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Abstract. 
 

We report new calculations, which include the influence of the band gap and exciton states, of the electron 
inelastic mean free path (IMFP) for liquid water, LiF, CaF2, and Al2O3 from the band gap to 433 keV. Among compounds, 
liquid water is the most studied due to its role in radiobiological research, whereas LiF and CaF2 are the most widely used 
thermoluminescent dosimeters in environmental monitoring and in medical and space dosimetry. Due to its sensitivity, 
the optically stimulated luminescent dosimeter, Al2O3 has recently begun to be used for personnel monitoring. Previous 
treatments have modified the integration domain to consider the indistinguishability between the incident electron and 
the ejected one or the bandgap energy for nonconductors but not to accommodate exciton states within the band gap, and 
no published IMFP data are available for CaF2. Our calculation was carried out using an electron-beam–solid-state 
interaction model through the relativistic full Penn algorithm. Integration limits that consider the band gap, the valence 
band width, and exciton interactions have been used. The results suggest that at electron energies below 100 eV, the 
different choice of models for integration limits and the exciton interaction can affect the IMFP by 9 % to 29 %. At higher 
energies, the differences associated with the choice of energy-loss function and other input parameters are around 2.5 % 
to 7.5 %.  
 

1. Introduction 
 
Radiation dosimetry studies the energy 
deposited (absorbed dose is the energy 
deposited divided by the mass) in a given 
medium through elastic and inelastic collisions 
between charged particles (ions and/or 
electrons) and the medium. As a consequence 
of collisions, low-energy secondary-electron 
(SE) cascades are generated. The SEs are 
considered the main agent of radiation damage 
or other radiation effects in the medium1. The 
absorbed dose deposited by photons is mainly 
due to “primary electrons” released during the 
interaction. These in turn generate low-energy 
SE cascades along their paths2-4. However, the 
quantification of these SEs is challenging due, 
in part, to the scarcity of consensus data for 
electron inelastic-scattering cross sections in 
the sub-keV energy range5-11, especially for 
insulators including those used as dosimetric 
materials5. Emfietzoglou and colleagues have 
reported several groups of data for electron 
cross sections in liquid water for energies down 
to 10 eV9, 50 eV10 and 100 eV6 which are used 
in the GEANT Monte Carlo code. At energies 
below 200 eV, these studies show remarkable 

differences between the cross-section results 
obtained using different approaches6-7,11-12. 
PENELOPE8 offers the possibility of 
simulating sub-keV electron transport in 
materials other than liquid water, including 
compounds. However, it does not simulate 
electron trajectories until full stopping, and it 
neglects the aggregation effects that are 
important for low-energy electron interactions 
in condensed matter by rescaling the mean free 
paths to the mass density of the medium and by 
using interaction cross sections based on 
isolated atoms12. 

Similar to dosimetry, a precise 
knowledge of SE yields is of great importance 
in scanning electron microscopy (SEM). Thus, 
a MC code called Java Monte-Carlo Simulator 
for Secondary Electrons (JMONSEL), which is 
based on an electron- beam–solid-state-
interaction model, has been developed at the 
National Institute of Standards and Technology 
(NIST) to produce SE yield vs beam position 
(image) for a given sample shape and 
composition13. JMONSEL has been used to 
interpret data for SEM dimensional 
measurements13-14 and achieved sub-nanometer 
level agreement with measurements made with 
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transmission electron microscopy and small-
angle x-ray scattering14. 

 
The electron inelastic mean free path 

(IMFP), defined as the mean distance travelled 
by a charged particle between consecutive 
inelastic collisions within the medium, is 
inversely related to the electron inelastic-
scattering cross-section. A precise knowledge 
of IMFP for electrons with energies below 
1 keV is of great importance in radiation 
dosimetry as well as in SEM. In the 1970s, 
Powell15 introduced the idea of using 
experimental optical data (i.e., zero momentum 
transfer, 𝑞𝑞 = 0) to calculate the IMFP. Later, 
Penn16 proposed a method based on dielectric-
function theory to compute IMFPs for materials 
that have a known optical dielectric function, 
𝜖𝜖(𝑞𝑞 = 0,𝜔𝜔). The Penn method considers the 
inelastic scattering probability dependence on 
the energy loss and momentum transfer through 
the use of experimental optical data and the 
theoretical Lindhard dielectric function16-17. 
The method has two different approaches: a) 
the full Penn algorithm (FPA), which considers 
the extension of the optical data to nonzero 
momentum transfer (q≠0) and requires triple 
integrations: over q, the plasmon energy (ωp), 
and the energy loss (ω)16; and b) the simple 
Penn approximation (SPA) in which the 
Lindhard dielectric function is replaced by a 
one-pole approximation. For electrons with 
kinetic energies greater than or equal to 200 eV, 
the SPA has been found to be equivalent to FPA 
to within 3 % for IMFP calculations16. At lower 
energies (down to 50 eV) the FPA is considered 
more reliable. IMFP calculations have been 
made for a variety of elemental solids16-18 and 
some compounds19-21. A robust and useful 
Tanuma–Powell–Penn formula (TPP-2M) for 
predicting electron IMFPs based on the 
application of the FPA has been proposed20. 
Thereafter, calculations were made for 41 
elemental solids using a combination of FPA at 
energies below 300 eV and SPA at greater 
energies22. Recently, FPA in its relativistic 
version has been used to calculate electron 
IMFPs for liquid water23 in the 50 eV to 30 keV 
energy range; and for 41 elemental solids24 and 
42 inorganic compounds25 over the 50 eV to 

200 keV energy range. Independently, other 
methods have been proposed to calculate 
IMFPs in solids26, insulators such as alkali 
halides and metal oxides27-28, or organic 
compounds29. These methods are based on a 
combination of the dielectric theory to treat the 
interactions with the valence-band electrons 
and the classical binary-encounter 
approximation for the electron-core 
interaction27-28, and extended to account for 
exchange effects29 or on the employment of 
atomic/molecular inelastic cross sections 
derived by semi-empirical quantum mechanical 
methods26. All of these studies present 
significant differences with respect to data 
reported by Tanuma and colleagues30 at 
electron energies below 200 eV. 

Among compounds, liquid water is the 
most studied due to its role in radiobiological 
research6-7,9-11,23,31-33. However, at energies 
below 100 eV, the IMFP results vary 
considerably from one research group to 
another. On the other hand, LiF and CaF2 are 
among the many types of thermoluminescent 
detectors available and the most widely used 
dosimeters in environmental monitoring and in 
routine personal, medical, and space dosimetry. 
Nonetheless, electronic IMFP data at low 
energy for these compounds are scarce. The 
first IMFP data for LiF were published by 
Tanuma et al.19 in the energy range from 50 eV 
to 2 keV. They concluded that the TPP-2M 
formula is a more reliable method for 
calculating IMFPs in this compound than the 
direct dielectric model34 due to the large errors 
in the energy-loss function (ELF) data (defined 
in Sec. 2), as judged by f-sum and KK-sum 
errors (see Sec. 3.2) of −5 % and −30 % 
respectively. For this reason, LiF is omitted in 
their recent study25. Later, Boutboul and 
collaborators28 investigated the IMFP for LiF at 
energies ranging between 50 eV and 10 keV 
using for insulators a generalized dielectric 
formalism that takes into account the energy 
gap. Similar to liquid water, agreement was 
found with those reported by Tanuma et al.19 at 
energies greater than 200 eV28. With respect to 
CaF2, to the best of our knowledge, there exist 
no IMFP data at low energies. Due to its high 
sensitivity, the optically stimulated luminescent 
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dosimeter, Al2O3 has recently begun replacing 
LiF for personnel monitoring. Shinotsuka and 
collaborators have reported the most complete 
IMFP data for Al2O3 in the energy range 
between 50 eV and 200 keV25 and in smaller 
scales are those published in ref. [26] for 
energies ranging from 20 eV to 2 keV and [27] 
at energies between 50 eV and 10 keV. 

It is well known that the integration 
domain has an important impact on the IMFP 
calculation, mainly in the lower energy interval. 
For the data reported in the literature, the 
integration limit has been treated by several 
groups differently6,25,27-28,31-33,35 depending on 
whether the medium of interest is a metal, 
semiconductor or insulator. For nonconductors 
some have used an approximation based on the 
indistinguishability of the electrons6,31,33 while 
others consider the effect or not of the bandgap 
energy25,27-28. Therefore, besides the difference 
on the dispersion relations for the ELF, the 
variety of integration methods might possibly 
influence the remarkable divergence observed 
between the IMFP results reported in the 
literature for low energy electrons. 

Thus, as done for the JMONSEL code, 
in this work the relativistic full Penn algorithm 
(FPA) has been used to determine IMFPs for 
liquid water, LiF, CaF2, and Al2O3 from 433 
keV down to the energy gap. In particular, we 
used an integration domain that considers the 
band gap, the valence band width, and exciton 
interactions. The calculation for Al2O3 is used 
as a benchmark for comparison to data recently 
published by Shinotsuka and collaborators25 as 
the most complete IMFP results available 
where the bandgap energy has been considered. 
 

2. Calculation method 
 

Modern treatments of inelastic electron 
scattering generally begin with the following 
expression derived from reference [36] for the 
differential inverse mean free path, 𝜆𝜆−1:  
 
d2𝜆𝜆−1

d𝜔𝜔d𝑞𝑞
= 2

𝜋𝜋 𝑣𝑣2
Im � −1

𝜖𝜖(𝑞𝑞,𝜔𝜔)�
1
𝑞𝑞
 ,  (1) 

 
or with an expression for the cross section 
related to this one via 𝜆𝜆−1 = 𝑁𝑁𝑁𝑁 , with N the 

number density of scatterers. In Eq. 1, ω and q 
are respectively the energy and momentum 
transfer, v is the incident electron’s speed, and 
𝜖𝜖(𝑞𝑞,𝜔𝜔)  is the momentum and energy-
dependent dielectric function. Im[−1/𝜖𝜖(𝑞𝑞,𝜔𝜔)] 
is the energy-loss function (ELF). Eq. 1 is 
expressed in Hartree atomic units, wherein the 
electron mass and charge, the reduced Planck 
constant, and the electric constant satisfy 𝑚𝑚e =
𝑒𝑒 = ℏ = 4𝜋𝜋𝜀𝜀0 = 1 . The dielectric function, 
𝜖𝜖(𝑞𝑞,𝜔𝜔) , is derived for non-zero q by an 
extension algorithm from the optical dielectric 
function, 𝜖𝜖(0,𝜔𝜔), data for which is available 
for many elements and some compounds by 
measurement or by calculation. Extension 
algorithms differ. For the results of this paper 
we use Penn’s (FPA) integral expansion of the 
energy-loss function in terms of Lindhard 
energy-loss functions16. We followed the 
relativistic implementation of Shinotsuka, 
Tanuma, Powell, and Penn (STPP)24-25, who 
retain the longitudinal part of the relativistic 
cross section and omit the transverse part, an 
approximation that should be good for electron 
energies below 0.5 MeV8. 

Eq. 1 must be integrated over allowed 
values of ω and q to determine the IMFP. In 
their studies for insulators6,31,33, refs. [6, 31, 33] 
have used an integration limit based on the 
indistinguishability between the incident 
electron and the struck one in a high energy 
approximation. Thus, the integration limit has 
been defined as the sum of the energy of the 
incident electron (T) and the binding energy (B) 
divided by two; that is (T+B)/26,33. However, 
the obtained IMFP values have been shown to 
be very sensitive to the integration limit at 
energies below 100 eV6. Besides, comparing 
with experimental data for liquid water, 
overestimation of the IMFP has been observed 
at energy below 40 eV33. Thus, a higher order 
correction, (T′ = T + 2Bi; Bi: the threshold 
energy for each excitation) has been applied in 
order to improve this integration limit by 
considering an extra kinetic energy received by 
the electron when it interacts with the atomic 
potential of the medium33. This was not 
considered as a rigorous correction and 
exploration of other ideas has been suggested. 
In contrast to the high energy approximation 
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used in the studies mentioned above, with STPP 
we use the method for nonconductors of 
Boutboul et al.28, in which there is an energy 
change of 𝐸𝐸g  (the band-gap width) at the 
valence band edge with no corresponding 
change in momentum. Within this approach, the 
upper integration limit is set to guarantee that 
the incident electron retains enough energy to 
stay in the conduction band. With respect to the 
lower limit, Boutboul et al.27-28 have set it to 
zero, whereas the minimum energy loss was 
assigned by STPP25 as 𝜔𝜔min = 𝐸𝐸g, the energy 
required to promote an electron from the top of 
the valence band to the bottom of the 
conduction band. Such a limit is associated with 
the minimum excitation energy of electrons in 
the material25. Results have shown that the 
effect of 𝜔𝜔min = 𝐸𝐸g  instead 𝜔𝜔min = 0  on the 
IMFP calculations is less than 1.5 % for E ≥ 100 
eV and increases up to 6.5 % at 54.6 eV25.  

When we simulate electron scattering, 
we use a dedicated electron-phonon scattering 
model when such scattering is important. To 
avoid double-counting, it is then necessary to 
exclude such scattering within the dielectric 
formalism. We for this reason find it convenient 
to follow the STPP practice of integrating from 
a nonzero minimum excitation energy, 𝜔𝜔min . 
However, our materials have non-negligible 
excitations at energies just below 𝐸𝐸g  that we 
wish to include. In LiF, for examples, states at 
about 0.8 eV and 2.5 eV below the conduction 
band minimum have been assigned to bulk 
excitons37-38. Instead of 𝜔𝜔min = 𝐸𝐸g , we 
therefore assign 𝜔𝜔min  to the first energy loss 
value above mid-gap where the ELF exceeds a 
threshold of 10-5 (i.e., large compared to the 
negligible ELF values typical of most of the 
bandgap but small compared to maximum ELF 
values typically of order 1 in the plasmon peaks 
above the gap). Since the increase in ELF near 
the top of the gap is steep, the value of 𝜔𝜔min so 
determined is not very sensitive to other 
reasonable threshold values, and since 𝜔𝜔min is 
intentionally chosen to be where the ELF 
amplitude is small, integrals are not sensitive to 
small changes in 𝜔𝜔min in the neighborhood of 
the chosen value. Even though the exciton 
states included in this way may be excited by 

the primary electron, they are electron-hole pair 
states so are unlikely final states for the primary 
electron. Consequently, we do not alter the 
upper limit of the ω integral. Thus, the resulting 
integral of Eq. 1 is: 
 
𝜆𝜆−1 =
�1+𝑇𝑇′/𝑐𝑐2�

2

1+𝑇𝑇′/2𝑐𝑐2
𝟏𝟏

𝝅𝝅 𝑇𝑇′ ∫ ∫ 𝐈𝐈𝐈𝐈 � −1
𝜖𝜖(𝑞𝑞,𝜔𝜔)�

𝑑𝑑𝑞𝑞
𝑞𝑞

𝒒𝒒+

𝒒𝒒− d𝜔𝜔𝑇𝑇′−𝑤𝑤VB
𝜔𝜔min

,
 (2) 
 
with 𝑇𝑇′ = 𝑇𝑇 − 𝐸𝐸g, T the difference between the 
incident electron’s energy and the energy at the 
bottom of the valence band, wVB is the width of 
the valence band and c the speed of light. The 
maximum energy loss is determined by the 
requirement that the incident electron’s final 
energy be no lower than the bottom of the 
conduction band. The limits, q±, are the 
kinematic limits of momentum transfer from 
the incident electron consistent with energy loss 
ω and are given by 
 
𝑞𝑞± = �𝑇𝑇′(2 + 𝑇𝑇′ 𝑐𝑐2⁄ ) ±
�(𝑇𝑇′ − 𝜔𝜔)(2 + (𝑇𝑇′ − 𝜔𝜔) 𝑐𝑐2⁄ )   (3) 
 
To validate our implementation, we reproduced 
the STPP25 calculation of the IMFP for Al2O3 
using the same input parameters (𝜔𝜔min = 𝐸𝐸g =
8.63 eV,𝜔𝜔VB = 8.0 eV) and the same ELF data 
(kindly shared with us by S. Tanuma). Using 
these data, we obtained the IMFP results shown 
in Figure 1.  
 

 
 
Figure 1. IMFP for Al2O3 calculated in this work using 
the same input parameters and data used by Shinotsuka 
et al.25 
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STPP tabulated their IMFP values rounded to 3 
significant figures for incident electron kinetic 
energies (relative to the bottom of the 
conduction band) between 54.6 eV and 
198789.2 eV at approximately 10 % intervals. 
Our results when calculated at the same 
energies and likewise rounded to 3 significant 
figures agree exactly with theirs. For their 
graphed but untabulated results at energies 
below 50 eV, we compared our results to 
estimates digitized from their graph. We 
attribute the less than 1.5 % difference to 
digitization error. Based on this close 
agreement, we believe our implementation is, 
as intended, functionally the same as theirs, and 
we refer readers to their meticulous descriptions 
for details.  
 

3. Energy-loss functions (ELF) 
 

3.1.Optical-data acquisition 
 

To compute the IMFP, optical data such as 
scattering factors, f1 and f2, refractive index n, 
and extinction index k have been collected from 
the literature39-45. Table 1 displays the data used 
to compute the ELF and the available 
parameters according to the published data. 
 
Table 1. Data collected for ELF calculations 

 
The dielectric function may be expressed with 
real and complex components as: 
 
𝜖𝜖(𝑞𝑞,𝜔𝜔) = 𝜖𝜖1(𝑞𝑞,𝜔𝜔) + 𝑖𝑖𝜖𝜖2(𝑞𝑞,𝜔𝜔). (4) 
 

In the optical limit of 𝑞𝑞 → 0,  
 
𝜖𝜖1(𝜔𝜔) = 𝑛𝑛2(𝜔𝜔) − 𝑘𝑘2(𝜔𝜔)  (5) 
 
and 
 
𝜖𝜖2(𝜔𝜔) = 2𝑛𝑛(𝜔𝜔)𝑘𝑘(𝜔𝜔),  (6) 
 
where 𝜖𝜖1 represents the polarization term as a 
consequence of the interaction between the 
material and the electromagnetic wave and 𝜖𝜖2 
the imaginary part, which is related to the 
energy loss.  

It is also known that the interaction 
between photons and matter can be described in 
terms of the refractive index decrement, 𝛿𝛿, and 
extinction coefficient, 𝛽𝛽, as46 
 
𝑛𝑛 =  1 − 𝛿𝛿 and 𝑘𝑘 =  𝛽𝛽.  (7) 
 
In Eq. (7), 𝛿𝛿  is related to the real atomic-
scattering factor f1, which represents the 
dispersive interaction between the incoming 
plane wave and the material while 𝛽𝛽 is related 
to the imaginary part of the atomic scattering 
factor f2 that accounts for radiation absorption. 
In the limit of δ << 1 and β << 1 (e.g. energies 
above 100 eV - 200 eV, depending on the 
material), 𝛿𝛿 and 𝛽𝛽 are approximated by46: 
 
𝛿𝛿 = 𝑁𝑁A𝑟𝑟e𝜆𝜆2𝑓𝑓1(𝜔𝜔)

2𝜋𝜋
,   (8) 

 
𝛽𝛽 = 𝑁𝑁A𝑟𝑟𝑒𝑒𝜆𝜆2𝑓𝑓2(𝜔𝜔)

2𝜋𝜋
,   (9) 

 
Otherwise47, 
 
𝜖𝜖1(𝜔𝜔) = 1 − 𝑁𝑁A𝑟𝑟e𝜆𝜆2𝑓𝑓1(𝜔𝜔)

𝜋𝜋
,   (10) 

 
𝜖𝜖2(𝜔𝜔) = 𝑁𝑁A𝑟𝑟𝑒𝑒𝜆𝜆2𝑓𝑓2(𝜔𝜔)

𝜋𝜋
,    (11) 

 
where 𝑁𝑁A  is the Avogadro constant, re is the 
classical electron radius, 𝜆𝜆  is the incident 
wavelength, and f1 and f2 represent respectively 
the real and complex components of the atomic-
scattering factor of a given atom. f1 and f2 of a 
compound are the sum of the composition 
number of atoms in the compound’s molecular 

Material Energy range [eV] Optical 
constants 

Refs 

Liquid 
water 

1.2398e-7 to 6.1992 
6.2459 to 48.4 
48.5814 to 10,701.0 
11,032.1 to 432,945.1 

n and k 
𝜖𝜖1 and 𝜖𝜖2 
𝛿𝛿 and 𝛽𝛽 
f1 and f2 

[39] 
[40] 
[41] 
[42] 

LiF 3.718e-8 to 27.0 
29.3 to 10,917.6 
11,032.1 to 432,945.1 

n and k 
𝛿𝛿 and 𝛽𝛽 
f1 and f2 

[43] 
[41] 
[42] 

CaF2 0.0124 to 31.0 
31.7 to 10,920.5 
11,032.1 to 432,945.1 

n and k 
𝛿𝛿 and 𝛽𝛽 
f1 and f2 

[44] 
[41] 
[42] 

Al2O3 0.0372 to 27.0 
30.0 to 10644.4 
11,032.1 to 432,945.1 

n and k 
𝛿𝛿 and 𝛽𝛽 
f1 and f2 

[45] 
[41] 
[42] 
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formula. In this work, Eqs. 8 and 9 were used 
for data above 11 keV. 
 
The energy-loss function (ELF) can be written 
as 
 
Im �− 1

𝜖𝜖(𝑞𝑞,𝜔𝜔)� = 𝜖𝜖2
𝜖𝜖12+𝜖𝜖22

. (12) 
 
Due to the integration limits of the IMFP 
calculation (Eq. 2), information about the band-
gap energy, the valence band width and the 
minimum energy limit for each compound are 
required. Such information is given in Table 2. 
 
Table 2. Bandgap and valence band width (eV) 

Compound 𝐸𝐸𝑔𝑔 𝜔𝜔𝑉𝑉𝑉𝑉 ωmin 

Liquid water 8.4[48] 11.8[49] 6.24 
LiF 14.2[50] 3.9[51] 11.7 
CaF2 12.1[52] 5.84[53] 10.33 
Al2O3 8.8[54] 8.3[54] 8.63 

 
3.2. Optical-data evaluation 

 
To evaluate the consistency of the ELF data, 

two mathematical rules were applied: Kramers-
Kronig sum (KK-sum) and Bethe sum (f-sum). 
These two methods are indicators of the 
reliability of the optical data. The f-sum more 
strongly weights high energies while the KK-
sum the low ones. According to Tanuma et al.19, 
the KK-sum integration is influenced mainly by 
optical data in the energy range below 50 eV 
and the f-sum by data above. The mathematical 
representation of the KK-sum 55-56 is: 
 

𝑃𝑃𝑒𝑒ff = 2
𝜋𝜋 ∫

𝐈𝐈𝐈𝐈�− 1
𝜖𝜖(𝜔𝜔)�

𝜔𝜔
d(𝜔𝜔)𝜔𝜔max

0 +  𝑛𝑛(0)−2, (13) 
 
In this work, 𝑛𝑛(0) was evaluated as the square 
root of the dielectric constant of each material. 
 
Table 3. KK-sum and f-sum errors. 

Com 
pound 

n(0) 𝑍𝑍 𝑍𝑍eff f-sum 
error 
(%) 

𝑃𝑃eff KK-sum 
error 
(%) 

H2O 8.97 10 10.021 0.21 1.027 2.7 
LiF 3 12 13.16 9.69 1.132 13.2 
CaF2 2.6 38 38.91 2.4 1.058 5.8 
Al2O3 3.13 50 51.58 3.16 1.038 3.8 

 

The Bethe sum (f-sum) evaluates the number of 
electrons per atom or molecule that participate 
in the inelastic scattering process and is 
mathematically expressed as57-58 
 
𝑍𝑍eff = −2𝑚𝑚e𝜖𝜖0

𝜋𝜋𝑁𝑁𝑒𝑒2 ∫ 𝜔𝜔Im � 1
𝜖𝜖(𝜔𝜔)�d(𝜔𝜔),𝜔𝜔max

0     (14) 
 
where N is the atomic or molecular density, me 
is the electron mass, and 𝜖𝜖0 is the permittivity 
of free space. In Eqs. (13) and (14), 𝜔𝜔max is a 
maximum energy that we take to be 1 MeV. In 
the limit of 𝜔𝜔max → ∞, 𝑍𝑍eff → 𝑍𝑍, and 𝑃𝑃eff → 1. 

 
The selection of the best ELF data was done 

through a thorough and rigorous evaluation 
process. To do that we calculated the KK-sum 
and f-sum errors for each compound using 
different combinations of optical data sources. 
We selected the combination listed in Table 1, 
where the KK-sum and f-sum errors were 
smallest. Table 3 displays the different 
compounds studied in this work with the 
associated f-sum and KK-sum errors. The lower 
the f-sum and KK-sum errors are, the better the 
internal consistency of the data. The data in 
Table 3 suggest an acceptable consistency 
between the different experimental results 
collected from the literature, mainly for liquid 
water and Al2O3. For Al2O3, the magnitude of 
our f-sum error is somewhat larger than that of 
Shinotsuka et al.25, 3.16 % in this work vs 
−1.2 %, while our KK-sum error was more than 
a factor of two better, at 3.8 % vs −7.8 %. For 
liquid water, the f-sum and KK-sum results are 
0.21 % vs 5.1 % and 2.7 % vs 3.7 % from 
reference [23], respectively. This result agrees 
quite well with the significant qualitative and 
quantitative improvement expected when using 
the revised data provided by NIST42. 
Comparing data in Table 3 for the different 
compounds, the ELF for LiF has the highest 
error. However, the 13 % kk-sum error obtained 
in this work is less than half of the 30 % 
reported in the previous study19. Furthermore, 
both f-sum and KK-sum errors are substantially 
smaller than the 34.7 % and 24.3 %, 
respectively, reported by Boutboul and 
colleagues28. Regarding CaF2, the ELF data can 
be considered reasonably accurate with f-sum 
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and KK-sum errors of 2.4 % and 5.8 %, 
respectively. 
 

4. Results  
 

4.1.Energy-loss function 
 

 
 
Figure 2. ELFs for (a) liquid water, (b) LiF, (c) CaF2, and 
(d) Al2O3. The inserts show the ELF close to the energy 
gap. 
 
Our results for the energy-loss function are 
shown in Figure 2. As observed, all the 
materials typically have several local maxima 
and minima. These are related to increases or 

decreases in the inelastic-scattering probability. 
They are caused by physical phenomena such 
as inner shell excitations, valence electron 
excitations, plasmons, and excitons. Figure 2d 
also shows the ELF data used by Tanuma and 
collaborators47 for Al2O3. Excellent agreement 
can be seen at energies greater than 30 eV. 
However, at lower energies, differences are 
observed that can be associated with the use of 
new optical data in this work as compared to 
those by Tanuma and collaborators as explained 
above. 
 
4.2 Inelastic mean free path  
 

 
 
Figure 3. IMFP for liquid water compared to reported 
results. 
 

 
 
Figure 4. IMFP for LiF compared to reported results and 
from the use of the TPP-2M formula. 
 
The IMFPs for liquid water, LiF, CaF2, and 
Al2O3 as a function of the electron kinetic 
energy obtained through Eq. 2 and using input 
parameters from Table 2 and ELF data from 



 8 

Figure 2 are shown in Figures 3, 4, 5, and 6, 
respectively. 
 

 
 
Figure 5. IMFP for CaF2 compared with those from the 
TPP-2M formula. 
 

 
 
Figure 6. IMFP for Al2O3 compared to reported results 
and those from the TPP-2M formula. 
 
 
The numerical values of the IMFPs are given in 
Table 4. Note that regardless of the material, the 
IMFP initially diminishes with increasing 
energy to a broad minimum, then increases as 
the energy continues to increase. 
 
Also shown in Figures 3, 4, and 6 are the IMFP 
data reported in the literature. Relatively good 
agreement can be observed at energies greater 
than 200 eV. Note that Figures 4, 5, and 6 
include IMFP calculations using the TPP-2M 
formula. As can be seen, qualitative agreement 
is obtained. 
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Table 4. Calculated IMFP values vs. energy relative to the bottom of the conduction band. Note 
that if desired the scattering cross sections (σ) can be computed from the IMFP values (λ) using 
the formula 𝜆𝜆−1 = 𝑁𝑁 𝑁𝑁 and the following values of N: (3.34, 6.12, 2.45, 2.34) × 1022/cm3 
for liquid H2O, LiF, CaF2, and Al2O3 respectively. 

 
Energy (eV) IMFP (nm) 

Liquid water LiF CaF2 Al2O3 

10.0 10.2 - - 19.7 
11.0 7.64 - - 11.1 
12.2 5.95 - 17.0 7.49 
13.5 4.78 - 10.2 5.47 
14.9 3.94 8.61 7.08 4.20 
16.4 3.31 5.83 5.32 3.36 
18.2 2.83 4.33 4.14 2.76 
20.1 2.45 3.41 3.33 2.30 
22.2 2.14 2.78 2.76 1.95 
24.5 1.89 2.31 2.34 1.68 
27.1 1.69 1.91 2.01 1.46 
30.0 1.53 1.62 1.74 1.29 
33.1 1.39 1.40 1.53 1.15 
36.6 1.28 1.24 1.35 1.04 
40.4 1.20 1.12 1.22 0.942 
44.7 1.13 1.02 1.12 0.858 
49.4 1.08 0.941 1.05 0.777 
54.6 1.04 0.837 0.990 0.705 
60.3 1.01 0.759 0.941 0.651 
66.7 0.996 0.713 0.901 0.618 
73.7 0.989 0.690 0.870 0.599 
81.5 0.990 0.678 0.848 0.588 
90.0 0.998 0.674 0.828 0.583 
99.5 1.01 0.676 0.810 0.585 
109.9 1.04 0.684 0.797 0.591 
121.5 1.07 0.697 0.793 0.602 
134.3 1.10 0.714 0.799 0.618 
148.4 1.15 0.736 0.814 0.637 
164.0 1.20 0.760 0.836 0.661 
181.3 1.26 0.788 0.865 0.689 
200.3 1.32 0.821 0.900 0.720 
221.4 1.40 0.858 0.941 0.755 
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244.7 1.48 0.900 0.987 0.794 
270.4 1.57 0.947 1.04 0.837 
298.9 1.67 1.00 1.10 0.884 
330.3 1.78 1.06 1.16 0.935 
365.0 1.90 1.12 1.24 0.992 
403.4 2.04 1.20 1.32 1.05 
445.9 2.18 1.28 1.40 1.12 
492.7 2.34 1.36 1.50 1.20 
544.6 2.52 1.46 1.61 1.28 
601.8 2.70 1.57 1.72 1.37 
665.1 2.91 1.68 1.85 1.46 
735.1 3.14 1.81 1.99 1.57 
812.4 3.38 1.94 2.14 1.69 
897.8 3.65 2.09 2.30 1.81 
992.3 3.94 2.26 2.48 1.95 

1096.6 4.26 2.44 2.67 2.10 
1212.0 4.61 2.63 2.88 2.27 
1339.4 4.99 2.84 3.11 2.44 
1480.3 5.40 3.07 3.36 2.64 
1636.0 5.85 3.32 3.63 2.85 
1808.0 6.34 3.60 3.93 3.09 
1998.2 6.87 3.90 4.25 3.34 
2208.3 7.45 4.22 4.60 3.61 
2440.6 8.08 4.57 4.98 3.91 
2697.3 8.77 4.96 5.40 4.24 
2981.0 9.52 5.38 5.85 4.59 
3294.5 10.3 5.83 6.34 4.98 
3641.0 11.2 6.33 6.88 5.40 
4023.9 12.2 6.87 7.46 5.86 
4447.1 13.2 7.46 8.10 6.36 
4914.8 14.4 8.10 8.79 6.90 
5431.7 15.6 8.80 9.54 7.49 
6002.9 17.0 9.55 10.4 8.13 
6634.2 18.5 10.4 11.3 8.83 
7332.0 20.1 11.3 12.2 9.59 
8103.1 21.8 12.3 13.3 10.4 
8955.3 23.7 13.3 14.4 11.3 
9897.1 25.8 14.5 15.7 12.3 
10938.0 28.1 15.7 17.0 13.4 
12088.4 30.5 17.1 18.5 14.5 
13359.7 33.2 18.6 20.1 15.8 
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14764.8 36.1 20.2 21.8 17.1 
16317.6 39.2 21.9 23.7 18.6 
18033.7 42.6 23.8 25.7 20.2 
19930.4 46.2 25.8 27.9 21.9 
22026.5 50.2 28.0 30.3 23.7 
24343.0 54.5 30.4 32.8 25.8 
26903.2 59.1 33.0 35.6 27.9 
29732.6 64.1 35.7 38.6 30.3 
32859.6 69.5 38.7 41.8 32.8 
36315.5 75.2 41.9 45.2 35.5 
40134.8 81.5 45.3 48.9 38.4 
44355.9 88.1 49.0 52.9 41.5 
49020.8 95.2 52.9 57.1 44.8 
54176.4 103 57.1 61.7 48.4 
59874.1 111 61.6 66.5 52.2 
66171.2 119 66.4 71.6 56.2 
73130.4 129 71.4 77.0 60.4 
80821.6 138 76.7 82.7 64.9 
89321.7 148 82.3 88.7 69.6 
98715.8 159 88.1 95.0 74.6 
109097.8 170 94.3 102 79.7 
120571.7 181 101 108 85.1 
133252.4 193 107 116 90.7 
147266.6 206 114 123 96.5 
162754.8 218 121 130 102 
179871.9 231 128 138 108 
198789.2 245 135 146 115 
219696.0 258 143 154 121 
242801.6 271 150 162 127 
268337.3 285 158 170 133 
296558.6 298 165 178 139 
327747.9 311 172 185 145 
362217.4 324 179 193 151 
400312.2 336 186 200 157 
432945.1 345 191 206 162 
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5. Discussion 

 
From the IMFP data for Al2O3 shown in 

Figure 1, we see that when we use the same ELF 
(Figure 2b) as STPP25, we reproduce exactly 
their result. However, our best estimates for the 
ELF data and other input parameters differ 
somewhat from theirs, leading to the 
differences shown in Figure 6. We restrict the 
comparison to energies greater than or equal to 
54.6 eV, above which Shinotsuka et al. 
tabulated their data. At energies greater than 
100 eV, our IMFP values are about 7.5 % 
smaller than theirs, but at energies below 200 
eV the difference increases to approximately 
9 %. The smaller difference at the higher 
energies is likely associated with differences in 
the ELF, whereas the larger difference at lower 
energies reflects sensitivity to the band gap and 
minimum integration limit.  
 Comparing our results for liquid water 
shown in Figure 3 with updated data reported 
by Shinotsuka et al. 25, a difference of 2.5 % is 
observed at energies greater than 150 eV and 
varies from 0.02 % to 1.4 % at energies between 
40 eV and 150 eV. Below 40 eV, differences 
from 1.3 % up to 29 % are found, being larger 
at lower energies. Reference [23] was published 
before Shinotsuka et al. began modelling the 
effect of the band gap, and the lower integration 
limit was set to zero47. However, for the 
updated data reported in ref. [25], the 
Boutboul’s energy gap treatment was 
considered and the lower integration limit was 
set to Eg = 7.9 eV. The 2.5 % difference at high 
energies appears to be mainly attributable to 
differences in the ELF data. The larger 
differences (up 29 %) at low energies are 
associated with the sensitivity to the band gap 
and its effect on the integration limits. 

As mentioned above, the TPP-2M 
formula20 has been proposed to calculate the 
IMFP for LiF and other inorganic compounds 
for which data are not available25. In order to 
use this formula, four parameters are required. 
Thus, in this work we also calculated the IMFP 
for LiF, CaF2, and Al2O3 through the relativistic 
TPP-2M formula by using equation 12 from 

reference [25]. The LiF parameters came from 
Table 7 of reference [19], but for Al2O3 we used 
parameters reported in Table 6 of reference 
[25]. For CaF2, equations 15a-15e of reference 
[25] were used. We used the band gap from 
Table 2 of this work, while the plasmon energy 
and the number of valence electrons per 
molecule were obtained elsewhere59. These 
results are shown in Figures 4, 5, and 6 for LiF, 
CaF2, and Al2O3, respectively. As can be noted, 
qualitative agreements are seen between our 
results and the results of the TPP-2M formula. 
The differences (approximately −10 % at 
energies below 200 eV and −7.35 % above) 
between our and STPP’s results for Al2O3 using 
the dielectric FPA are reproduced by the TPP-
2M formula. For CaF2, the difference is nearly 
constant at −21 % for energies over 200 eV and 
varies between −17 % and 0.21 % at lower 
energies. For LiF, the average differences are 
around −4 % at energies above 200 eV and vary 
from 5 % to 34 % at energies below. In contrast, 
despite the remarkable difference between the 
ELF KK-sum errors obtained in this work and 
that of reference [19], the differences in input 
parameters, and the band-gap treatment, the 
IMFP values obtained for LiF differ from that 
paper’s dielectric-function theory results only 
by −7 % in the 200 eV to 2000 eV energy range. 
Larger differences are evident in Figure 4 at low 
energies, but the TPP-2M equation was claimed 
to be reliable at energies above 200 eV25. 

 
Regarding the data for liquid water 

published by Emfietzoglou et al.6,11, differences 
of up to 186 % in the IMFPs are found for the 
e-e model at energies below 100 eV. At higher 
energies, the disagreements in the IMFPs vary 
from 2 % up to 18 % and between 0.7 % and 
46 % for the e-e and IXS-D3 models, 
respectively. As mentioned by Shinotsuka et 
al.23, these differences can be explained as 
consequences of the inclusion of exchange and 
correlation effects and the use of a 𝜖𝜖2(𝜔𝜔) fit 
instead of the ELF data6,11. As seen in Figure 3, 
the IMFP data from Akkerman and Akkerman29 
are very close to those from Emfietzoglou’s e-e 
model. Similar differences from 19 % to 129 % 
are obtained at energies below 100 eV and 2 % 
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at energies above when compared to our results. 
The IMFP data at energies between 20 eV and 
100 eV for liquid water reported by Garcia-
Molina et al.31 and by de Vera and Garcia-
Molina33 are greater than ours by 7 % to 21 % 
and 15 % to 20 %, respectively; while those 
from Nguyen-Truong32 are greater by 6 % to 
16 % in the energy range from 35 eV to 100 eV 
and smaller by 2.5 % to 30 % at energies down 
to 20 eV. At higher energies, the differences are 
found to be 1.9 %, 0.8 %, and from 0.06 % to 
15 %, respectively. Contrary to data from 
references [6, 11, 29], the results recently 
published by Garcia-Molina et al.31,33 and 
Nguyen-Truong32 show smaller differences 
compared to our results at energies between 
20 eV and 100 eV. The differences observed at 
low energies between our IMFPs and those 
reported in references [31-33], could 
presumably be interpreted as a consequence of 
the ELF data sets used for the dielectric-
function calculation, which is very sensitive to 
the optical data, or due to the inclusion of 
higher-order corrections to the first-Born 
approximation and/or the integration limit33 as 
mentioned above. For example, Garcia-Molina 
et al.31 used a Mermin energy-loss-function–
generalized-oscillator-strength (MELF-GOS) 
model for describing the ELF in their method; 
Akkerman and Akkerman29, used a Drude-type 
variation for the ELF construction; and 
Nguyen-Truong32 considered an ELF based on 
a Mermin-Levine-Louie (MLL) dielectric 
function. 

Considering the results for Al2O3 
published by Pandya et al.26 and Akkerman et 
al.27, differences of up to 270 % and 57 % in the 
IMFPs are obtained, respectively, at energies 
below 100 eV. At higher energies, the reported 
IMFPs differ from this work by around 6 % - 
20 %26 and 0.3 % - 35 %27, respectively. The 
observed difference between our results and the 
data published by Akkerman et al.27 could be 
due to the combination of the dielectric theory 
with a classical binary-encounter 
approximation used in their work. With respect 
to Pandya et al.26, the difference can be 
associated with the semi-empirical quantum-
mechanical method used to obtain the atomic 
molecular inelastic cross-section. 

 
As is evident from the above discussion, 

there is variation among reported calculated 
IMFP values, relatively small at high energies, 
but several tens of percent at energies below 50 
eV. Some of the variation is due to uncertainties 
in the modeling, e.g., use of the Born 
approximation (a high-energy approximation) 
in the derivation of Eq. 1, the choice of 
extension model (e.g., Mermin or Lindhard 
components, discrete or continuous) to extend 
available ELF(0,𝜔𝜔) to ELF(𝑞𝑞 > 0,𝜔𝜔), and the 
choice of whether to include exchange and 
correlation effects, and if so how. The choice of 
extension algorithm can make a difference of 
5 % at 10 keV and of 25 % at 50 eV11,60. 
Exchange and correlation effects can be in the 
range of from −2 % to +15 % at 10 keV, and 
from −15 % to +35 % at 50 eV11.  
 

The errors in the IMFP associated with 
input parameters such as the band-gap and 
valence band-width energies have been 
assessed. Considering the variation of the data 
reported in the literature, we estimated the best 
values of these parameters to within 1 eV. We 
found that the maximum errors associated with 
the valence band width to be approximately 
2.3 %, 2.1 %, 1.6 %, and 3.3 % for liquid water, 
LiF, CaF2, and Al2O3, respectively, at energies 
below 100 eV, while those related to the energy 
gap were 1.2 %, 0.0014 %, 0.007 % and 0.28 %, 
respectively. As observed, the errors due to the 
valence band width are greater than those 
related to the band-gap energy. The results 
indicate that these errors are not so important 
relative to the model uncertainties described 
above.  
 

6. Conclusions  
 

In this work, the electron inelastic mean free 
path for LiF, CaF2, Al2O3, and liquid water has 
been investigated from 442 keV down to the 
energy gap. The calculation was performed 
using the dielectric-function model through the 
relativistic full Penn algorithm (FPA). An 
integration limit that accounts for the band-gap, 
the valence band-width, and the exciton 
interactions has been established. The results 
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suggest that at electron energies below 100 eV, 
the different choices of models for integration 
limits can affect the IMFP by up to 29 % and 
the exciton interaction by ~9 %. At energies 
greater than 100 eV, the difference between our 
results and those from STPP25 for Al2O3 are 
around 7.5 %, which is associated with choice 
of the ELF and other input parameters. 
 
Author Information 
 
*Corresponding Author 
 
E-mail: massillon@fisica.unam.mx, Tel: +52 
55 5622-5186 
 
Acknowledgments 
 

The authors thank S. Tanuma, C. J. 
Powell and P de Vera for sharing their data and 
for useful discussions. We credit H. Shinotsuka, 
in notes shared with us by S. Tanuma, for 
recognizing the need to correct Eqs. 8 and 9 at 
low energies. This project is partially supported 
by the Royal Society-Newton Advanced 
Fellowship grant NA150212 and by PAPIIT-
UNAM grant IN115117. 
 
References 
 
1. Martin, F.; Burrow, P. D.; Cai, Z.; Cloutier, 

P.; Hunting, D.; Sanche, L. DNA Strand 
breaks induced by 0–4 eV electrons: the role 
of shape resonances. Phys. Rev. Lett. 2004, 
93, 068101. 

2. Massillon-JL, G.; Cabrera-Santiago, A.; 
Minniti, R.; O’Brien, M.; Soares, C. 
Influence of phantom materials on the 
energy dependence of LiF:Mg,Ti 
thermoluminescence dosimeters exposed to 
20-300 kV narrow x-ray spectra, 137Cs and 
60Co photons. Phys. Med. Biol. 2014, 59, 
4149-4166. 

3. Cabrera-Santiago, A.; Massillon-JL, G. 
Secondary electron fluence generated in 
LiF:Mg,Ti by low-energy photons and its 
contribution to the absorbed dose. AIP 
Conference Proc. 2016, 1747, 020004. 

4. Massillon-JL, G.; Cabrera-Santiago, A.; 
Xicohténcatl-Hernández, N. Relative 

efficiency of Gafchromic EBT3 and MD-V3 
films exposed to low- energy photons and its 
influence on the energy dependence. 
Physica Medica 2019, 61, 8-17. 

5. Cabrera-Santiago, A.; Massillon-JL, G. 
Track-average LET of secondary electrons 
generated in LiF:Mg,Ti and liquid water. 
Phys. Med. Biol. 2016, 61, 7919-7933. 

6. Emfietzoglou, D.; Nikjoo, H. Accurate 
electron inelastic cross sections and stopping 
powers for liquid water over the 0.1–10 keV 
range based on an improved dielectric 
description of the Bethe surface. Radiat. Res. 
2007, 167, 110-120. 

7. Kyriakou, I.; Incerti, S.; Francis, Z. 
Technical note: improvements in GEANT4 
energy-loss model and the effect on low-
energy electron transport in liquid water, 
Med. Phys. 2015, 42, 3870-3876. 

8. Fernández-Varea, J. M.; Salvat, F.; 
Dingfelder, M.; Liljequist, D. A relativistic 
optical-data model for inelastic scattering of 
electrons and positrons in condensed matter. 
Nucl. Instr. and Meth. in Phys. Res. B 2005, 
229, 187-218. 

9. Emfietzoglou, D.; Moscovitch, M. Inelastic 
collision characteristics of electrons in liquid 
water. Nucl. Instr. Meth. in Phys. Res. B 
2002, 193, 71-78. 

10. Emfietzoglou, D.; Karava, K.; 
Papamichael, G.; Moscovitch, M. Monte 
Carlo simulation of the energy loss of low-
energy electrons in liquid water. Phys. Med. 
Biol. 2003, 48, 2355-2371. 

11. Emfietzoglou, D.; Kyriakou, I.; Garcia-
molina, R.; Abril, I. Inelastic mean free path 
of low-energy electrons in condensed media: 
beyond the standard models. Surf. Interface 
Anal. 2017, 49, 4-10 

12. Fernández-Varea, J. M.; González-Muñoz, 
G.; Galassi, M. E.; Wiklund, K.; Lind, B. K.; 
Ahnesjö, A.; Tilly, N. Limitations (and 
merits) of PENELOPE as a track-structure 
code. Int. J. Radiat. Biol. 2012, 88, 66-70. 

13.  Villarrubia, J. S.; Ding, Z. J. Sensitivity of 
scanning electron microscope width 
measurements to model assumptions. J. 
Micro/Nanolith MEMS MOEMS 2009, 8, 
033003. 

mailto:massillon@fisica.unam.mx


 15 

14. Villarrubia, J. S.; Vladár, A. E.; Ming, B.; 
Kline, R. J.; Sunday, D. F.; Chawla, J. S.; 
List, S. Scanning electron microscope 
measurement of width and shape of 10 nm 
patterned lines using a JMONSEL-modeled 
library. Ultramicroscopy 2015, 154, 15–28. 

15. Powell, C. J. Attenuation lengths of low-
energy electrons in solids. Surf. Sci. 1974, 
44, 29-46. 

16. Penn, D. R. Electron mean-free-path 
calculations using a model dielectric function. 
Phys. Rev. B. 1987, 35, 482-486. 

17. Tanuma, S.; Powell, C. J.; Penn, D. R. 
Calculations of electron inelastic mean free 
paths for 31 materials, Surf. Interface Anal. 
1988, 11, 577-589. 

18.  Tanuma, S.; Powell, C.J.; Penn, D. R. 
Proposed formula for electron inelastic mean 
free paths based on calculations for 31 
materials, Surf. Science. 1987, 192 L849-
L857. 

19. Tanuma, S.; Powell, C.J.; Penn, D. R. 
Calculations of Electron Inelastic Mean Free 
Paths. III. Data for 15 Inorganic Compounds 
over the 50-2000 eV Range, Surf. Interface 
Anal.1991, 17, 927-939. 

20. Tanuma, S.; Powell, C. J.; Penn, D. R. 
Calculations of electron inelastic mean free 
paths. V. Data for 14 organic compounds over 
the 50–2000 eV range, Surf. Interface Anal. 
1994, 21, 165-176. 

21. Powell, C. J.; Jablonski, A.; Evaluation of 
electron inelastic mean free paths for selected 
elements and compounds Surf. Interface Anal. 
2000, 29, 108-114. 

22. Tanuma, S.; Powell, C. J.; Penn, D. R. 
Calculations of electron inelastic mean free 
paths. IX. Data for 41 elemental solids over 
the 50 eV to 30 keV range. Surf. Interface 
Anal. 2011, 43, 689-713. 

23. Shinotsuka, H.; Tanuma, B. Da, S.; 
Yoshikawa, H.; Powell, C. J.; Penn, D. R. 
Calculations of electron inelastic mean free 
paths. XI. Data for liquid water for energies 
from 50 eV to 30 keV. Surf. Interface Anal. 
2017, 49, 238-252. 

24. Shinotsuka, H.; Tanuma, S.; Powell, C. J.; 
Penn, D. R. Calculations of electron inelastic 
mean free paths. X. Data for 41 elemental 
solids over the 50 eV to 200 keV range with 

the relativistic full Penn algorithm. Surf. 
Interface Anal. 2015, 47, 871-888. 

25. Shinotsuka, H.; Tanuma, S.; Powell, C.J.; 
Penn, D. R. Calculations of electron inelastic 
mean free paths. XII. Data for 42 inorganic 
compounds over the 50 eV to 200 keV range 
with the full Penn algorithm. Surf. Interface 
Anal. 2019, 51, 427-457. 

26. Pandya, S. H. B.; Vaishnav, G.; Joshipura, 
K. N. Electron inelastic mean free paths in 
solids: A theoretical approach. Chin. Phys. B 
2012, 21, 093402. 

27. Akkerman, A.; Boutboul, T.; Breskin, A.; 
Chechik, R.; Gibrekhterman, A.; Lifshitz, Y. 
Inelastic electron interactions in the energy 
range 50 eV to 10 keV in insulators: Alkali 
halides and metal oxides. Phys. Stat. Sol. 
1996, 198, 769-784. 

28. Boutboul, T.; Akkerman, A.; Breskin, A.; 
Chechik, R. Electron inelastic mean free path 
and stopping power modelling in alkali 
halides in the 50 eV–10 keV energy range. J. 
Appl. Phys. 1996, 79, 6714-6721. 

29. Akkerman A.; Akkerman, E. Characteristics 
of electron inelastic interactions in organic 
compounds and water over the energy range 
20–10000 eV. J. Appl. Phys. 1999, 86, 5809-
5816. 

30. Tanuma, S.; Powell, C. J.; Penn, D. R. 
Calculations of Electron Inelastic Mean Free 
Paths (IMFPs). IV. Evaluation of Calculated 
IMFPs and of the Predictive IMFP Formula 
TPP-2 for Electron Energies between 50 and 
2000 eV. Surf. Interface Anal. 1993, 20, 77-
89. 

31. Garcia-Molina, R.; Abril, I.; Kyriakou, I.; 
Emfietzoglou, D. Inelastic scattering and 
energy loss of swift electron beams in 
biologically relevant materials. Surf. Interface 
Anal. 2017, 49 11-17. 

32. Nguyen-Truong, H. T. Low-energy electron 
inelastic mean free paths for liquid water. J. 
Phys.: Condens. Matter 2018, 30, 155101. 

33. de Vera, P.; Garcia-Molina, R. Electron 
inelastic mean free path in condensed matter 
down to a few electronvolts. J. Phys. Chem. C 
2019, 123, 2075-2083. 

34. Tanuma, S.; Powell, C. J.; Penn, D. R. 
Calculation of electron inelastic mean free 
paths (IMFPs) VII. Reliability of the TPP-2M 



 16 

IMFP predictive equation. Surf. Interface 
Anal. 2003, 35, 268-275. 

35. Bourke J. D.; Chantler, C. T. Electron 
Energy Loss Spectra and Overestimation of 
Inelastic Mean Free Paths in Many-Pole 
Models. J. Phys. Chem. A 2012, 116, 3202-
3205. 

36. Fano, U. Penetration of protons, alpha 
particles, and mesons. Ann. Rev. Nucl. Sci. 
1963, 13, 1-66. 

37. Samarin, S.; Berakdar, J.; Suvorova, A.; 
Artamonov, O. M.; Waterhouse, D. K.; 
Kirschner, J.; Williams, J. F. Secondary-
electron emission mechanism of LiF film by 
(e,2e) spectroscopy. Surface Science 2004, 
548, 187–199. 

38. Abbamonte, P.; Graber, T.; Reed, J. P.; 
Smadici, S.; Yeh, Ch-Lin.; Shukla, A.; 
Rueff, J-P.; Ku, W. Dynamical 
reconstruction of the exciton in LiF with 
inelastic x-ray scattering. PNAS. 2008, 105, 
12159–12163. 

39. Querry, M. R.; Wieliczka, D. M.; 
Segelstein, D. J. Handbook of optical 
constants, Academic Press 2, 1991. 

40. Hayashi, H. Watanabe, N.; Udagawa, Y.; 
Kao, C-C. The complete optical spectrum of 
liquid water measured by inelastic x-ray 
scattering. PNAS. 2000, 97, 6264-6266. 

41. Henke, B. L.; Gullikson, E. M.; Davis, J. C. 
X-ray interaction: photo absorption, 
scattering, transmission and reflection at 
E=50-30000 eV, Z=1-92. At. Data Nucl. 
Data Tables. 1993, 54, 181-342. 

42. Chantler, C. T.; Olsen, K.; Dragoset, R. A.; 
Chang, J.; Kishore, A. R.; Kotochigova, S. 
A.; Zucker, D. S. X-ray form factor, 
attenuation and scattering tables (version 
2.1) 2005, Available online at: 
http://physics.nist.gov/ffast (accessed 2018) 

43. Palik, E. D.; Hunter, W. R. Handbook of 
Optical Constants. 1st ed. Academic Press, 
1985; pp 35-68. 

44. Bezuidenhout, D. F.; Handbook of optical 
constants. 2nd ed.; Academic Press,1991; pp 
815-835. 

45. William, J.; Thomas, M. E. Handbook of 
optical constants. 3rd ed.; Academic Press, 
1998; pp 653-663. 

46. Piegary, A; Flory, F. Optical thin films and 

coatings. 1st ed.; Woodhead Publishing 
Limited, 2013; pp 1-845. 

47. Tanuma, S. Private communication, 2019. 
48. Shimkevich, A. Electrochemical View of 

the Band Gap of Liquid Water for Any 
Solution. World J. Condens. Matter. 2014, 
4, 243–249.  

49. Winter, B.; Weber, R.; Widdra, W.; 
Dittmar, M.; Faubel, M.; Hertel, I. V. Full 
Valence Band Photoemission from Liquid 
Water Using EUV Synchrotron Radiation. J. 
Phys. Chem. A. 2004, 108 2625-2632. 

50. Poole, R. T.; Liesegang, J.; Leckey, R. C. 
G.; Jenkin, J. G. Electronic band structure of 
the alkali halides. II. Critical survey of 
theoretical calculations. Phys. Rev. B. 1975, 
44, 3955–3962. 

51. Massillon-JL, G.; Johnston, C. S. N.; 
Kohanoff, J. On the role of magnesium in a 
LiF:Mg,Ti thermoluminescent dosimeter. J. 
Phys.: Condens. Matter. 2018, 31, 025502. 

52. Cadelano, E.; Cappellini, G. Electronic 
structure of fluorides: General trends for 
ground and excited state properties. Eur. 
Phys. J. B. 2011, 81, 115–120. 

53. Scrocco, M. Satellites in x-ray 
photoelectron spectroscopy of insulators. I. 
Multielectron excitations in CaF2, SrF2, and 
BaF2. Phys. Rev. B. 1985, 32, 1301-1305. 

54. Perevalov, T. V.; Shaposhnikov, A. V.; 
Gritsenko, V. A.; Wong, H.; Han, J. H.; Kim, 
C. W. Electronic Structure of α-Al2O3: Ab 
Initio Simulations and Comparison with 
Experiment. JETP Letters. 2007, 85, 165–
168. 

55. Fisher, K., Daniels, J., Hess, S.; Tracts in 
modern physics. 1st ed.; Springer- Verlag: 
Alemania, 1970; pp 1-72. 

56. Wooten, F.; Optical Properties of Solids. 
1st ed.; Academic Press: California, 1972; 
pp 1-255. 

57. Egerton, R. F.; Electron Energy-Loss 
Spectroscopy in the Electron Microscope, 
3rd ed.; Springer, 2011; pp 1-485. 

58. Bethe, H. A.; Morrison, P.; Ford, K. W. 
Elementary Nuclear Theory, 1st ed.; John 
Wiley and Sons: New York, 1947; pp 1-141. 

59. Powell, C. J.; Jablonski, A. NIST Electron 
Inelastic-Mean-Free-Path Database. 2010. 
Available at 



 17 

https://www.nist.gov/sites/default/files/doc
uments/srd/SRD71UsersGuideV1-2.pdf 

60. Shinotsuka, Da B. H.; Yoshikawa, H.; 
Tanuma, S. Comparison of the Mermin and 
Penn models for inelastic mean-free path 
calculations for electrons based on a model 
using optical energy-loss functions. Surf. 
Interface Anal. 2019, 51, 627-640. 



 18 

‘For Table of Contents Only’ 
 
 

 


	Electron inelastic mean free paths for LiF, CaF2, Al2O3, and liquid water from 433 keV down to the energy gap
	Miguel Angel Flores-Mancera1, John S Villarrubia,2 and Guerda Massillon-JL1*
	1. Introduction
	References

