters �̂�𝑞, while the residuals ∆𝑖
𝑞
 are minimized in (10) to find 

bootstrap samples �̂�𝑞∗. 
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Mundform, et al. [43] performed a comparative study of prior 

simulations of this type, and suggested that between 5,000 and 

10,000 Monte-Carlo replicates were appropriate in the 

simulation tools they reviewed. However, the coupling 

corrections we performed were too computationally intensive 

on the desktop computer platform using the current version of 

the Microwave Uncertainty Framework, which was 

programmed in Visual studio with un-optimized algorithms, to 

complete 5,000 simulation trials with each trial testing the 

algorithms we presented in Section II with 5,000 Monte-Carlo 

replicates, in less than 24 hours. Thus, we had to place some 

limitations on the number of Monte-Carlo replicates and trials 

used in our results. In Section III-B-1 we will examine the 

performance of the algorithms as a function of the number of 

Monte-Carlo replicates utilize by the algorithm. 

For these simulations we selected a rectangular distribution 

with a width of 0.001 for the real and imaginary parts of the 

errors in the coupling-correction artifacts we used in the 

simulation (see Table II) and used a perfect 20 dB attenuator as 

the DUT in these numerical experiments. The simulator was 

configured to first generate ideal data for the algorithms of 

Section II to solve, and 

then perturbed data for 

each trial for the 

algorithms of Section II 

to re-solve. The 

simulator was configured 

to add errors into either 

the uncalibrated (x) 

calibration-artifact 

and/or DUT 

measurements or the 

calibration-artifact 

definitions and/or 

calibrated DUT measurements (y). However, in practice, we 

found that the algorithms of Section II performed similarly 

when errors were added into the uncalibrated (x) measurements 

and when errors were added into the definitions and calibrated 

DUT measurements (y), and thus only present results from the 

former case here.   
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Fig. 2.  Real (top) and imaginary (bottom) parts of a nominal single-

frequency estimate and the Monte-Carlo mean of a calibrated DUT 

transmission coefficient compared to actual values in single-frequency 

simulations based on synthetic coupling-correction data. The first 9 
coupling-correction artifacts in Table II were used in the simulations. 
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Fig. 3.  Variance of the real (top) and imaginary (bottom) parts of the 
calibrated transmission term of the DUT evaluated by the algorithms 

presented in Section II compared to the actual variance in single-

frequency simulations based on synthetic coupling-correction data. The 
first 9 coupling-correction artifacts in Table II were used in the 

simulations. 
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TABLE II 

COUPLING-CORRECTION ARTIFACTS 

Artifacts TYPE 
S11 

S22 

1, 10, 18-23 Loads 0 0 

2, 11 Opens 1 1 

3, 12 Shorts -1 -1 

4, 13, 24, 25 Load/Open 1 1 

5, 14, 26, 27 Load/Short 0 -1 
6, 15, 28, 29 Open/Load 1 0 

7, 16, 30, 31 Short/Load -1 0 

8, 17 Open/Short 1 -1 
9, 32 Short/Open -1 1 
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A. Single-Frequency Simulations 

The sensitivity-analysis and Monte-Carlo algorithms we 

presented in Section II were designed to evaluate the 

uncertainty of the coupling-correction calibrations we 

investigated. We first used our simulation tool to verify the 

ability of these algorithms to correctly estimate coupling 

corrections and evaluate the uncertainty of those corrections for 

single-frequency problems. 

Fig. 2 compares the nominal estimate (i.e. the estimate based 

on the simulated errors introduced into the data for that trial) 

from the coupling-correction algorithm of the transmission 

through the 20 dB attenuator from the sensitivity analysis and 

the mean of 1000 realizations from the Monte-Carlo analysis to 

the actual (true) value of 0.1 used in the simulations. The mean 

value for each of these quantities is plotted in the figure as a 

function of the number of trials included in the average. The 

nominal estimate from the sensitivity analysis algorithm of 

Section II and the means of the realizations from the Monte-

Carlo analysis algorithm of Section II converge to the actual 

value used in the simulations. This shows that the algorithms of 

Section II do not add significant bias into the coupling-

corrected data.  

Fig. 3 compares the variances of the corrected DUT 

transmission coefficients evaluated with the sensitivity-analysis 

and Monte-Carlo algorithms we presented in Section II to the 

actual variance of the transmission coefficients around their 

true values specified in the numerical simulation tool. As can 

be seen in the figures, the variance evaluated by the two 

algorithms converge reasonably well to the actual variances in 

the synthetic data sets. (The slight bias in sensitivity-analysis 

evaluations may be due to mild nonlinearity in the problem.) 

From this we conclude that the two algorithms, when applied to 

our on-wafer coupling-correction problem, provide reasonable 

estimates of the actual transmission-coefficients and their 

variance in our synthetic data sets. That is, the algorithms yield 

reasonable estimates of their own accuracy from the residuals 

in the calibrations.  

 

1) Number of Calibration Artifacts 

In practice, most engineers typically use only the minimum 

number of artifacts necessary to perform a calibration (i.e. four 

coupling-correction standards in this two-port case) because it 

is often difficult to devise large numbers of calibration artifacts. 

Thus, engineers are sometimes reluctant to use more than the 

 
TABLE III 

SUMMARY STATISTICS FOR PERFORMANCE OF ALGORITHMS OF SECTION II 

 
 

Number of 

 

Degrees 

Actual 

Model 
Normalized Stand. Dev. SD(𝑣e) 𝑣𝑎⁄  

Calibration of Variance Sensitivity Monte-Carlo (vs. Q) 

Artifacts Freedom 𝑣a (x10-9) Analysis 100 1,000 10,000 

6 4 23.6 0.909 0.896 0.863 0.878 

9 10 9.8 0.353 0.367 0.346 0.344 

17 30 5.6 0.207 0.227 0.220 0.218 
32 56 2.5 0.132 0.169 0.131 0.130 
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Fig. 5.  Width of the 95 % confidence intervals3 of the real part of the 

calibrated transmission term of the DUT evaluated by the algorithms 

presented in Section II using 1000 Monte-Carlo replicates compared to 
the actual 95 % confidence intervals in the simulation. The first 9 

coupling-correction artifacts in Table II were used in the simulations. 

Confidence intervals for the imaginary part is similar. 
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Fig. 4.  Variance of the real part of the calibrated transmission term of the 

DUT evaluated by the algorithms presented in Section II compared to the 

actual variance in the simulation as a function of the number of coupling-
correction artifacts used in the coupling-correction calibration. The 

coupling-correction artifacts in Table II were used in the simulations. 

Variances of the imaginary parts are not similar. Also see Table III for 
further results. 
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minimum number of calibration artifacts required to obtain a 

nominal result and it is important to investigate how the 

algorithms perform as a function of the number of calibration 

artifacts. 

Fig. 4 compares the variances of the transmission coefficients 

of the 20 dB attenuator due to the uncertainty of the model 

evaluated by the algorithms of Section II to the actual variance 

of that same quantity when 6, 9 and 17 coupling-correction 

artifacts were included in the simulations. The figure shows that 

both the actual variance 𝑣a  due to the errors added by the 

simulator and the variance 𝑣e evaluated by the algorithms of 

Section II increase considerably when the number of coupling-

correction artifacts approaches the minimum number of 4 

required to find the 4 coupling-correction coefficients in the 

calibration, as we expect. That is to say, using more artifacts 

decreases the variance of the uncertainties we are able to 

evaluate.  

Table III lists summary statistics quantifying the 

performance of the sensitivity-analysis algorithm of Section II 

and the Monte-Carlo bootstrap algorithm of Section II using 

100, 1000 and 10,000 Monte-Carlo replicates in a 100-trial 

simulation as a function of the number of calibration artifacts 

used in the calibration listed in the first column. The second 

column lists the number of degrees of freedom in the residuals 

and third column lists the actual variance 𝑣a in the nominal 

transmission coefficients of the 20 dB attenuator as a function 

of the number standards in the calibration in the simulations.  

The fourth column of the table lists SD(𝑣e) 𝑣𝑎⁄ . This is the 

standard deviation SD(𝑣e) = √(1/𝐼) ∑ (𝑣e,𝑖 − 𝑣𝑎)
2

𝑖   of the 

variances 𝑣e,𝑖 of the transmission coefficients of the 20 dB 

 
3 As discussed in the introduction, here we use the term confidence intervals 

in its conventional statistical sense to refer to the probability that a population 

parameter will fall between the confidence intervals, as opposed to the way it is 

attenuator evaluated by the sensitivity-analysis algorithm of 

Section II about the actual variance 𝑣a normalized to the actual 

variance 𝑣a due to the errors injected into the data by the 

simulator.  This is a measure of the relative accuracy of the 

variance evaluated by the sensitivity-analysis algorithm as a 

function of the number of calibration artifacts. The table shows 

that the normalized standard deviation of the variance estimated 

by the algorithms rises as the number of calibration artifacts 

becomes small and the number of degrees of freedom in the 

observations fall. 

Table III also lists this last metric for the Monte-Carlo 

algorithm of Section II when 100, 1000 and 10,000 Monte-

Carlo replicates Q are used by the algorithm in the evaluation 

of variance. Here we see that, for this fairly linear problem, the 

ability of the two algorithms to evaluate the uncertainty in the 

20 dB attenuator is comparable. The table shows that, for the 

low number of degrees of freedom we investigated with these 

simulations, the Monte-Carlo algorithms ability to evaluate the 

uncertainty of the model is only weakly dependent on the 

number of Monte-Carlo replicates used in that evaluation. 

Finally, the relatively large values of SD(𝑣e) 𝑣𝑎⁄  listed in 

Table III add context to Figs. 3 and 4. In fact, the mean offsets 

in the variances evaluated by the algorithms of Section II and 

shown in the two figures are well below the relative standard 

deviations of these quantities listed in Table III. 

2) 95 % Confidence Intervals 

Fig. 5 compares the width of the 95 % confidence intervals3 

for the calibrated transmission term of the 20 dB attenuator 

evaluated by the algorithms presented in Section II to the actual 

95 % confidence intervals used in the simulations when 9 

coupling-correction artifacts are used in the simulations. 

Determining this range from just 100 Monte-Carlo realizations 

is quite difficult, so in this numerical experiment the Monte-

Carlo algorithm presented in Section II was configured to 

generate and use 1000 Monte-Carlo replicates. While the 

evaluated widths of the 95 % confidence intervals are 

systematically lower than expected, the agreement is reasonable 

with these 1000 Monte-Carlo replicates. 

B. Multi-Frequency Simulations with Frequency-Independent 

Calibration Artifacts 

Correctly treating correlations in multivariate quantities is 

essential for evaluating the uncertainty of microwave 

calibrations. For example, the efficiency term in microwave 

power meters is typically very close to constant as a function of 

frequency. Thus, its errors are usually very highly correlated 

and errors in the efficiency term in the power-meter calibration 

lead to an overall increase or decrease of the measured power 

at all frequencies. As a result, this error does not impact the 

measurement of the communication metric error vector 

magnitude, which is independent of the amplitude of a signal. 

However, the same error may dominate the overall error in 

measurements of receiver sensitivity or antenna efficiency, 

illustrating how essential it is to track correlations in microwave 

measurements. 

often used in the regression community to refer broadly to what we refer to here 
as the uncertainty of a model. 

 
 
Fig. 6.  Variance of the calibrated transmission term of the DUT 

evaluated by the algorithms presented in Section II compared to the 
actual variance in the simulation of coupling viewed in the time domain 

for frequency-independent calibration artifacts. The first 9 coupling-

correction artifacts in Table II were used in the simulations. 
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We propagate uncertainties and maintain correlations 

between them by treating the quantities x, y, β and 휀 in Section 

II as vectors of complex numbers when dealing with microwave 

vector quantities, such as the frequency-dependent coupling 

coefficients we treat here. Now we demonstrate the ability of 

our algorithms to preserve correlations by introducing errors 

consisting of sinusoidal ripples in the frequency-domain 

transmission terms of coupling-correction artifacts generated 

by our simulator.  

In the numerical experiment, we simulated 1000 

transmission coefficients on a 1 GHz grid to 1 THz. We then 

introduced ten sinusoidal ripples with random amplitudes and 

periods of 10/(1+0.01k) GHz, for k = 0, 1, …, 9, into the 

transmission terms of the coupling-correction artifacts and 

performed a Fourier Transform of the corrected transmission 

coefficient of the DUT to map these errors into the time domain. 

Fig. 6 compares the variance evaluated by the algorithms we 

presented in Section II to the actual variance of the errors in the 

1000-trial numerical simulation we performed. In Fig. 6, the 

calibration standards were assumed to be frequency 

independent, as shown in Table II. As we expected, the energy 

in the ten simulated frequency-domain ripples mapped into 

actual errors concentrated at 0.1 ns, 0.101 ns, …, and 0.109 ns 

in the time domain. This confirmed that our procedures 

maintain the correlations in the errors we used to test the 

algorithms. We also see from the figure that the variance 

evaluated by the two algorithms of Section II somewhat 

underestimate the actual variance of the errors in the temporal 

transmission coefficients of the DUT. 

C. Local Weighting 

 The term √𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  in (4) and (9) is a first-order 

correction for the finite number of degrees of freedom 2(IR - P) 

in the regression problem [38]. This term is intended to correct 

for the fact that the observed residuals 휀𝑖 =  𝑦𝑖 −  �̂�𝑖 in (3) and 

their means 휀𝑖
∙  of the 휀𝑖

𝑞
 over the Q Monte-Carlo realizations in 

(7) only reflect the difference between the yi and the �̂�𝑖
∙, while it 

is the variance of the yi that we would like to use in (4) and (9). 

 However, in practice, the sensitivity of the model estimated 

by regression algorithms are too complicated to be captured by 

the single term √𝐼𝑅 (𝐼𝑅 − 𝑃)⁄ . Wu developed an improved 

estimate for the ratio of the variance of the �̂�𝑖
∙ to the variance of 

the yi that is “local” in i for univariate regression problems in 

Section 7 of [25]. We extended Wu’s local approach to the two-

port coupling corrections, which only contains a single complex 

scalar rather than a multivariate function. 

First, we linearized the coupling-correction calibration 

around the nominal solution of the nonlinear calibration 

problem presented in (2) by forming the data matrix 

 �̃�𝑖𝑗 =
𝜕𝑓(𝛽; 𝑥𝑖)

𝜕𝛽𝑗
 , (12) 

as suggested by Wu in [25], except that the �̃�𝑖𝑗 are now complex 

vectors, not real scalars. We then extended the scalar Wu 

weights of [25] to complex vector results by calculating the wi 

from the data matrix �̃� with 

 𝑤𝑖 = �̃�𝑖
† (�̃�†�̃�)

−1
�̃�𝑖   , (13) 

where the superscript † indicates the conjugate transpose and �̃�𝑖 

is the ith column of �̃�T. 

The wi capture the relative level of variance of the yi and the 

estimates �̂�𝑖, and can be used to correct the residuals for the 

underestimation or overestimation of the contribution of the 

variance of the �̂�𝑖 to the measured residuals by the term 

√𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  in (4) and (9). By developing the complex form 

of the linearization captured in the data matrix �̃�, the wi in the 

coupling correction we investigate here reduce to a single 

complex number with no imaginary part at each frequency. 

Thus, we can simply follow Wu and replace the term 

√𝐼𝑅 (𝐼𝑅 − 𝑃)⁄  in (4) and (9) with √1 (1 − 𝑤𝑖)⁄ . That is, (4) is 

replaced by 

 𝑦𝑗 + 𝛿𝑖𝑗  √1 (1 − 𝑤𝑖)⁄  휀𝑖 = 𝑓(�̂�𝑖;  𝑥𝑗) +  ∆𝑖𝑗  (14) 

and (9) is replace by 

 𝑦𝑖
𝑞∗

= 𝑦𝑖
𝑞

+ √
1

1−𝑤𝑖
 휀𝑖

∙𝑁𝑖
𝑞

(0,1) . (15) 

In cases where the number of degrees of freedom are small 

and the specific quantity one is interested in has greater 

variation than would be expected from the conventional factor 

√𝐼𝑅 (𝐼𝑅 − 𝑃)⁄ , the Wu weights can be quite effective.  An 

example is shown in a dashed line in Fig. 6, which shows that 

the variance evaluated with the Wu weights is much closer to 

the actual than the result using the conventional factors in (4) 

and (9). While the Wu weights were not always as effective as 

shown in Fig. 6, the results we saw were always either 

comparable or superior to those we obtain from the 

conventional factors in (4) and (9). 

IV. STRUCTURAL TRANSFORMATIONS 

Microwave calibration artifacts typically vary with 

frequency, wrapping around the Smith chart as frequency 

 
 
Fig. 7.  Variance of the calibrated transmission term of the DUT 

evaluated by the algorithms presented in Section II compared to the 

actual variance of corrected DUT measurements as a function of time for 
frequency-dependent calibration artifacts. The first 9 coupling-correction 

artifacts in Table II were used in the simulations. 
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increases. This behavior significantly complicates the 

propagation of uncertainties through microwave calibrations 

when correlations must be accounted for and transforms both 

the structure of the nominal results and their uncertainties. 

To illustrate this, we repeated the experiment described in 

Section III-B with the same 9 calibration artifacts from Table 

II, except that in each trial we not only assigned a random 

sinusoidal error to each calibration artifact, but also added a 

linear phase rotation to each artifact and its definition (supplied 

in the form of a model) that varied from 0 to four complete 

phase rotations around the Smith Chart over the entire 1 THz 

frequency range. 

Fig. 7 shows that the frequency-varying calibration artifacts 

fundamentally change the structure of the uncertainties, 

spreading the energy in the sinusoidal errors we introduced in 

the frequency domain in time. This is expected, as the 

calibration-artifacts simulated sinusoidal errors in frequency 

interact with the frequency-varying standard definitions as they 

wrap around the Smith chart, “mixing” the frequency variation 

of the simulated errors and the frequency dependence of the 

calibration artifacts in the output of the calibration. 

Nevertheless, Fig. 7 shows that the uncertainties evaluated 

by the two algorithms of Section II track the changes in the 

structure of the error and broaden their temporal range to better 

match the actual errors shown in the figure. 

V. STRUCTURAL LEAKAGE 

We have just seen that correlations in errors, which reflect 

their underlying structure, can mix with the frequency variation 

of the calibration artifacts, changing the structure of the errors 

as they propagate through the calibration problem. Fig. 6 

showed that the algorithms we presented in Section II do a good 

job of capturing this behavior. 

However, the regression algorithm itself can transfer 

uncertainties with structure from one residual to other residuals 

for which that structure may not be appropriate. We will call 

this problematic phenomenon “structural leakage.” Structural 

leakage occurs between residuals in regression problems and 

can result in unwanted structure in the residuals that are used to 

evaluate uncertainty in regression results and thereby introduce 

unwanted structure in the evaluated uncertainties. 

Structural leakage is not an issue in univariant regression 

where the residuals are indistinguishable scalars and have no 

structure. However, as we shall soon see, structural leakage can 

be a serious concern in multivariate regression.  

A. Origin of Structural Leakage 

Ideally, the regression residuals themselves would be equal 

to the difference between the measured and true values of the 

yi. But, as we have already discussed, we can only observe the 

residuals 휀𝑖 =  𝑦𝑖 − �̂�𝑖, the difference between the measured yi 

and the �̂�𝑖, which are the estimated values of the yi, not their 

true values. 

However, the �̂�𝑖 depend on all the calibration artifacts and 

have a complex structure that contains a mixture of all the 

structure found in all the yi. Thus, the residuals 휀𝑖 =  𝑦𝑖 − �̂�𝑖 

we observe contain structure from residuals that may not be 

present in the difference between the measured and true values 

of a particular yi. This, in turn, leads to what we call structural 

leakage, unwanted structure in the uncertainties evaluated using 

the algorithms we presented in Section II. 

To illustrate structural leakage, we organized our calibration 

artifacts into four groups. Group 1 was comprised of the 

calibration artifacts that absorb energy incident on either port of 

the artifact, Group 2 was comprised of those artifacts that only 

 

 

 
 
Fig. 8.  Comparison of evaluated and actual variances of the S34 coupling 
term in the cross-talk-correction calibration model for 9, 17 and 32 

calibration artifacts. The uncertainties were constructed in the simulation 

to be entirely concentrated at 0.104 ns. 
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reflect energy incident on port 2 of the artifact, Group 3 was 

comprised of those artifacts that only reflect energy incident on 

port 1 of the artifact, and Group 4 was comprised of those 

artifacts that reflect energy incident on either port. Then we 

simulated sinusoidal errors in the artifacts in Group 1 with a 

period of (10/1.01) GHz, sinusoidal errors in the artifacts in 

Group 2 with a period of (10/1.02) GHz, sinusoidal errors in the 

artifacts in Group 3 with a period of (10/1.03) GHz and 

sinusoidal errors in the artifacts in Group 4 with a period of 

(10/1.04) GHz.4 

Organizing the errors in our simulations in this way gives rise 

to temporal errors at 0.101 ns, 0.102 ns, 0.103 ns and 0.104 ns 

in the coupling-correction term S12 of the “internal-coupling-

correction” error model of [4], to temporal errors at 0.02 ns and 

0.104 ns in the coupling-correction term S14 of that error model, 

to temporal errors at 0.03 ns and 0.104 ns in the coupling-

correction term S23 of that error model and to temporal errors at 

only 0.104 ns in the coupling-correction term S34 of that error 

model. This latter behavior is illustrated by the red curves 

marked with squares in Fig. 7, which indicate the actual errors 

introduced into the coupling-correction term S34 occur at only 

0.104 ns. 

Fig. 8 also shows that the uncertainties based on the residuals 

휀𝑖 =  𝑦𝑖 − �̂�𝑖 we use in the algorithms presented in Section II 

have unwanted structure not present in the actual variance of 

S34. For example, in Fig. 8a we only expect to see uncertainty 

in the coupling-correction term S34 of the error model at 0.104 

ns. However, the algorithms presented in Section II predict 

varying degrees of temporal error at 0.101 ns, 0.102 ns and 

0.103 ns as well due to structural leakage. 

B. Number of Calibration Artifacts 

The structural leakage illustrated by Fig. 8 can be mitigated 

by increasing the number of calibration artifacts. This is 

because the �̂�𝑖 approach the true values of the yi as the number 

of calibration artifacts is increased, improving the accuracy of 

the residuals used by the algorithms presented in Section II to 

evaluate the uncertainty of the calibration model. This is seen 

clearly in Fig. 8 by comparing the variance of 1) the coupling-

correction term S34 evaluated by the standard sensitivity-

analysis and Monte-Carlo algorithms of Section II plotted in the 

black curves and labeled with inverted triangles at 0.104 ns to 

2) the actual variances plotted in the red curves and labeled with 

squares when using 9, 17 and 32 calibration artifacts at the same 

time. That is, adding calibration artifacts clearly raises the 

magnitude of the evaluated variances at 0.104 ns, nearly 

attaining the actual values of variance there when 32 calibration 

standards were used.  

C. Structural Leakage and Principle-Component Analysis 

Principal-Component Analysis (PCA) is used to help identify 

lower-dimensional subspaces that maintain predictive ability as 

 
4 The NIST Microwave Uncertainty Framework is designed to evaluate 

uncertainty in both linear and nonlinear settings. Thus, it makes use of an 

internal real-imaginary representation that is more general than a covariance 
matrix, which is limited to linear problems. This internal representation 

insensitive to discontinuities in phase as complex vectors wrap around the 

Smith chart. 
5 Freedman points to the advantages of “centering” the residuals in [19] 

before sampling from them in bootstrap algorithms. We accomplish this by 

well as possible [44, 45]. Principal-Component-Regression and 

Partial-Least-Squares-Regression algorithms are used to help 

identify “latent variables” with great predictive power in large 

multivariate data sets [46, 47]. However, indiscriminate use of 

PCA can unnecessarily introduce unwanted structural leakage 

into the residuals. This unwanted introduction of structural 

leakage is illustrated by the curves labeled “PCA” in Fig. 8. The 

curves show the uncertainty in the coupling-correction term S34 

evaluated with the principal components of the regression 

residuals when they are distributed uniformly among the 

calibration artifacts. The increase in structural leakage is clear.5 

In the Appendix we describe a PCA algorithm that controls 

structural leakage. However, the PCA algorithm does not 

reduce structural leakage below what is obtained with the 

algorithms of Section II and more study will be needed to prove 

its utility. 

D. Reducing Structural Leakage with PCA 

Finally, we found that when groups of calibration artifacts 

share the same structure, PCA can be used effectively within 

each group to identify the dominant error structures appropriate 

to that group and provide significant rejection of structural 

leakage from other groups. This is illustrated by the curves 

labeled “G-PCA” in Fig. 8, which shows the result of applying 

this approach to the four groups of calibration artifacts we used 

to illustrate structural leakage in this section. The figure shows 

that this approach can indeed be used to reject much of the 

structural leakage in regression residuals. Here again, the 

suppression of unwanted structural leakage continues to 

improve as the number of calibration artifacts are increased. 

Furthermore, using PCA in this way should allow the principle 

components to be grouped, increasing their degrees of freedom. 

Unfortunately, rejecting structural leakage in this way 

requires additional study by the user to understand the 

distributions of the residuals in the problem and we were not 

able to find a way to automate this approach in a general way. 

This would make it difficult to incorporate this and related 

approaches into the Microwave Uncertainty Framework and 

other similar packages that emphasize ease of use. 

VI. PREDICTION UNCERTAINTY 

 As discussed in [8], the total variance of DUT measurements 

can be expressed as a sum of the variance associated with the 

calibration model and the variance associated with prediction 

errors, which are often expressed in terms of prediction 

intervals (see [8-17]). Predication uncertainty captures the 

remaining error due to factors that are not included in the errors 

corrected for by the calibration model (or, more generally, the 

regression model). For example, prediction uncertainty may 

capture errors in the data that are inconsistent with the 

subtracting 휀∙
∙ from the 휀𝑖

∙ in (7). However, the coupling term S21 in the coupling 

corrections we studied here centers the residuals in (7) even before the term 휀∙
∙ 

is subtracted. Nevertheless, we note that for regression and calibration problems 
for which the residuals are not already centered, care should be taken when 

centering residuals as the mean of the residuals generally contains an equal 

mixture of structure from all the residuals and may introduce additional 
unwanted structural leakage into the uncertainty of the model. 
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calibration model or errors that are observed as a lack of 

reproducibility in repeated experiments that cannot be 

explained and corrected for with the calibration model. 

Approaches for evaluating the variance associated with 

prediction uncertainty may or may not capture the variance 

associated with the calibration models, depending on how the 

errors in the calibration models are correlated across different 

experiments used to evaluate the prediction uncertainty. While 

the subject of prediction uncertainty and prediction intervals is 

well beyond the scope of this paper, here we use our simulator 

to briefly examine the question of when the variance associated 

with the prediction uncertainty will or will not include the 

variance associated with the calibration model, and how the two 

cases should be handled. This verifies several assertions made 

in [8]. 

A. Correlated Model Errors 

Given that the calibrations share the same coupling-

correction artifacts, it is quite likely that the errors introduced 

by the coupling-correction artifacts in repeated calibrations and 

measurements will be quite similar. In [8] we argued that if the 

errors captured by the residuals in the calibration were fully 

correlated (i.e. they were identical shared systematic errors and 

impacted all the DUT measurements in the same way), the 

calibration errors will not give rise to differences in repeated 

experiments. We concluded that, in this circumstance, the 

uncertainty of the model would have to be explicitly added to 

the uncertainty associated with the variance of repeated 

measurements from different experiments and calibrations, 

which we refer to as the prediction uncertainty. 

We used our simulator to illustrate this. Fig. 9 compares the 

actual variance from the true values to the variance estimated 

by our algorithms when added to the calibration-model variance 

due to repeated calibrations with fully correlated errors. The 

agreement is close and confirms the observations in [8]. The 

figure also shows that not including the uncertainty in the 

calibration model in the total uncertainty underestimates the 

actual variance of the DUT measurements. 

B. Uncorrelated Model Errors 

Fig. 10 shows a similar comparison for the case in which the 

errors associated with the calibration model in each experiment 

are uncorrelated (i.e. different). This might occur if the errors 

introduced by the coupling-correction artifacts themselves in 

each calibration were insignificant compared to other sources 

of error in the repeated measurements, as might occur when 

thermal noise dominated differences between measurements. In 

this case, we argued in [8] that the variance of the different DUT 

measurements from each experiment would capture the total 

variance in the DUT measurements from their true values. 

These results are shown in solid lines in Fig. 10 and confirm the 

argument we presented in [8]. 

Fig. 10 also shows, as a dashed line, the result of explicitly 

adding the Monte-Carlo variance associated with the 

uncertainty in the model to the Monte-Carlo variance associated 

with the prediction uncertainty. Here, we see that explicitly 

adding the variance associated with the model “double-counts” 

that error and results in a variance that exceeds the actual 

variance, as was suggested would happen in [8]. 

VII. CONCLUSION 

We presented two algorithms for evaluating the uncertainty 

of microwave calibrations from regression residuals, both of 

which extend methods discussed in the Guide to the Expression 

of Uncertainty in Measurements [1-3] to multivariant 

regression. The first was based on a straight-forward sensitivity 

analysis, which can be made efficient and can be used to 
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Fig. 10.  Variance of the real part of the calibrated transmission term of 

the DUT evaluated with the sensitivity-analysis and Monte-Carlo 
algorithms presented in Section II compared to actual variances in 

experiments performed with synthetic coupling-correction data. 

Calibration errors and errors in the DUTs between calibrations are 
completely uncorrelated. Variance of the imaginary parts are similar. 
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Fig. 9.  Variance of the real part of the calibrated transmission term of the 

DUT evaluated with the sensitivity-analysis and Monte-Carlo algorithms 
presented in Section II compared to actual variances in numerical 

simulations performed with synthetic coupling-correction data. 

Calibration errors between experiments are fully correlated while errors 
in the DUTs between calibrations are uncorrelated. Variance of the 

imaginary parts are similar. 
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separately estimate the impact of each error mechanism. The 

second was based on a Monte-Carlo bootstrap procedure that 

deviates from prior work, can solve nonlinear statistical 

problems and evaluate probability distributions. 

We verified that both algorithms estimate nominal single-

frequency values and evaluate the uncertainty of on-wafer 

probe-to-probe coupling corrections with reasonable accuracy. 

This is just one example of a class of calibration problems in 

which calibration models are incomplete, a situation that often 

arises when it is either not possible to completely characterize 

calibration artifacts or when the sources of error in an 

experiment are incompletely understood. In the companion 

paper [48], we explore the ability of the algorithms to evaluate 

uncertainty in nonlinear VNA calibrations and provide 

experimental confirmation. When we introduced correlated 

sinusoidal errors into the frequency-domain calibrations, we 

found that our algorithms maintained those correlations as 

expected, even when those correlations are modified by 

propagating them through significant structural changes. 

We noted that the most difficult aspect of using the 

algorithms we explored here is, as illustrated by Table III, Fig. 

4 and Fig. 8, creating and measuring enough calibration 

artifacts to obtain a sufficient number of degrees of freedom in 

the residuals to suppress structural leakage and accurately 

evaluate the uncertainties in the calibration model. This points 

to a strategy of trying to develop models for calibration errors 

whenever possible and, when it is not possible to do that, 

creating and measuring as many calibration artifacts as possible 

in order to best evaluate the uncertainty in the calibration model 

with regression residuals. That is, obtaining as many 

independent regression residuals as possible should be the 

primary concern when applying the algorithms of Sections II to 

the evaluation of uncertainty from regression residuals. 

Finally, we investigated structural leakage due to the way 

that regression algorithms mix errors associated with different 

residuals in their solutions. We showed that it is possible to 

employ PCA to help identify underlying latent variables and 

even to reduce structural leakage. However, more work is 

needed on the development of easy-to-use algorithms that 

automate the process of discovering underlying latent variables 

in multivariate regression problems and applying them 

appropriately.  

APPENDIX I 

CHOICE OF SAMPLING DISTRIBUTION 

In the parametric Monte-Carlo Bootstrap algorithm of 

Section II we resampled from a Gaussian distribution (see Eqn. 

(9)). However, Wu uses a variety of resampling distributions 

with a mean of 0 and a variance of 1 in [25] and Eck proves 

convergence in the multivariant case when bootstrap residuals 

are resampled from the original distribution of the 휀 [29], 

indicating some flexibility in the choice of distribution from 

which one resamples. 

Wu points out in [25] the resampling distribution must have 

a mean of 0 and variance of 1 to avoid introducing systematic 

bias in evaluated variances. However, many calibration 

 
6 Here we show the Monte-Carlo residuals 휀𝑖

∙ organized as columns of Z. 

The same approach can be applied to the residuals 휀𝑖 used in the sensitivity 

analysis. 

algorithms fail to converge when resampled residuals are large. 

For this reason, the Microwave Uncertainty Framework allows 

for a variety of resampling distributions, including truncated 

Gaussian distributions. Table IV below tabulates the variance 

of truncated Gaussian distributions as a function of the 

truncation limit determined by numerical integration. We found 

this reduction in variance to be a good estimate of the overall 

reduction in evaluated variances when employing the Monte-

Carlo bootstrap algorithm of Section II when using truncated 

Gaussians in (9). We found that we had to use truncation limits 

of ± 5 σ in the simulations shown in Figs. 2-5 to verify 

convergence. However, we used truncation limits of ± 3 σ 

elsewhere where this level of convergence was not required. 

APPENDIX II 

DIRECTED APPROACH TO PCA 

We developed a “directed” approach to PCA that 

significantly reduces the excess structural leakage of standard 

PCA algorithms. To implement the algorithm, we first 

organized our residuals6 in the matrix  

 𝑍 =
1

√𝐼
[휀1

∙ 휀2
∙ … 휀𝐼

∙]  , (16) 

where the 휀𝑖
∙ are column vectors of dimension R, and applied 

Singular-Value Decomposition to decompose Z as 

 𝑍 = 𝑈 Σ 𝑉T , (17) 

where 𝑉 = [𝑣1𝑣2 … 𝑣𝐼] and 𝑈 = [𝑢1𝑢2 … 𝑢𝐼] [45]. Now, in the 

Monte-Carlo analysis, we can draw the directed PCA residuals 

ri from 

 𝑟𝑖 = ∑ 𝑁𝑗(0,1) (𝑢𝑗
T 휀𝑖

∙) 𝑢𝑗
𝐼
𝑗=1   , (18) 

where the Nj(0,1) are independent random Gaussian variables 

with mean 0 and variance 1. We can avoid recalculating the 

𝑢𝑗
T 휀𝑖

∙ in (17) by noting that 𝑈T𝑈 is equal to the identity matrix, 

so that 𝑈T 𝑍 = Σ 𝑉T. Then we can find the 𝑢𝑗
T 휀𝑖

∙ from 

 𝑢𝑗
T 휀𝑖

∙ = √𝐼 (Σ 𝑉T)𝑗𝑖   . (19) 

Here we have weighted the component uj introduced into the 

ith residual with the dot product 𝑢𝑗
T 휀𝑖

∙ to mitigate unwanted 

structural leakage in the residuals. In essence, we are tempering 

the distribution of the components in each residual by the  

“amount” of that component already observed in that residual. 

 

TABLE IV 

VARIANCE OF TRUNCATED GAUSSIAN DISTRIBUTIONS 
 

Truncation 

Limit 

Variance of 

Truncated Gaussian 

± 3 σ 0.9733369247 
± 4 σ 0.9989292904 

± 5 σ 0.9999851328 

± 6 σ 0.9999999271 
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The directed approach to PCA we developed is easy to 

automate and we found that it greatly reduced the unwanted 

structural leakage of standard PCA algorithm we discussed in 

Section V-C. However, the directed approach to PCA did not 

reduce structural leakage below that of the standard algorithm, 

as we found was possible with the G-PCA algorithm of Section 

V-D. 
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