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It was recently demonstrated theoretically, when the po-
larimetric properties of a material depend only upon
the direction transverse to that of propagation (long co-
herence length regime), depolarization in transmission
evolves quadratically with material thickness. This
behavior was observed in several experimental stud-
ies. However, some of these studies unlikely satisfy
the long coherence length condition under which the
theory applies. Here, we demonstrate that abandon-
ing a unidirectional approach to the propagation of
light through a medium, i.e., introducing scatter, causes
quadratic depolarization to occur in the short coherence
length regime.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

The evolution of the intensity and polarization state of
radiation transmitting through a medium is often treated
in terms of a 4× 4 Mueller matrix M(z) that evolves ac-
cording to the differential equation [1–3]

dM(z)
dz

= mM(z), (1)

where m is a 4× 4 differential Mueller matrix, and z is
the propagation coordinate. Implicit in the use of Eq. (1)
is that the radiation is propagating in a single direction
through the medium, as illustrated in Fig. 1(a). When m
is independent of z, the solution is well known:

M(z) = exp(mz), (2)

where the matrix exponential is used [4], and the initial
condition is M(0) = I (the identity matrix). The behavior
described by Eq. (2) motivates the logarithmic decomposi-
tion of a Mueller matrix,

L = log(M), (3)

in analogy with a Beer-Lambert law extinction coefficient
[5, 6]. It is common to use the normalized Mueller matrix,
M/M00, in place of M in Eq. (3), which just adds an addi-
tive component proportional to the identity matrix, and
ensures L00 = 0.

Fig. 1. Schematic illustrating the stacking of layers in
transmission: (a) the traditional view, where only for-
ward transmission is considered, and (b) the layers inter-
acting through reflection or scattering.

Ossikovski and Arteaga found the physical interpreta-
tion of the matrix m to be related to the non-depolarizing
mean properties 〈m〉 and the depolarizing variances
〈∆m2〉 of the material properties [7]. Using elementary
fluctuation theory and assuming that the material is homo-
geneous along the propagation direction (long coherence
length limit), it was found that the differential Mueller
matrix is given by [7, 8]

m = 〈m〉+ 〈∆m2〉z. (4)

The solution to Eq. (1) with Eq. (4) is approximately (since
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〈m〉 and 〈∆m2〉 do not, in general, commute) given by

M(z) = exp
(
〈m〉z + 1

2
〈∆m2〉z2

)
. (5)

Eq. (5) suggests that the depolarizing properties would
behave quadratically with sample thickness in the long co-
herence length limit. In the short coherence length regime,
the matrix m is independent of z [8], and depolarization
would be expected to grow linearly.

Several studies have indeed observed quadratic evo-
lution of depolarization, at least for small thicknesses
[9–13]. However, in a number of these studies [9–11, 13],
the materials being studied, or how their thickness was
varied, would not have been expected to be in the long
coherence length regime. Charbois and Devlaminck rec-
ognized this issue and developed an approach by which
a linear or quadratic dependence can be observed [10].
They constructed measurements that showed an initial
quadratic effect for thin samples and a linear effect for
thick samples, in expectation of the transition from a thick-
ness shorter than the coherence length to one greater than
it. Agarwal et al. recognized that the results of their mea-
surements were incompatible with a finite thickness of
material being represented by the product of Mueller ma-
trices for subdivided thin layers [9]. Yet, different sample
thicknesses were created by stacking TiO2-impregnated
polyvinyl chloride blocks in [9] and by layering adhesive
tape in [11]. Within fluctuation theory, if each layer of
thickness z0 is homogeneous along the propagation di-
rection, the Mueller matrix of n independent layers (i.e.,
long coherence within a layer, but no coherence between
layers) would be

M = exp
(

n〈m〉z0 +
n
2
〈∆m2〉z2

0

)
. (6)

That is, if the fluctuation theory described the origin of
depolarization in the layered samples, the growth of de-
polarization would have been linear with the number of
layers.

In this paper, we suggest an alternative approach that
explains the observed growth of depolarization with thick-
ness, even in the short coherence length regime. As men-
tioned above, all of the previous analyses have assumed
that radiation is only passing sequentially through the
medium, as illustrated in Fig. 1(a). If the material is dif-
fusely scattering, some radiation reflects backward, so that
an approach illustrated in Fig. 1(b) would be more appro-
priate. The approach we take is a polarimetric extension of
the theory of Kubelka and Munk (KM) for reflectance (but
applied here in transmittance) and represents the simplest
approximation to the radiative transfer equation [14, 15].

We begin by assuming that there are two streams, one
propagating forward and one propagating backward, and
that there is coupling between the two due to scattering.
Following KM, but generalizing the absorption and scat-

tering coefficients with matrices, we have

d
dz

 M+(z)

M−(z)

 = m′

 M+(z)

M−(z)

 , (7)

where

m′ =

 m− a(s) r(s)

−s r[a(s)−m]

 , (8)

m is the forward differential Mueller matrix [as for Eq. (1)],
and s is a scattering Mueller matrix. The matrices M+(z)
and M−(z) represent the Mueller matrices for forward
and backward propagating radiation, respectively. The
matrix function a(s) is needed to account for polarization-
dependent losses in one direction as radiation is scattered
into the other, and is a non-depolarizing, diattenuative,
and lossy differential Mueller matrix:

a(s) =


s00 s01 s02 s03

s01 s00 0 0

s02 0 s00 0

s03 0 0 s00

 . (9)

The matrix function r(m) relates the forward propagating
optical properties to the backward propagating ones that
result from the use of different coordinate systems for
propagation in each direction [16]:

r(m) =


m00 m01 −m02 m03

m10 m11 m12 −m13

−m20 m21 m22 m23

m30 −m31 m32 m33

 . (10)

The solution to Eq. (7) is M+(z)

M−(z)

 = exp(m′z)

 M+(0)

M−(0)

 , (11)

and we use the boundary conditions M+(0) = I (the
incident beam), M+(∆z) = Mt (the net Mueller matrix
transmittance), M−(0) = Mr (the net Mueller matrix re-
flectance), and M−(∆z) = 0 (representing the lack of an
incident beam from the right). The thickness of the mate-
rial is ∆z. Reflectance and transmittance at the z = 0 and
z = ∆z interfaces can be included with other boundary
conditions but are not included here for simplicity.

As an illustrative example, we consider a material with
absorption coefficient α and birefringence r, so that

m =


−α 0 0 0

0 −α 0 0

0 0 −α r

0 0 −r −α

 , (12)
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Fig. 2. The non-zero elements of the logarithmic decom-
position Lt of the Mueller matrix transmittance Mt as
a function of dimensionless thickness. The top frame
shows the depolarizing elements Lt,11, Lt,22, and Lt,33,
while the bottom frame shows the non-depolarizing el-
ements Lt,23 and Lt,32. The curves for Lt,11 and Lt,22 are
nearly identical.

and a scattering coefficient s and scattering depolarization
c, so that

s = diag [s, sc,−sc, s(1− 2c)] , (13)

which is the form expected for back-reflection [17]. Note
here that, unlike Eq. (4), both m and s are local; they do not
depend upon z. That is, they are being treated in the short
coherence length regime. The only direct mechanism for
depolarization is from scattering, if c < 1.

We further choose α = 10−6 (non-zero to prevent sin-
gular intermediate matrices), r = 0.1, s = 1, and c = 0.7.
Non-zero birefringence (r 6= 0) is included here because
some of the past measurements [11, 12] included sam-
ples with birefringence. Figure 2 shows the non-zero
elements of the matrix Lt = log(Mt/M00). One imme-
diately notices the curved nature of the depolarizing ele-
ments Lt,11, Lt,22, and Lt,33, which appear quadratic near
zero thickness and become linear at larger thicknesses.
This behavior was observed by Charbois and Devlaminck
in their measurements of turbid liquids [10]. The non-
depolarizing elements Lt,23 and Lt,32 are approximately
linear with thickness, as has been observed in [11, 12].

Multiple scattering is the root of why depolarization
behaves quadratically in this model. In order for scat-
tering to affect radiation in transmission, there must be
at least two scattering events: one to transfer radiation
from the forward direction to the backward direction, and
a second to transfer radiation back to the forward direc-
tion. The scattering parameter s is the product of the
scatterer concentration and the mean backscattering cross

section. The KM model described here exhibits a depolar-
ization that also depends quadratically on s. This behavior
was also found in [9], although it was expressed as the
model-extracted standard deviation of the birefringence
(〈∆m2〉1/2, determined from Eq. (5)), found to be linear in
particle concentration.

At this time, we do not know of a specific measurement
that would distinguish between the behavior predicted
by fundamental fluctuation theory [Eqs. (4) and (5)] and
that resulting from scatter. It is expected that the measure-
ments performed by stacking media [11, 12] would have
achieved different results if the layers were spaced apart,
since diffuse back reflections would be reduced. Further-
more, different results would be observed if the incident
radiation were well collimated and only that radiation
transmitted in the forward direction were collected, since
contributions from scatter would be reduced. However,
some of the artifacts that were studied, specifically those
where materials were stacked to create different thick-
nesses (blocks of TiO2 in polyvinyl chloride [9] or strips
of adhesive tape [11]), would be expected to have corre-
lation lengths shorter than the thinnest layer measured.
That is, the polarimetric properties of the material could
not have been coherent in the direction of propagation as
blocks were stacked. Yet, those measurements observed
the quadratic onset of depolarization.

Refs. [9, 11] acknowledged that, as layers were added,
the radiation was attenuated. The KM theory described
here not only predicts the polarization properties, but also
net attenuation, which is found to be linear (that is, M00
is exponential) for small thicknesses. Attenuation can be
included in the fluctuation theory through addition of
an isotropic term in 〈m〉, but attenuation does not arise
naturally out of the fluctuation terms themselves.

One apparent paradox is solved by the present model:
it was found that the results were not consistent with the
multiplication of successive Mueller matrices implied by
Fig. 1(a). Our resolution of that paradox is that scattering
in the material causes radiation to propagate backward as
well as forward. That is, the addition of a layer affects the
radiation pattern in previous layers.

The polarimetric extension of the KM model we use
here is highly simplified and does not represent a quan-
titative approach towards solving the radiative transfer
equation [15]. Monte Carlo (MC) simulations better sim-
ulate the 3-dimensional nature of radiative transfer. In
fact, quadratic depolarization was predicted by Monte
Carlo simulations reported in [9] using scattering phase
functions from Mie theory. Like the KM model described
here, Monte Carlo simulations do not propagate radiation
coherently, demonstrating that quadratic depolarization
can be a scattering phenomenon, rather than a coherent
one, like the fluctuation theory. We presented the KM
approach, because it illustrates how simply adding scat-
tering into the calculation results in a behavior similar to
that observed in the measurements.

One of the experimental studies measured transmit-
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ted depolarization for different thicknesses sliced from
bio-mimetic skin equivalents and focused on birefringent
dermal regions. [12] These materials had thicknesses in
the range 2 µm to 15 µm. Because the different samples
were each obtained subtractively from blocks of material
(in contrast to those studies which investigated different
thickness by additively stacking layers), the condition of
homogeneity of the polarimetric properties in the direc-
tion of propagation may have been satisfied. Thus, part or
all of the quadratic behavior observed in the depolariza-
tion may indeed have been a result of the unidirectional
approach that the authors used to interpret their data.

In this paper, we have shown that one does not need to
assume longitudinal homogeneity (long coherence length)
to observe quadratic evolution of depolarization in trans-
mittance. Instead, the presence of scattering prevents
application of a unidirectional application of Mueller ma-
trices, illustrated in Fig. 1(a). By simply considering back-
ward propagating radiation and scattering, quadratic evo-
lution of depolarization can occur in the short coherence
length limit. These results are important for interpreting
depolarization in turbid media. Because there are two
competing mechanisms that predict quadratic depolariza-
tion, extracting physical information from data may be
difficult. It should be borne in mind that, because both
scattering and depolarization result from inhomogeneities
in a turbid media, scattering and depolarization are nec-
essarily intertwined phenomena.
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