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Abstract  
Recent progress in artificial intelligence is largely attributed to the rapid development of machine 

learning, especially in the algorithm and neural network models. However, it is the performance of the 

hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of 

the capability of machine learning. Data-centric computing requires a revolution in hardware systems, 

since traditional digital computers based on transistors and the von Neumann architecture were not 

purposely designed for neuromorphic computing. A hardware platform based on emerging devices 

and new architecture is the hope for future computing with dramatically improved throughput and 

energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from 

materials selection, device optimization, circuit fabrication, and system integration, to name a few. 

The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are 

potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective 

of challenges and opportunities in this burgeoning field. 
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Introduction  

It is believed that hardware is on the critical path for the future of artificial intelligence in the big data 

era [1]. State-of-the-art hardware for machine learning such as the central processing unit (CPU), 

graphics processing unit (GPU) and tensor processing unit (TPU) are built upon the complementary 

metal oxide semiconductor (CMOS) transistors. Although superior computing capability has been 

demonstrated with such hardware, the end of transistor scaling and the separation of logic and 

memory units in the von Neumann architecture limit the performance in particular energy efficiency, 

for data-centric tasks. Inspired by the extremely low power consumption of the human brain, 

neuromorphic hardware has been an intensive research topic, such as those that based on emerging 

solid state devices.   

 

Emerging non-volatile devices can store information without dissipating power. When organized into 

a computing system, it can implement a so-called ‘in-memory computing’ (IMC) paradigm, in which 

computation takes place where the data is stored. IMC avoids the time and energy spent on data 

shuttling between memory and logic units in a traditional digital computer, especially suitable for 

tasks in which data needed to be computed are naturally collocated in the physical memory. Taking 

advantage of physical laws, such as Ohms law for multiplication and Kirchhoff’s current law for 

summation, IMC with a large-scale emerging device offers massive parallelism as well. Furthermore, 

the physical computing is analog in nature and the hardware could interface with analog data acquired 

directly from sensor arrays, reducing the energy overhead from analog/digital conversions.  

Depending on the properties of the device, such hardware is suitable for three types of applications 

[2]. Devices with excellent stability can be used to build an inference system where the synaptic 

weights have already been trained somewhere else. With high enough endurance, they may be 

incorporated into a training system for scalable algorithms such as backpropagation.  For devices with 

intrinsic dynamic behavior similar to biological synapse and neurons, they may be promising building 

blocks for spiking neural networks that takes advantage of the timing in electric pulses for computing. 

 

Extensive simulation has shown that neural networks built with emerging non-volatile memories will 

bring orders of magnitude higher speed-energy efficiencies [3]. However, experimental demonstration 

of large systems that can solve real-world problems has had limited success to date in part because of 

the lack of ideal devices that can efficiently implement the machine learning algorithms or faithfully 

emulate the essential properties of synapses and neurons. In addition, the heterogeneous integration of 

the devices into massively parallel networks is a major technical obstacle as well.  

 

In the present Roadmap article, we pick up several topics on the emerging neuromorphic hardware 

and technology with machine learning applications that we think are particularly appealing to the 

readers of Nanotechnology, a community that is more interested in device and technology rather than 

machine learning algorithm and neural network architecture. The Roadmap starts with FLASH-based 

hardware that uses non-volatile transistors and targets inference systems. We believe this is a good 

segue from CMOS to emerging devices. Several resistance switching phenomena based devices 

including the phase change, memristor, magnetoresistance and ferroelectric devices are the subject of 

the next few sections, including the materials selection, electrical property optimization, device 

fabrication and circuit integration, and metrology control, etc. In addition, new materials (such as 2D 

materials and organic materials) and technologies (for example, self-assembly) are also covered. 

Finally, novel concepts, such as using photons, quantum phenomenon, superconductors, and the 

timing of electrical spikes for computing are introduced.  

 

References:  

1. Big data needs a hardware revolution. Nature 554, 145-146 (2018). doi: 10.1038/d41586-018-
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Section 1 - Floating Gate Memory Based Hardware 
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2 UC Santa Barbara, Santa Barbara, CA 93106, Unites States 
 

Status 

The present-day revolution in deep learning, triggered by the use of high-performance hardware, in 

turn has stimulated the development of even more powerful digital systems, specific for machine 

learning tasks. However, the use of digital operations for the implementation of neuromorphic 

networks, with their high redundancy and noise/variability tolerance, is inherently unnatural. Indeed, 

the performance of such networks may be dramatically improved using analog and mixed-signal 

integrated circuits. In this approach, the key operation - the vector-by-matrix multiplication (VMM) -  

is implemented on the physical level in a crossbar circuit, using the fundamental Ohm and Kirchhoff 

laws (Fig. 1a) [1].   

 

The main difference between numerous recently demonstrated circuits of this type is the choice of 

crosspoint devices with adjustable conductance G - essentially analogue nonvolatile memory cells, 

storing the pre-recorded synaptic weights w  G. Much recent effort is devoted to using, in this role, 

memristors and other novel two-terminal nanodevices, some of which may enable scaling beyond the 

10-nm frontier [2]. However, the fabrication technology of such devices is still immature for their VLSI 

integration. It turned out that quite comparable results may be obtained using much more mature 

floating-gate (FG) memory cells.   

 

Up until recently, such devices were implemented mostly as “synaptic transistors” (Fig. 1b) [1, 3], 

which may be fabricated using standard processes available from CMOS foundries. This approach has 

enabled the implementation of several sophisticated systems [3-5].  However, these devices have 

relatively large areas (> 1000F2, where F is the minimum feature size), leading to higher interconnect 

capacitances and hence larger energy losses and time delays. Recently, it was proved [2, 6] that much 

better results may be obtained re-designing, by simple re-wiring (Fig. 1e), the arrays of the ubiquitous 

flash memories with their highly optimized cells. The areas of the so-modified arrays of the ESF1 and 

ESF3 NOR flash memories (Fig. 1b, c), with the latter technology scalable to F = 28 nm, are close to 

120F2 and may be further reduced to ~40F2. The synaptic weights of FG cells in the modified arrays 

may be individually fine-tuned with accuracy better than 1%. 

 

This approach was successfully demonstrated on a medium-scale (28×28-binary-input, 10-output, 3-

layer, 101,780-synapse) network for pattern classification (Fig. 1 f, g) [6]. Remarkably for such a first 

attempt, still using the older ESF1 180-nm technology, the experimentally measured time delay and 

energy dissipation (per one pattern classification) were below, respectively, 1 μs and 20 nJ, i.e. at least 

three orders of magnitude better than those obtained with the 28-nm digital TrueNorth chip used for 

the same task, with a similar fidelity. Preliminary experimental results for the chip-to-chip statistics, 

long-term drift, and temperature sensitivity of the network are also encouraging [6]. 
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Current and Future Challenges 

There are at least two major current challenges to this approach. First, it has to be employed to 

implement practically useful general-purpose, reconfigurable neuromorphic processors. The recent 

architectures addressing this challenge (e.g., the aCortex [2]) are typically based on rectangular arrays 

of analogue FG crossbars performing the VMM function, connected via digital interfaces to the main 

memory used for storing input, output, and intermediate data.  Such architecture allows storing 

synaptic weights locally, thus avoiding performance-penalizing communications with the off-chip 

memory. Not surprisingly, already first simulations of the aCortex, based on experimental data from 

prototype VMM circuits,  have shown significant advantages in energy efficiency over its digital 

counterparts (Fig. 2d), which would be even more dramatic with proper account of the off-chip data 

transfer overhead in digital systems. (Furthermore, simulations have shown that similarly superior 

energy efficiency may also be reached in mixed-signal neuromorphic circuits based on industrial-grade 

SONOS FG memories [8, 9].)  We expect that the forthcoming re-optimization of the aCortex 

architecture for speed, using much larger parallelism, will yield a computational throughput much 

higher than that of state-of-the-art digital systems, including Google’s TPU (Fig. 2d).   

 

The second current challenge is the extension of the FG approach to larger deep networks. Perhaps 

the most exciting opportunity for such extension is presented by the modern 3D NAND circuits, 

already featuring up to 96 layers of FG cells, resulting in an unparalleled areal density. The current 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  (a) Generic scheme of analog vector-by-matrix multiplication in a crossbar circuit with adjustable crosspoint devices. For 

clarity, the output signal is shown for just one column of the array. (b-d) Schematic cross-sections of (b) synaptic transistor, and (c) 

ESF1 and (d) ESF3 supercells. ESF stands for Embedded SuperFlash NOR flash memory technology. Such technology is based on array 

of supercells, with each supercell hosting two split-gate floating-gate transistors. (e) 2×2 fragment of the ESF1 supercell array, 

highlighting the routing of word lines in the original NOR flash memory (dashed green lines) and in the array modified for analog 

applications (solid green lines).  (f)  Network for classification of MNIST benchmark images, with 105+ FG cells, implemented in 180-

nm technology, and (g) the typical dynamics of the network’s input signal, the output of a sample hidden-layer neuron, and all 

network’s outputs, after an abrupt turn-on of the voltage shifter’s power supply [6]. 

 

 

chip layout and (c) analog and digital block architecture of RASP 3.0 field programmable analog array. The chip consists of an 

embedded microprocessor, a static random access memory, digital and analog converters, circuitry to program nonvolatile 

memory, and digital/analog configurable blocks (denoted with D/A labels). 
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structure of such 3D circuits, with the shared word planes (Fig. 2a) does not allow one to address each 

FG cell individually using the generic VMM scheme shown in Fig. 1a. However, this problem may be 

resolved using the time-domain approach [7, 10] illustrated in Fig. 2b,c. Detailed simulations of a 

mixed-signal neuromorphic aCortex processor based on the time-domain VMM, with 64-layer gate-

all-around macaroni-type 3D-NAND memory cells, have shown that due to higher parasitics, its energy 

efficiency is somewhat worse than that of the 2D aCortex (Fig. 2d). On the other hand, the 3D aCortex 

has a much (~100x) higher weight storage capacity per unit chip footprint area – the factor which may 

be crucial for larger neuromorphic models.  

 

In the long term, the main challenge is to extend the FG approach to much larger neuromorphic 

systems performing cognitive tasks more complex than pattern classification, including flexible 

hardware tools for fast modelling of novel network architectures and brain function models. 

 

 

 
 

Advances in Science and Technology to Meet Challenges 

Meeting this long-term challenge would require a large-scale multi-disciplinary effort focused on 

synergistic development of algorithms, hardware circuits, and architectures, notably including the 

following aspects: 

 - development of novel neural models and training algorithms that would ensure their 

efficient mapping onto the co-designed hardware architectures, with account of device and circuit 

imperfections; 

 - re-engineering of 3D FG memory blocks, that would allow simultaneous addressing extended 

sub-sets of FG cells, possibly using area-distributed interfaces with external circuits; and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital * Mixed-Signal #

TPU UNPU 2D NOR 3D NAND
Technology node (nm) 28 65 55 55 

Precision (bit) 8 4& 4 4
Area (mm2) 330 16 290 18

Energy efficiency (TOp/J) 0.43 11.6 380 70
Throughput (TOp/s) 92 1.38 15 11

(d) * Experimental results, excluding the off-chip weight transfer overhead. 
Google’s Tensor Processing Unit (TPU) is optimized for throughput, while 
KAIST’s Unified Neural Processing Unit (UNPU) for energy efficiency 

# Chip-level results of computer simulations of 2D and 3D aCortex
architectures, with all weights stored on chip, optimized for energy efficiency

& Flexible (1  16  bit precision)

(c)
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Figure 2.  (a) 3D NAND flash memory circuit consisting of vertical strings of NAND cells. Here, a time-domain VMM operation may be 

performed simultaneously with all cells of one x-y layer, selected by applying a smaller voltage to a specific word plane, while keeping all 

other word planes biased with larger “pass” voltage.  (b) Time-domain vector-by-matrix multiplication scheme, and (c) its timing diagram. 

On panel (b), the adjustable current sources describe the FG cells of a particular layer, while the inputs are pulse-duration-encoded enable 

signals applied to the select transistors that connect each 3D NAND string to a bit line. (d) Comparison of general-purpose neuromorphic 

accelerators, evaluated on inference tasks of comparable complexity, at similar functional accuracy [10]. 

 

WE SHOULD BE MUCH MORE SPECIFIC HERE (OR IN THE TEXT), IN PARTICULAR GIVE REFERENCES TO DIGITAL WORK AND DECIPHER THE 

ACRONYMS.- KKL 
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 - re-optimization of FG cells for their use in neuromorphic circuits, in particular to decrease 

variations of the subthreshold slope, and to reduce the drain-induced barrier lowering. 

 

Another important task is the development of efficient testing concepts, algorithms, and circuits, 

which would allow fast and reliable detection of device and circuit defects and imperfections. 

 

Concluding Remarks 

First experimental results and detailed computer simulations using reliable device models have shown 

that mixed-signal implementations of deep neuromorphic networks, based on industrial-grade 

floating-gate memory cells, may be much faster and more energy-efficient than their digital 

counterparts. Moreover, such FG circuits may have areal density exceeding that of chips based on 

1T1R memristive devices, at much more mature technology. We believe that further development of 

the FG approach may lead to neuromorphic VLSI circuits with unprecedented performance on real-

world cognitive tasks. 
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Status 

History:  

A decisive part of any machine learning system is the semiconductor memory. This needs to be 

brought as close as possible to the computing function to overcome the von-Neumann bottleneck. 

Traditionally, all semiconductor memories like SRAM, DRAM or EPROM or Flash memories were based 

on the principle of charge storage. However, since the late 1990s the efforts of using several different 

switching effects that utilize specific material properties have increased [1], putting material science 

at the heart of the research activity in non-volatile memories. Ferroelectric switching, magnetic 

switching, phase change and memristive switching based on ion movement have become the focus 

point for research and development in new non-volatile semiconductor memories (see fig. 1). The 

widely used materials for ferroelectric switching, phase change and ion movement based memristive 

switching are traditional perovskite-based (e.g. Pb(Zr,Ti)O3) and recently-discovered HfO2-based 

ferroelectrics, chalcogenide glass materials frequently involving Ge/Te/Sb, and transition metal oxides 

(e.g. HfO2 and TaOx), respectively. For magnetic switching devices, the magnetic layers are usually 

made with Fe and/or Co while MgO is typically used as the tunnelling barrier layer in between. Note 

that all of the mentioned physical mechanisms with the exception of ferroelectric switching use a 

resistance based readout [2]. While in ferroelectric tunnelling junctions, the material state can be read 

out by the resistance as well, the preferred readout of a ferroelectric is either by measuring the 

switched charge or by coupling the ferroelectric to a field effect transistor [3]. In the last years, it has 

been established that the same mechanisms might be very well suited to realize functions required 

for machine learning. However, while for a semiconductor memory an abrupt switching with a clearly 

defined threshold is most favourable, the optimum switching characteristics needed for machine 

learning systems are still an intense field of research, depending on the targeted application (inference 

or learning), and requiring a strong link across the hierarchy levels starting at the material level all the 

way up to the system level. For all mechanisms mentioned above, the research activities go back to 

the 1960s and first low or medium volume non-volatile memory products exist in the marketplace.    

 

What will be gained with further advances: 

In a traditional computing system using the von-Neumann architecture, speed and energy efficiency 

is becoming limited by the transfer of data via the memory bus. Therefore, approaches moving the 

computation closer to the memory cell itself are highly desired. The first step can be considered as 

“logic-in-memory”. Here, the computation is done directly in the memory array by using the stored 

data as one input variable and using either a suitable circuit or a pulsing scheme to realize the logical 

function to have the result in the memory again. All resistive switching approaches are suitable here 

and also variants with ferroelectric switching have been shown. In the next step, the memory device 

can be used to simplify the calculation of weights in artificial neural networks (ANNs). Using Ohm’s 

and Kirchhoff’s law, analogue vector matrix multiplications can be achieved in resistive memory arrays 

and many lab demonstrations have already been made using approaches based on phase change and 

ionic movement [4,5,6]. Finally, spiking neural networks (SNNs) require both to mimic the function of 
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a neuron and a synapse. Synapses have been achieved using all of the physical effects shown in Fig. 1. 

Neurons were realized based on ferroelectric switching, phase change and threshold-switching type 

memristive devices (e.g. based on NbOx) [2,7], and using the nonlinear dynamics of magnetization in 

magnetoresistive nanodevices [8,9]. Learning-capable hardware is the most demanding on the 

material side: intense research is still required, as for synapses an analogue and linear behaviour (see 

Fig. 2) is highly desirable [4]. Both analogue and accumulative switching were not in the focus of the 

traditional non-volatile memory device research and development.     

 

Status:  

For a memory array utilizing one of these physical mechanisms, next to the memory cell, a selection 

device is needed to handle disturbances. The simplest version for the selector device is a MOS 

transistor, which is used in ferroelectric RAMs, in magnetoresistive RAMs as well as in the available 

products using ion-movement based switching. However, using a MOSFET selector the memory cell 

needs to be connected directly to the silicon. For gaining extremely high densities, three-dimensional 

architectures, where the cells are stacked on top of each other, have become very popular since the 

first introduction of 3D NAND Flash in 2013. Therefore, other selector devices have moved into the 

focus of research. Especially threshold switching devices are intensively researched and used in the 

second-generation phase change memory devices under the name of 3D cross point memory. Ovonic 

threshold switching based on chalcogenides, metal-insulator transition, and metal-ion/oxygen-

vacancy movement based switching in combination with a thermal runaway effect as observed in 

NbOx are all explored in this context [2].   

 

 

 
 

Current and Future Challenges 

Looking forward, three important research challenges need to be solved from the material point of 

view: (I) tuning the switching and reading characteristics beyond pure memory, (II) scaling the device 

density and (III) stability and reliability. Here stability describes the consistent behaviour or 

reproducibility of the material stack after writing operation not considering the degradation that will 

happen during operation. Reliability, in contrast, describes the degradation of the cell states during 

storage (retention), repeated writing (endurance) or parasitic stimuli (disturbs) of the cell. Depending 

on the specific device type, different materials issues need to be solved. For example, for HfO2-based 

 

 

 

 

 

 

Figure 1 – We allow at most two figures that are roughly the size of this 

box. 
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Figure 1.  Variants of switching mechanisms used for emerging non-volatile memories. a) In ferroelectric 

switching the dipoles of a ferroelectric material are switched by an electrical field. b) In a magnetic tunnel 

junction the magnetization of a free layer is switched between the parallel and anti-parallel orientation towards 

a fixed reference layer. c) In phase change memories the phase of a chalcogenide is switched between 

amorphous and crystalline using joule heating and (d) in ion movement based memories a conductive filament 

made of metal atoms or oxygen vacancies is reversibly formed and ruptured.  
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ferroelectric devices, the wake-up and imprint issues as well as the improvement of cycling endurance 

worth further studies; in phase-change-based devices, the material compositions are observed to 

fluctuate significantly due to the high temperatures and strong electric fields involved in the switching 

processes; for ion movement based memristive switching devices, there are concerns in the metal 

electrode stability and the trade-off between operation current and state retention; magnetic tunnel 

junctions are made with multi-layers of ultra-thin films, posing a serious challenge to the growth and 

etching processes. 

With respect to the switching and reading characteristics a strong interaction of the material centric 

device research with the upper layer circuit and system design is required, as in a machine learning 

system, the most suitable device characteristics cannot be defined without looking at the system 

performance, and can depend tremendously on the targeted application. Fig. 2 summarizes one 

important aspect on the single device level that has been extensively studied in the last 3-4 years for 

developing learning-capable hardware neural networks and that illustrates that additional material 

optimization beyond the established memory function is required [4]. However, also the interaction 

between write and read, stability aspects as well as the ability to integrate the device into an array or 

distributed architecture play a crucial role here. Especially for inference tasks in ANNs it is important 

to note that highly parallelized operation is a must. Therefore, in contrast to traditional memory 

arrays, where a rather high read current is necessary to achieve a fast readout, a smaller read current 

is indeed desirable. This could be an opportunity for technologies like ferroelectric tunnel junctions 

that suffer from a limited read current when pure memory operation is the task.   

Device scaling has shifted gears in the last years from purely increasing the device count by reducing 

the dimensions towards using the third dimension and more and more levels per cell. Recently in 3D 

NAND, 16-level devices (4 bits per cell) have entered mass production. These trends somewhat reduce 

the stringent requirements for device size reduction, but cannot make it obsolete, as the economics 

require achieving the highest possible functionality per real estate. Nevertheless, both aspects need 

to be considered. The device needs to show the desired behaviour at dimensions in the 10-20nm 

regime, which implies that the films need to be in the nm thickness range, and it must be possible to 

stack many layers on top of each other to achieve the necessary density for complex machine learning 

systems. The latter implies that a selector element not connected to the silicon bulk must be available 

and that suitable deposition techniques to realize high quality layers on materials used in standard 

CMOS processing are established.  

Stability and reliability are traditionally the main challenges to bring a non-volatile memory into high 

volume production. Therefore, magnetic random-access memories, phase change memories and 

especially ion movement based memories have required about a decade of very intense development 

to come up with first niche products for the general market. However, with respect to machine 

learning applications we need to handle even more critical issues. If we want to tailor the current-

voltage characteristics to make analogue computing functions possible, we need to guarantee the 

stability to a much higher degree compared to digital or even multi-level devices where we can rely 

on the high margin between different states.  
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Advances in Science and Technology to Meet Challenges 

The development of semiconductor devices in general and memory devices in particular has come a 

long way to deliver devices with 10-20 nm feature sizes. In terms of film production, highly 

reproducible techniques like atomic layer deposition have enabled the progress in the last 1-2 decades 

and still have strong contributions to solve the challenges described above. Especially in scaled down 

devices we need to consider that local fluctuations of the composition may transfer to device 

variability. Therefore, reducing the number of components in the active switching layer is crucial. In 

ferroelectric memories, binary oxides based on HfO2 have become much more popular compared to 

the traditional perovskites [3] which have at least three, but more commonly, four components. In 

phase change devices, even monoatomic solutions are perused to reach the ultimate device [10]. 

Ultimately, we might need to introduce new physical mechanisms to master the challenges observed 

during the implementation. Magnetic random access memories can act as a role model here with the 

introduction of magnetic tunnel junctions, Spin-Torque transfer, perpendicular magnetization and in 

the future possibly spin orbit torque that were introduced in the last 25 years to finally be adapted by 

a significant number of semiconductor foundries. 

 

Concluding Remarks 

Machine learning makes non-volatile memory functions in electron devices even more important than 

they already are today. However, the specific requirements call for modified or even completely new 

solutions. At the end of an era of charge storage, finally the prime time for material related switching 

effects has come making material development even more critical than it has been for traditional 

electron devices in the past.  
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Status 

The human brain, which consumes only ~20 W of power and exceeds the petaflop mark, has been the 

inspiration for the next generation of computers [1]. As such, deep learning and artificial neural 

networks (ANNs) have been heavily investigated. However, the learning time and energy usage of 

these systems are orders of magnitude short of mimicking the brain. Part of the reason for this 

disparity in efficiency is the reliance on traditional CMOS circuitry elements for simulating neuronal 

actions, which requires bulky external memory components leading to a large device footprint and 

energy consumption. With this in mind, researchers are working towards building highly scalable 

hardware for ANNs that can replicate synaptic actions through encoding analog states in their 

programmable conductance levels [1]. An ideal synaptic device should offer low power, high precision, 

large dynamic range, fast speed, high scalability, non-volatile retention, good endurance, and low 

variations among many others [2].  Emerging memory devices such as phase change memory (PCM), 

resistive random-access memory (RRAM), conductive-bridging RAM (CBRAM), spin transfer torque 

RAM (STT-RAM), as well as electrochemical devices are all different classes of synaptic devices being 

investigated [1]. Limited in scope, this work will only focus on PCM and RRAM (Fig. 1), due to their 

relative closeness to large scale commercialization.  

For ANN applications, the demanding function of vector-matrix multiplication can be efficiently 

implemented in a cross-point network [3] (Fig. 2a). The scale of the network, defined by the number 

of inputs multiplied by the number of outputs, determines its computing power.  Both PCMs and 

RRAMs offer high device density, due to the inherently small footprint of cross-point cells. By further 

scaling these individual devices in sizes, massive increases in energy efficiency, speed, and network 

density can be expected. With these improvements, large scale integration of ANNs into common 

technologies can be achieved, leading to transformative advancements in machine learning, artificial 

intelligence, data analytics, internet of things (IoTs), and even flexible/wearable smart devices, 

radically changing the role that technology plays in everyday life.  
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Current and Future Challenges 

One formidable problem encountered in device scaling is thermal crosstalk, as illustrated in Fig. 2b [3]. 

PCM devices need to be elevated to a much higher temperature for melt/quench cycles [4], requiring 

a large amount of energy (10-100 pJ) for switching events. This heating process can unintentionally 

perturb the states of adjacent cells through thermal crosstalk, which will only become more extensive 

as energy densities as well as device densities get larger. Similarly, Joule heating is believed to be 

necessary for facilitating ion generation and mobility enhancement to form conduction channels 

and/or modulate conductive junctions in RRAMs. With operation of high-density RRAM arrays 

generating intensive local heating, thermal crosstalk limits the scaling potential of RRAM and needs to 

be addressed through both material engineering and overall system design to achieve better thermal 

stability.  

Another challenge that is likely to be exacerbated with scaling is device reliability such as endurance, 

variation, and stability. Although individual PCM devices exhibit good endurances, the stochastic 

nature of the melt/quench cycle can lead to reduced device lifetimes, not only because of large 

variation in individual device performances, but also due to individual device degradations like 

resistance drift [5]. In addition, phase separation in the material can cause devices to stick in either 

SET or RESET, limiting endurance [5]. Aggressive scaling of PCM devices only serves to aggravate these 

issues, as the consistency of individual device compositions becomes increasingly difficult to achieve 

while keeping commercially plausible deposition rates [4]. Manufacturing high density RRAM device 

arrays with sufficient yield also becomes difficult. RRAM fabrication usually needs an etching metal 

layer together with multiple functional thin films. These can generate non-volatile by-products, 

contaminating the critical interface and introducing numerous variabilities, especially in smaller 

devices. In addition, as most RRAM materials require an electrical forming step to initialize 

conductance switching, controlling and eliminating such high stress processes will be critical for 

improving process yield.  

Finally, higher interconnection resistances from smaller electrode linewidths reduce the readability of 

the conductance change in a multi-level PCM and RRAM devices. Small changes in the read current 

between these closely spaced conductance levels can easily be shadowed by noise [6]. In this case, 

additional compensation would be required to differentiate these subtle differences, which will 

reduce either precision or speed, limiting the accuracy and efficiency of a machine learning hardware 

based on such emerging devices. 

Advances in Science and Technology to Meet Challenges 

Optimizing the thermal efficiency of cells is the first step towards improving the energy efficiency of 

PCM devices and minimizing thermal crosstalk. Crosstalk typically occurs during the amorphization 

process, with the high heat required for melting accidentally crystallizing neighbouring amorphous 

cells. To minimize this risk as device densities increase, a material with low melting temperature and 

thermal conductivity can reduce the amount of heat spreading during the amorphization step; 

whereas a high crystallization temperature will increase the thermal stability of the device in the 

amorphous phase. Most efforts to increase the endurance of devices are focused on atomic-level 

Figure 1.  Working principles of phase change memory (PCM) and resistive RAM (RRAM) devices. Fig. 1a shows a cell, the active PCM 

area is in between a top and bottom electrode, including a heater to induce melt/quench cycles. As heat is applied the active channel 

will change its conductivity based on the phase of the channel. Reproduced with permission [4] Copyright 2010, IEEE. Fig. 1b shows a 

typical filamentary RRAM, as a writing current is applied to the cell, free ions move together to form a connection between the top 

and bottom electrodes. Reproduced with permission [1] Copyright 2019, John Wiley and Sons. 

Page 14 of 65AUTHOR SUBMITTED MANUSCRIPT - NANO-124125.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nanotechnology    Roadmap 

engineering of these materials through the inclusion of dopants, though its viability in the nanoscale 

limit is still indeterminate [7]. To then further improve the endurance of PCM devices, materials with 

low volume changes during melt/quench cycles, as well as implementation of in-situ self-anneal 

heating during operations should be investigated [8].  

To combat thermal crosstalk in RRAM systems, small operational currents has been demonstrated in 

several sub-10 nm material systems such as TiOx, TiOx/AlOx, HfO2, and WOx [6]. Filamentary RRAM 

devices typically demonstrate a constant thermal heating with device scaling because the size of the 

filamentary channel remains the same with reduction in device dimension. However, once the device 

footprint is scaled to be smaller than a typical filamentary channel (~10 nm), we expect to observe a 

limited channel growth and hence a reduction in programming current and Joule heating. While these 

observations imply a path to begin to address thermal crosstalk, building reliable device functionality 

is still challenging with higher device variability potentially associated with device and current scaling 

implied in pioneer works [9, 11].Electrical forming steps can also be eliminated with metal particle 

doping and other material engineering techniques. These could be further facilitated with atomic layer 

deposition to precisely control thin film composition and membrane quality [6]. 

For reducing wire resistance due to narrow interconnections, low dimensional conductive materials 

such as carbon nanotubes are showing progress. However, fabrication of high-density arrays remains 

challenging. Another solution is through building high aspect ratio metal electrodes with multilayer 

depositions, although the process is not currently commercially viable [9]. Beyond these, a 3D 

architecture to was demonstrated by splitting a network into vertically stacked multi-layer arrays. This 

configuration tremendously reduces the wire resistance, as well as its footprint, but raises integration 

questions [10]. Finally, alternative fabrication paths, including bottom up approaches as well as wafer 

bonding methods, have been investigated and should to be continued [9].  

 

 
Concluding Remarks 

Hardware implementation of ANNs is necessary to continue improving their performances. In this 

vein, several synaptic devices have been investigated, all with the potential for easy integration and 

size scaling. PCM and RRAM devices are discussed in this work because of their small footprint, analog 

conductive states, and relative technological maturity. Though both of these classes of devices have 

been heavily investigated, properly managing the energy usage, thermal crosstalk, reliability, and 

endurance of these devices remain as challenges, especially as these devices attempt to be reduced 

to the nanoscale dimensions. To this end, materials engineering, proper thermal management, and 

new device architectures are potential solutions towards these issues.  
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Figure 2.  (a) Schematics of a crossbar array. (b) Thermal crosstalk due to Joule heating in adjacent cells. Adapted with permission [3], 

Copyright 2015 Nature Publishing Group. 
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Section 4 - Heterogeneous integration of emerging device arrays 
Peng Lin, Massachusetts Institute of Technology, Cambridge, MA, United States 
Can Li, Hewlett Packard Labs, Palo Alto, CA, United States 
 
Status 

Neuromorphic systems based on emerging device arrays perform matrix multiplications 

following physical laws with high parallelism [1]. However, it is suggested that these arrays 

themselves, which implement the synaptic connections in neural networks, may not for suffice the 

requirement of an entire hardware computing system, whereas other circuit components, either 

implemented by conventional silicon devices or other emerging devices, need to be heterogeneously 

integrated to fulfil the rest of functions. Building a complete heterogenous system raises some new 

design and manufacturing challenges but would be a necessary step to achieve large capacity, small 

latencies and high energy efficiency. 

An overview of the integration roadmap is shown in Fig. 1, where different technologies can 

be heterogeneously integrated at the device level, the array level or the function level. First, the 

integration of other types of devices can directly enhance the electric performance of these emerging 

devices in large-scale operations and applications. For example, the integration of selectors (such as a 

transistor) promotes the reliability and the programmability of these synaptic devices [2][3], while a 

heterogeneous design of synaptic cells could facilitate high precision computing by minimizing the 

intrinsic variation effects in devices [4]. Meanwhile, active analog circuit components can be 

integrated at the array level to program (“update”) the synaptic weights stored in the emerging 

devices (as analog conductances or capacitances), and/or sense (“inference”) the output. Recently, 

 

demonstrations with integrated on-chip programming/sensing peripherals have shown encouraging 

results [5][6]. Moreover, the peripherals functions are not limited to accessing individual devices in an 

 

 

 

 

 

 

 

Figure 1.  Roadmap of heterogenous integration of emerging device arrays 
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array. Neural network functions such as nonlinear activations and pooling can also be physically 

integrated at the array output and keep data movement locally. A promising approach would be 

harvesting the rich physical properties in emerging devices, which can potentially offer much 

improved speed and power efficiency as compared with the mature silicon technology [7]. Finally, in 

favor of emerging edge computing applications, the computing device arrays can be directly 

integrated with sensors, actuators, photonics, RF and control logics circuits with minimum 

communication and control overheads thus promise the real-time and low power edge processing [8]. 

Current and Future Challenges 

One challenge for heterogeneous integration is the process compatibility. Many emerging 

devices involve an exotic material stack and/or a special fabrication process that require a high 

temperature. Therefore, they are sometimes difficult to be directly integrated with the mature silicon 

technology in the back-end processes. A compatible monolithic integration process generally calls for 

back-end-of-line compatibility which includes strict requirements on process temperatures and 

selection of materials. While GeSbTe based phase change materials and HfOx, TaOx based resistive 

switching materials have a better back-end process compatibility, others are not. For example spin-

transfer torque magnetic memory cells use more than ten layers crystalline ferromagnetic 

materials[8][9], and fabricating lithium-based electrochemical devices require special encapsulation 

as lithium is highly reactive with silicon, therefore they are relatively challenging to be compatible with 

existing CMOS process. Alternative to specifically engineered monolithic integration process, circuit 

components could also be fabricated with different substrates through technologies such as low-

temperature bonding, through-silicon via (TSV) interconnect, flip-chips, etc. For example, an image 

sensor array based on “III-V” compounds such as InGaAs cannot be directly grow on CMOS substrate 

due to high process temperature but can be assembled at packaging level through low-temperature 

bonding [11]. However, these assemble methods still require delicate designs and sometimes lead to 

limited inter-module bandwidth caused by larger parasitic. Lastly, the compatibility of the electrical 

properties between different integrated devices is equally important, which requires a systematic 

assessment of the requirements and the design capacity of each device or circuit component. For 

example, some emerging devices require high operating voltage and current and thus special design 

considerations are needed in designing the driving circuits especially with advanced silicon technology 

nodes.  

Meanwhile, although the new computing paradigm has already eliminated the movement of 

weight matrices within the array, efficient data movement between arrays is still highly desired for 

large neural network applications. The efforts could involve optimized architecture designs such as 

local cache or global memory for storing temporal data, shared data bus or dedicated one-by-one 

connections between arrays and tiled arrays for different network topologies [12]. Meanwhile, 

developing efficient analog circuits for hardware functions, such as nonlinear activations and pooling 

functions, while keeping all the signals in the analog domain locally for inter-array communication, 

could significantly boost the efficiency to the next level if successful.  

Advances in Science and Technology to Meet Challenges 

First, the performance of the emerging system can still be largely affected by the device 

performance. Improvement of device performance (with compatible fabrication conditions) can 

significantly enhance the computing capability of these systems, and the figures of merits include the 

device uniformity, the analog conductance tuning linearity, the data retention, and the re-
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programming endurance. Some effective solutions include advances in material engineering [13] or 

new cell designs with the integration of mature technologies [4].  

Second, there is plenty of room to optimize the peripherals circuitry for higher energy 

efficiency and smaller footprint targeting a specific scenario. The different requirements of a 

neuromorphic system such as low precision and a specific voltage and current level may call for 

entirely different designs. Meanwhile, different array operating methods could be carefully compared 

and chosen, such as using pulse width or pulse amplitude for analog signal representation. In addition, 

emerging devices with various nonlinear behaviors may promise completely new designs and novel 

functions to be heterogeneously integrated and replace the conventional silicon devices and circuits 

entirely, with each device serving a unique functionality. 

Finally, more efficient data communications can be implemented by new fabrication 

processes, new architectures, new array designs and more. For example, fabrication methods and 

array designs that reduce the wire resistances of the array can greatly promote the programming and 

inference precisions and mitigate the sneak path issues in passive (transistorless) arrays. 3D 

integration [14] of a heterogenous system is a favorable option as a lot of emerging devices can be 

compatibly stacked up (such as oxide-based memristors). The immediate benefit of a 3D system is 

shorter connection length and higher density. Different technologies can also be stacked on top of 

each other, promising significantly reduced system footprint, improved communication bandwidth 

(2D area interface as opposed to the 1D edge interface in 2D systems) and extended functionalities.  

Concluding Remarks 

The heterogenous integration of different emerging technologies is a key step towards the 

large-scale system integration and applications. The performance and efficiency of the system with all 

parts combined requires careful designs and optimizations. While promising proof-of-concept 

demonstrations were reported, challenges still exist in the integration process development, electrical 

compatibilities optimization and architectural designs for minimized data movement/conversion in 

modern neural networks. Extensive research efforts are underway to develop new emerging device 

types with unique functionalities, and smart circuit and array design with 3D integration are being 

investigated to make the system more efficient. The heterogenous integration of a wide spectrum of 

emerging devices, with new array and architecture designs promises the disruptive computing power 

for future machine learning and artificial intelligence systems. 
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Section 5 – The processing strategies for memristor crossbar fabrication 
Yu Chen, Shisheng Xiong 
School of Information Science and Technology, Fudan University 
 

Status 

While the need for mobile and fast computing in a smart society is ever growing, the semiconductor 

industry has been failing to exploit the power and efficiency provided by device scaling. Currently, we 

are witnessing a divergence of paths for future computing, with non-von Neumann architectures that 

are anticipated to significantly disrupt traditional CMOS technology. For example, commercial digital 

AI chips (TrueNorth and Loihi) developed by IBM and Intel, respectively, collocated the memory and 

processing units for a reconfigurable design. Recently, memristor-based analogue computing has been 

the focus of intensive research. Memristors arranged in a crossbar array provide a two-dimensional 

representation of a neural network, and have the advantages of greatly maximizing the device area 

density (2N lines and N2 devices) and unifying logic and memory for in-memory computing. Analogue 

or hybrid chips based on this network have proven to be extremely efficient (computing power 

efficiency up to over 10TOPS per watt) for pattern classification or online training of neural network 

algorithms [1]. At a fundamental level, this novel hardware can act as a dot-product engine for running 

vector-matrix multiplication (VMM) operations, which are very frequently used in deep learning 

algorithms [2].  

Since the first memristor device was made in HP Labs in 2008, different patterning techniques have 

been employed for memristor crossbar fabrication. Electron beam lithography (EBL) is more 

frequently used for patterning crossbar arrays at high resolution, but over a relatively small area [3]. 

Newly emerging techniques, including extreme ultraviolet (EUV) lithography, nanoimprint lithography 

(NIL) and directed self-assembly (DSA), have been listed in the International Roadmap for Devices and 

Systems (IRDS) as advanced lithography techniques for device fabrication at the 3–5 nm technology 

node (Figure 1) [4]. So far, direct templating with DSA (coupled with NIL) for the fabrication of bit 

patterned media with a crossbar structure has achieved a device density greater than 1T/inch2 [5]. 

The high-throughput advanced lithography techniques (e.g. EUV) will penetrate into the 

manufacturing once the market size and the fabrication cost are leveraged. For reference, in Figure 1 

we have listed the estimated device density of passive crossbar arrays fabricated with the 

corresponding processing strategies. Considering the footprint of accessing devices, the cell area with 

respect to different architectures would be 8- or 4- fold larger: ~8F2 for one-transistor, one-resistor 

architecture (1T1R), 4F2 for one-selector, one-resistor architecture (1S1R), where F is the half pitch. 
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Current and Future Challenges 

The continued downscaling of nanoelectronic devices imposes ever-more stringent requirements on 

the strategy used to achieve ultra-small feature size while maintaining low defectivity. Along with the 

previous success of memristor-based AI chips, it is becoming imperative to continue to increase the 

crossbar density for better network performance. The main challenges experienced in the scaling 

process of crossbar fabrication include the selection of proper processing strategies for sub-10 nm 

patterning, the increase in integration difficulty, and the potential for performance degradation of the 

miniaturized devices. 

Current chip-level crossbar arrays are made at the µm level with conventional photolithography. 

Direct writing tools, such as EBL, are able to deliver high-resolution patterning, but are not ideal for 

mega-scale crossbar fabrication due to their extremely time-consuming writing procedure [6]. 

Furthermore, the small critical dimension of a crossbar causes the performance of the final device to 

be vulnerable to process variation. Therefore, it is critical to simultaneously optimize all the processing 

steps to reduce the defectivity and to enhance the pattern transfer uniformity. In addition, system-

level integration requires reliable 3D integration of crossbar arrays with underlying CMOS circuits. 

Direct fabrication of crossbar arrays on a foundry-developed CMOS chip should guarantee precise 

alignment and a low thermal budget [7].  

Another big challenge associated with crossbar scaling is the increasing density of local interconnects. 

The resistance of these non-ideal interconnects increases as the size shrinks, causing a significant 

voltage drop across the array. This phenomenon will severely disturb the functionality of memristor 

crossbar arrays, resulting in insufficient power supply on individual devices and a large error rate 

during write/read operations [8]. Other problems include more device-to-device variation and current 

interference between more densely packed neighboring cells, known as the sneak path current 

 

Figure 1.  Tentative roadmap for crossbar density, along with logic and memory device scaling, according to the International Roadmap 

for Devices and Systems. 
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problem [9]. Although there is no description of the benchmark for defect density in the literature, 

the essence of neural network indicates that the defectivity level of a crossbar array can be higher 

than it can be for the logic chips, which are permitted less than 100 defects per cm2 [1]. The strategies 

to realize high-throughput manufacturing of large-scale, high-density crossbar arrays and integrated 

systems rely on the continued efforts to explore new patterning methodologies, as well as a 

collaborative effort between academia and industry. 

Advances in Science and Technology to Meet Challenges 

Both academia and industry are making long-term endeavors to realize the fabrication of large-scale, 

high-density crossbar arrays for production. EUV is a commercialized, high-resolution lithography 

technique for high-volume manufacturing in the semiconductor industry, which greatly simplifies the 

patterning process compared to 193i lithography using multiple patterning steps, but the cost of EUV 

remains high up to now [4]. For research, low-cost lithography techniques, such as NIL and DSA, can 

also enable high-resolution patterning. As a direct contact lithographic method, NIL has easily 

overcome the optical limits of conventional photolithography and the proximity effects observed in 

EBL. The NIL molds can be used repeatedly, allowing mass production of a crossbar structure in a 

highly cost-effective way. To date, NIL has been successfully applied in the direct fabrication of 

memristor crossbar arrays on top of a foundry-made CMOS chip with optimized planarization 

techniques [7].  

The recent advances in DSA of a block copolymer and subsequent pattern transfer are readying this 

technique for the fabrication of memristive devices. The assembled block copolymer thin film can 

function as an etching mask to transfer the pattern to the underlying layers. DSA is suitable for making 

either the electrodes or switching layers for crossbar memristive device arrays. Electrode fabrication 

can be realized in a metal lift-off process or a liquid-immersion metallization process. The metal 

elements can vary from Pt to Cu, Co, Ni, or others. DSA of cylinder-forming block copolymers (e.g. PS-

b-PMMA or PS-b-P2VP), combined with sequential infiltration synthesis (SIS) offers an efficient way of 

patterning the switching layer for crossbar arrays. In SIS, a metal oxide precursor diffuses and 

selectively binds to reactive sites in the microdomain of the polar block [10]. SIS in combination with 

DSA, has been used to convert assembled block copolymer domains into oxides such as TiO2, Al2O3, 

ZnO, ZrO, HfO2, and WO2. With accurate control of both composition and uniformity, this combined 

process helps to address the leakage current issue by confining the conductive filament in nanometer-

sized channels. By exploring various processing strategies as shown in Figure 2, it is expected that the 

key obstacles of device downscaling and system integration can be overcome, which paves the way 

for industrialization of crossbar fabrication in the near future[8].  
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Concluding Remarks 

Memristive crossbar array devices will undergo a miniaturization process similar to that of the 

transistor as they are developed, so to implement the neuromorphic computing or memory, and they 

will simultaneously experience a reduction in power consumption and cost. Alternative lithographic 

techniques such as NIL and DSA fit in perfectly with the fabrication of high-density, periodic, and 

defect-tolerant crossbar arrays. These low-cost manufacturing methods are fully compatible with 

current semiconductor manufacturing processes, such that they are suitable for a back-end-of-line 

(BEOL) process in the integration of CMOS and crossbar arrays. In the future, 193i, or even EUV, may 

be used for high-throughput manufacturing of memristor-based AI chips. Combining lithography with 

stamp transfer or inkjet printing, we are able to create a crossbar structure on flexible substrates. The 

adoption of large-scale memristor arrays in the next generation of computing in the Artificial 

intelligence of Things (AIOT) era should provide exceptional performance. 
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Section 6 – Defectivity and its impact on hardware neural networks.  
B.D. Hoskins1, M.W. Daniels1, A. Madhavan1,2, J.A. Liddle1, J.J. McClelland1  
1Physical Measurements Laboratory, National Institute of Standards and Technology, 

Gaithersburg, MD 20899, USA 

2Institute for Research in Electronics and Applied Physics, University of Maryland, College 

Park, MD, USA 

Status 

The current state of the art in electronics manufacturing is driven by achieving low defect 

rates, high levels of device-to-device uniformity, and binning integrated circuits by quality. As the 

industry pushes digital logic to below 5 nm in transistor channel length, new lithographic methods are 

needed to facilitate that scaling. Extreme ultra-violet (EUV) Lithography and directed self-assembly 

(DSA) are among such methods, but suffer from intrinsic limitations, such as stochastic photon 

illumination or assembly defects, respectively. These push the defect rates (of open connections, 

shorts, and other circuit-killing defects) to above the 0.01 cm-2 densities required for economical 

semiconductor manufacturing. Enabling logic to follow memory into the backend-of-line can relax 

feature-size-induced manufacturing problems. At the same time, this introduces new challenges in 

the 3D integration, particularly if similar areal densities are required. This is especially true in systems 

requiring new, CMOS compatible materials which suffer from defects absent in single crystal silicon.  

  Recent advances in neuromorphic computing, meanwhile, offer a bridge to a new era of ultra-

dense, 3D-integrated computing architectures. These are largely based on a new suite of materials 

and manufacturing methods long thought to be unacceptable for digital manufacturing. 

Neuromorphic architectures, especially those based on nanodevice memories, have the benefit of 

massive redundancy in the number of possible solutions to a problem. This makes it possible to find 

solutions which either disregard or actively compensate for underlying hardware issues. The 

opportunities afforded by the low-precision, defect tolerant nature of neuromorphic computing, still 

an active topic of study at the algorithmic level, are beginning to manifest on the hardware and 

manufacturing stages as well. 

 Neuromorphic computing, therefore, offers a set of design freedoms that enable a radical 

departure from the typical manufacturing constraints of the past. While the error rates for 

conventional digital logic in CMOS are astronomically small, less than <10-10 based on the requirement 

that billions of transistors function on a single integrated circuit, the yields of even currently existing 

technologies, such as 3D-NAND, which often ship with a small percentage of defect memory blocks, 

suggests defectivities orders of magnitude higher near 10-5. Emerging technologies like carbon 

nanotube field effect transistors and resistive switches have been implemented in working 

demonstrations suggesting defectivities less than 10-4, but nevertheless may not achieve significantly 

higher levels of perfection[1], [2]. These emerging technologies may be able to find profitable new 

avenues for growth in emerging neuromorphic architectures as memory and logic merge.     
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Current and Future Challenges 

Analog deep neural networks are based on dense nanodevice memories, but these systems 

are prone to defects both from the nanodevices as well as from variations in the underlying CMOS. In 

the long term, in situ training — training the network on the hardware in which it’s deployed—will 

yield systems resilient to these issues. In in situ training, defects that would nominally affect 

inference—that is, the classification action taken by the hardware — will be actively compensated for 

by the training routine. Several studies suggest that systems trained in situ can tolerate defectivity 

rates as high as 50% in missing synapses (significantly less tolerance for stuck-on devices, closer to 

10%) and 0.1% to 10% in problematic neurons depending on the degree of redundancy, with small 

networks suffering catastrophically from missing neurons and large networks being robust [2]–[5]. 

These rates are theoretically well understood, as the pruning of synapses and neurons is a well-

established means of network training [6]. But other types of device non-idealities, namely in the 

nonlinearity, stochasticity, and device non-uniformity of the weight update, have so far made in situ 

training of nanodevice hardware impractical[7]. 

In the near term, dense nanodevice memories are most likely to be trained ex situ—that is, a 

model is trained on an external computer, and then transferred to a memory array for ultra-low 

energy inference in the field. While this circumvents the need for in situ training, the device must 

reproduce an externally generated model which reduces its defect tolerance. Increasing defect rates 

cause a monotonic decline in fidelity of an ex situ model, and synaptic defectivity rates as low as 0.2% 

have led to a detectable departure from normal accuracy [8]. Some application spaces can tolerate 

this decline in accuracy and will be naturally resilient to even high rates of defectivity. Critical 

applications, such as systems in self-driving cars or flight control, cannot, particularly since model 

reproducibility, in addition to overall network accuracy, can be a critical system requirement. Even if 

random defects increased the measured network accuracy, the potential for unpredictable behaviour 

may limit the implementation of networks to ones that accurately reproduce a reliably field-tested 

model. Such considerations may reasonably push the levels of acceptable defectivity orders of 

magnitude lower, to less than 10-4.   

Nonidealities in the underlying CMOS, such as in the amplifier gain for analog-to-digital 

converters, can likewise introduce pernicious, fixed errors in a neuromorphic computing system. 

Device technologies for Hybrid Neuromorphic Systems

CMOS

< 10-10 < 10-5

CNFET

< 10-4

2D material
devices

???

(<10-2 - 10-1)

Hardware Operation Modes and Defectivity

In situ training

Neuron defectivity    

Synaptic defectivity

- stuck on OFF         < 5 10-1

- stuck on ON < 10-1

10-3 -10-1

Defectivity impact on inference low

Ex situ training

Synaptic defectivity

< 2 10-3

high

• Limiting dynamic range

• Limiting precision 

• Operation as digital

• Redundancy

• Complex synaptic cells 

Solutions

NAND flash

Sensitive to programming 

non-idealities

Closed loop training 

robust to programming 

non-idealities

Short term

• Device and process 

engineering

• Robust algorithms

Long term

Manufacturing challenges

• Scaling

• Novel lithographic methods 

(EUV, DSA, etc.)

• Novel materials

• Heterogeneous integration

Defectivity

Emerging
NVM

???

(<10-3)

Figure 1.  Defectivity ranges, tolerances, and mitigation actions for different operational modes.  Defectivity ranges are approximate and 

sensitive to degree of redundancy, network design (for networks) and the precise technology and fabrication routes (for device 

technologies). 
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While these are manageable in an in situ tuned system, they become difficult to resolve in ex situ 

trained hardware [9]. Traditionally this issue has been managed in digital systems by maintaining large 

margins between logical 0 and 1. Limiting the dynamic range of nanodevice arrays, by restricting them 

to digital or binary neural networks, may be a practical solution to this problem in the near-term [8].  

 

Advances in Science and Technology to Meet Challenges 

Neuromorphic computing possesses an immense potential to disrupt conventional fabrication 

approaches to integrated circuits. To realize that potential, the significant underlying challenges we 

outlined above must be systematically addressed. Ex situ inference systems are an important 

emerging application space, and researchers should continue to investigate network implementations 

that offer a measure of error tolerance in that arena. Quantized or binary neural networks, along with 

methods such as the introduction of row and column redundancy, are naturally resilient to nanodevice 

and CMOS variations and show great promise [10]. Redundancy is already successful in modern 

memory architectures, especially those based on NAND flash with intrinsically high defect levels. 

Fundamental investigations into neural network theory, particularly on the specialized training of 

networks to manifest resilience to hardware defects, should also be emphasized; these approaches 

may be the fastest way of bringing such networks to market [8]. A framework for understanding the 

reliability of imperfectly reproduced machine learning models in ex situ neuromorphic hardware is of 

especially critical importance, particularly in applications where human safety could be jeopardized. 

In the longer term, the problem of how neuromorphic systems can perform on-line, in situ 

training must be resolved. Whether through the development of machine learning training algorithms 

which are resilient to underlying device limitations, or through the development of more perfect 

devices, this problem is central to unlocking the full potential of neuromorphic computing [7]. Due to 

the tight requirements currently proposed for nanodevice performance, only synapses composed of 

more than one type of device have thus far been capable of achieving on-line training at a fidelity that 

matches software-trained systems [7]. In addition, important advances in machine learning may be 

necessary to ensure the reliable, traceable performance of in-situ trained networks, so that 

unpredictable network behaviour can be avoided or accounted for. Such challenges don’t exist in 

accurate recreations of ex-situ trained networks. 

As these problems are solved, the corresponding relaxation of defectivity constraints will 

allow us to aggressively scale new neuromorphic systems. That scaling will be driven in part by 

materials and manufacturing methods (like EUV and DSA) which are cheaper and more easily 

integrated in the backend-of-line, at the expense of lower yield or reliability. Current efforts to 

perform in-memory computing represent a critical step in the development of these kinds of future 

systems; the N3Xt architecture, which proposes to use nanotubes (CNFETs) in the backend for digital 

logic, is a timely example [1].  

 

Concluding Remarks 

The native defect tolerance from neuromorphic architectures offers new opportunities to integrate 

old and new technologies into semiconductor manufacturing. However, ex situ trained systems on the 

present technology horizon often have insufficient reliability to meet the tight requirements needed 

in important application spaces. As robust systems for inference are deployed and barriers to in situ 

training are reduced, increasingly defect tolerant systems will become achievable. Ultimately, as 

neuromorphic technology matures, a rich and diverse toolset of materials and manufacturing methods 

will herald a new generation of dense, 3D-integrated computing.  

Page 28 of 65AUTHOR SUBMITTED MANUSCRIPT - NANO-124125.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nanotechnology    Roadmap 

Acknowledgements 

AM acknowledges support from the Cooperative Research Agreement between the University of 

Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and 

Technology, Award 70NANB14H209, through the University of Maryland. We acknowledge Prof. Gina 

Adam for useful discussions.  

References (separate from the two page limit) 

[1] M. M. Shulaker et al., “Three-dimensional integration of nanotechnologies for computing and 
data storage on a single chip,” Nature, vol. 547, no. 7661, pp. 74–78, Jul. 2017. 

[2] C. Li et al., “Efficient and self-adaptive in-situ learning in multilayer memristor neural 
networks,” Nat. Commun., vol. 9, no. 1, p. 2385, Jun. 2018. 

[3] L. P. Romero et al., “Training fully connected networks with resistive memories: impact of 
device failures,” Faraday Discuss., vol. 213, no. 0, pp. 371–391, Feb. 2019. 

[4] E. Vatajelu, G. D. Natale, and L. Anghel, “Special Session: Reliability of Hardware-Implemented 
Spiking Neural Networks (SNN),” in 2019 IEEE 37th VLSI Test Symposium (VTS), 2019, pp. 1–8. 

[5] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based neuromorphic design with 
high defects,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1–
6. 

[6] R. Reed, “Pruning algorithms-a survey,” IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 740–747, 
Sep. 1993. 

[7] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network training using analogue 
memory,” Nature, vol. 558, no. 7708, p. 60, Jun. 2018. 

[8] M. Bocquet et al., “In-Memory and Error-Immune Differential RRAM Implementation of 
Binarized Deep Neural Networks,” in 2018 IEEE International Electron Devices Meeting (IEDM), 
2018, pp. 20.6.1-20.6.4. 

[9] X. Guo et al., “Modeling and Experimental Demonstration of a Hopfield Network Analog-to-
Digital Converter with Hybrid CMOS/Memristor Circuits,” Front. Neurosci., vol. 9, 2015. 

[10] D. Chabi and J. Klein, “Hight fault tolerance in neural crossbar,” in 5th International Conference 
on Design Technology of Integrated Systems in Nanoscale Era, 2010, pp. 1–6. 

 

Page 29 of 65 AUTHOR SUBMITTED MANUSCRIPT - NANO-124125.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Nanotechnology    Roadmap 

Section 7 – In Situ and In Operando Metrology and Characterization 
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Status 

The local redox chemistry and redistribution of defects, such as oxygen vacancy concentrations or 

metal cations in oxides under high local electric fields (> 1 MV/cm) drive the filamentary or interfacial 

switching mechanisms that govern two-terminal memristive devices.1,2 Many switching layer materials 

actually exhibit transport characteristics of both switching mechanisms, often dictated by the choice 

of metal electrode, operation (bias vs. switch speed) and its work function difference with the oxide.3,4 

The ability to identify the shape, size, and location of conductive filaments or the width of 

electrochemically active regions along the electrode-insulator interface remains critical to controlling 

the power consumption, uniformity, and endurance of switching cycles in metal-oxide-metal 

structures used in memristive and neuromorphic computing applications. 

 

This section surveys recent advances in real-time electron microscopy, scanning probe microscopy, 

and vibrational spectroscopy techniques, and examples of powerful pairings that yield unprecedented 

access to the governing mechanisms in memristive devices and films. The current state of metrology 

in memristive studies is quite exciting; high resolution transmission electron microscopy (structural) 

and electron spectroscopy (chemical) are now routinely performed using in situ stages capable of 

providing thermal and electrical stimuli to track redox processes and filament evolutions.5 

Conventional conductive atomic force microscopy has evolved from purely two-dimensions to three-

dimensions using hard, conductive diamond probes, enabling the study of factors that directly affect 

filament morphology.6 Time in operando absorption spectroscopy collects changes in cationic-oxygen 

anionic vibrational modes and couples modes associated with charge carrier vacancy formation with 

respect to field strength or pulse duration.7 Studies aiming to understand the complex interactions 

between various redox-processes, defect chemistries, and near order-lattice structure under locally 

enhanced electric fields in the switching oxide layer thus require concurrent development of equally 

complex characterization methodologies to clearly define and decouple transport phenomena on 

spatial, temporal, and physicochemical levels. 

 

Current and Future Challenges 

Electrical stimuli produce three major changes in memristive materials: electrochemical reactions that 

can produce mobile ionic species, gradients that drive ionic (and in some cases electronic) migration, 

and local thermal gradients caused by Joule heating. Fully understanding memristive phenomena 

typically involves establishing i) the type(s) of ionic charge carrier species;8 ii) the location of ionic 

species; iii) the type(s) of concentration gradient(s) driving their migration; iv) the manner by which 

they migrate, and v) the valence state of the active species. As seen at the top of Figure 1, mobile ionic 

species can be driven by either electrical potential gradients, ionic concentration gradients, and/or 
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thermal gradients occurring during the 

switching process. Multiple mechanisms 

contribute to the overall switching process 

within a given material system. Decoupling 

factors that direct switching towards either 

more field-dominated or thermally-

dominated processes, or the relative 

contributions of cation and anion transport, 

requires an equally complex suite of 

characterization tools that apply multiple 

stimuli in situ or in operando. 

 

Microscopy and spectroscopy methods have 

evolved recently to be performed under 

simultaneous electrical and either thermal, 

chemical, or mechanical stimuli in real-time. 

These techniques work synergistically to 

address the primary issues i)-iv) outlined 

earlier. Scanning transmission electron 

microscopy (STEM)-based energy dispersive 

X-ray spectroscopy, high-angle annular dark 

field imaging, and electron energy loss 

spectroscopy performed under applied 

perturbation yield information on filament 

morphology, local composition and 

temporal information regarding switching.  

 

In operando Raman spectroscopy provides near-order structural information within 

memristive films and insights on defect types and their association degrees that define the switching 

speed and performance.9-11 Information can be collected by in operando Raman spectroscopy as a 

function of dopant concentrations and modulated space charge or strained regions adjacent to 

concentrated electric fields and in case of wavelength modulation towards various interfaces.12 Unlike 

in operando X-ray diffraction, Raman spectroscopy allows to describe properties that are likely caused 

by local lattice distortions and/or interacting defects that can develop in the presence of either 

extrinsic (dopant-induced) or intrinsic (oxygen) vacancies under bias. High temperature scanning 

surface potential microscopy (HT-SSPM) enables the conversion of contact potential difference to 

vacancy profiles using classic semiconductor analysis. We note, use of in situ x-ray techniques such as 

hard x-ray photoelectron spectroscopy (HAXPES) or ambient pressure XPS (AP-XPS) also have 

signification traction, but are not covered fully here due to scope. Combining highly controlled testing 

environments with advanced multiprobe SPM will be necessary to effectively decouple the effects of 

electric field, Joule heating and chemical potential gradients in driving resistive switching. State-of-

the-art time-resolved pump probe techniques with high temporal resolution of <1 ps show enormous 

Figure 1: (top) Electrical, chemical, and thermal contributions to 
drift of mobile species in memristive systems (adapted from Ref 2). 
(bottom) Common families of in situ techniques for mixed ionic 
electronic conducting systems, in situ transmission electron 
microscopy (structure, chemical species), in situ Raman 
spectroscopy (structure, chemistry), and in situ scan probe 
microscopy (potential, current, vacancy concentration). 
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promise in resolving ultrafast physicochemical processes in situ, but have yet to be applied to 

memristive applications.  

   

Advances in Science and Technology to Meet Challenges 

Understanding the role of oxygen 

and oxygen vacancy dynamics 

play in memristive behaviour 

necessitates atomic-scale 

dynamic studies. Recent work 

utilizing STEM high-angle annular 

dark field (HAADF) imaging of 

lanthanum strontium manganite 

(LSMO) thin films showcased the 

ability to directly correlate local 

structural changes and phase 

transitions to the HRS and LRS 

(Fig. 2A).13 This in situ TEM 

technique enables direct 

mapping of characteristic 

structural variations to resistive 

switching curves, such that areal 

fractions of high-resistance 

brownmillerite (green) to low-

resistance perovskite (orange) 

phases are made as a function of 

applied bias (Fig. 2B). Oxygen 

vacancy distributions and local 

ordering at domain boundaries 

ultimately dictate phase 

transitions and domain 

migration. Electro-thermal 

modelling (Fig. 2C) has been used to determine the extent by which local heating under the tip during 

applying bias redistributes oxygen vacancies through migration away (negative bias) or towards 

(positive bias). Such in operando STEM-HAADF led studies will ultimately lead to refinement of the 

reversible control over vacancy migrations in complex oxide thin films. Recently new tools were 

developed to control via assigned Raman modes for spectra of Sr(Ti,Fe)O3−y thin films used in 

memristive devices the oxygen nonstoichiometry and defect information via in operando cells using 

an electrochemical oxygen pump. As discussed above, a key challenge for perovskite thin films is to 

be able to monitor changes in oxygen stoichiometry or equivalently the valence state of redox active 

cations for memristive devices to control and describe the switching kinetics. This was so far 

challenging as gas phase exchange does not necessarily allow for a sufficiently high accuracy in oxygen 

titration to alter and probe defects. In recent method reported an oxygen breathing mode connected 

to Fe4+ redox-state can serve as a convenient “marker” to probe the local environment around Fe4+ 

and is thereby useful to describe both the Fe redox state and oxygen nonstoichiometry in Sr(Ti,Fe)O3−y 

solid solutions. In principle such easy lab-accessible in operando tools can be extended to monitor 

Figure 2: A, In situ STEM-HAADF imaging of LSMO during two-step switching, 
with the HRS brownmillerite (2) and LRS perovskite (4) phases present. B, areal 
fractions of the two phases present in LSMO from STEM imaging. C – Electro-
thermal modelling of the temperature and vacancy distributions under the tip. 
Per CC 4.0 License of Ref [13]. D, a schematic illustration of the STFO-based 
electrochemical cell for in operando Raman. E, the Raman spectra of the 
reduced (above) and oxidized (below) STFO due to in operando oxygen 
pumping. F – Raman intensity plot as a function of oxygen non-stoichiometry. 
Reproduced from [14] with permission from Wiley. G, a schematic illustration 

of the HT-SSPM measurement configuration performed at 500C in situ. H, an 
illustration of the band offset determined by the CPD measured to ultimately 
yield vacancy concentrations. I, Surface potential profile collected in situ at 
500°C (red) and resulting oxygen vacancy concentration distribution across the 
STO/YSZ multilayer oxide films (black). Per CC 4.0 License of Ref [16]. 
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switching redox-processes and dynamics for much more oxide-based resistive switching material 

systems, gaining valuable insights in particular on light elements such as oxygen, lithium or others.14 

Also, Raman spectroscopy can probe (besides crystalline) switching oxides amorphous films, often 

applied in low temperature processing of resistive switching devices.1,15  Studying interfacial 

phenomenon across complex oxide heterostructures, especially vacancy dynamics, requires in situ 

methods that resolve properties with nanometer-resolution while operating in the electroactive 

regime, which often includes elevated temperature. Due to significant technical hurdles in situ SSPM 

under operating conditions, or so-called in operando measurements, have only been recently 

introduced for studies of electroactive oxides. Recently in situ surface potential profiles of STO/YSZ 

multilayer cross-sections were collected at high temperatures (500 °C; Fig. 2G) and directly converted 

to spatial vacancy concentration distributions (Fig. 2H).16 The profile displayed a region heavily 

depleted of oxygen vacancies adjacent to the film/substrate interface, providing tremendous insights 

into the effects of energetic deposition on the local defect distribution within the substrate region. 

 

Concluding Remarks 

Resistive switching phenomena inherently comprise multiple, complex physiochemical redox-

processes and mobile species under bias. In operando microscopy and spectroscopy techniques that 

apply multiple stimuli and measure the subsequent structural or transport response will ultimately 

lead to the separation of the various components, electric fields, chemical and thermal gradients, and 

mobile species that govern memristive behavior. The techniques described above not only establish 

an understanding of stability and rapid switching between two extreme states for memory 

applications, but are also capable of observing finer, more subtle variations such as in electronic state 

affecting the LRS magnitude, pulse response and stability, the control of which is paramount to 

improving machine learning and neuromorphic applications. Future studies will need to pair real-time 

and time-resolved characterization17 with similarly advanced modelling methods to ultimately 

decouple the interlaced mechanisms that drive mobile species, and subsequently set forth design 

principles within memristive materials systems and desirable carrier kinetics and thermodynamics. 

Such insights will provide deeper feedback to which electrode-oxide interfaces, heterointerface 

thickness and sequence, or stoichiometry is necessary to optimize the concentration and location of 

defects critical to memristor operation, including power consumption, speed, and endurance. 

Accelerated advancement of in operando characterization will broadly draw from the synergy with 

concurrent developments in energy storage, electrocatalysis, and photocatalysis studies that require 

similar dynamics of mobile charged species. 
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Section 8 - Variability in emerging memory devices and solutions 
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Status 

Analog computing for deep learning has received tremendous research interest and shown significant 

progress in recent years [1-2]. This emerging computing paradigm can be implemented using dense 

crossbar arrays of non-volatile memory (NVM) devices, to encode weights, and locally perform 

computational tasks, such as matrix multiplication and weight update, in a parallel manner and in O(1) 

time complexity. Such a crossbar array architecture of deep neural networks (DNN) is expected to 

achieve remarkable acceleration of DNN training and inference with significantly lower power. The 

realization of such improvements is challenged by achieving proper NVM characteristics with analog-

like conductance tuning capability and acceptable variabilities [2-4]. Although training could be 

intrinsically more immune to device variabilities than inference due to weight updates based on 

backpropagation of errors, the devices still need to achieve a certain level of uniformity in the training 

in order to maintain the same level of accuracy as that achievable by the digital-based floating-point 

counterparts [1-2]. In this section, we focus on two promising NVM candidates, phase change memory 

 

 

 

 

 

 

 

 

 

Figure 1.  Analog switching behaviours of ReRAM (a) and PCM (c): Variation on top of the noise free signal can be attributed to the 

stochastic characteristics when the filament of ReRAM is changed (b) or when the amorphous region of the PCM is crystallized (d). The 

figure is adapted from [4] under the term of creative common license: https://creativecommons.org/licenses/ 
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(PCM) and resistive random-access memory (ReRAM), and review the solutions to address their 

variability challenges for training and inference. 

The state-of-the-art PCMs are based on chalcogenide materials (most commonly used is Ge2Sb2Te5) 

that could be switched between high resistance (amorphous, reset) state (HRS) and low resistance 

(crystalline, set) state (LRS). By controlling the programming current and duration, gradual 

conductance changes of the PCM cells can be achieved in a continuous manner, making them suitable 

for analog-computing. The operation of ReRAMs is typically associated with the changed strength of 

conductive filaments as a consequence of oxygen vacancies diffusion. The conductance of ReRAM 

devices can be tuned in an analog manner through shrinking (reset) or growing (set) the size of the 

filaments. Recently, both PCM and ReRAM have demonstrated promising results from individual 

devices and even crossbar arrays [3,7-8].  

 

Current and Future Challenges 

The analog switching characteristics of PCM and ReRAM are typically investigated by evaluating the 

changes of conductance (G) in response to consecutive voltage pulses (Fig. 1) and large variations can 

be observed while measuring these devices. Using a gaussian-process-regression (GPR) based 

methodology, Gong et al., studied variability among 1000 PCM devices that were fabricated in a 90nm 

technology process. They found both device-to-device variation and the inherent randomness during 

crystallization process to be significant contributors to the total variability [4]. Based on GPR, they 

found that the inherent randomness in those PCM devices and ReRAMs to be comparable; however, 

neither could pass the requirements needed for incurring less than 0.3% error penalty than the 

floating-point results, indicating inherent randomness remains to be a common challenge for both 

PCM and ReRAM [1,4]. For ReRAM, the origin of randomness has been tied to the very nature of its 

operation. The forming, set, and reset operations in ReRAM are electrically- and/or thermally-

activated transport mechanisms that create or destroy conductive filaments inside the thin oxide layer 

between the terminals of a ReRAM cell. Such mechanisms are intrinsically stochastic, resulting in large 

variations between different devices (device-to-device (D2D) variations), and even in different cycles 

of the same device (cycle-to-cycle (C2C) variations), as illustrated in Figs. 2a-2b for titanium-oxide-

based devices, in which large variations can be observed in the forming, set, and reset threshold 

voltages, as well as on the resistance of the HRS and LRS [9]. Note that whereas the HRS variations are 

typically larger than those of the LRS, the encoding used in analog computing is based on the device’s 

conductance, rather than its resistance. As a result, the variations of the encoded data corresponding 

to the HRS is effectively smaller than those of the original, resistance-encoded HRS. The D2D and C2C 

variations not only impose challenges on the design of the peripheral circuitry and on the endurance 

of the cells, but also makes it difficult to model the behaviour of a ReRAM cell. Whereas a basic 

switching model can be used for some applications (e.g. single-level cell memories), many other 

applications require a (still elusive) model to describe the dynamic and analog behaviour of ReRAM 

cells, as well as to predict the complex interactions between multiple devices, e.g., to model the 

forming procedure of a ReRAM cell, or the interaction among multiple ReRAM cells in a crossbar. 

 

Advances in Science and Technology to Meet Challenges 

Focused efforts have been made to address challenges related to device variability. Approaches span 

innovation in materials, device design, circuit, and architectural improvements. Kim et al., reported 

remarkable reduction in programming noise and resistance-drift using confined PCM and matching 

with devices that include a metallic liner [6]. Others have pursued circuit or architectural innovation 
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to address non-idealities of PCM devices. Sebastian et al. [3] propose a mixed-precision training 

approach where the forward and backward passes as well as the weight updates are performed on 

low-precision NVM devices whereas the gradient accumulation is done on a high-precision digital 

CMOS unit. They reported 98% training accuracy after 20 epochs on the MNIST classification task (a 

mere 0.57% lower than floating-point based training) and with good retention. Ambrogio et al. [5] 

mitigated the large inherent D2D variability by using a novel unit cell architecture with 2 PCM devices, 

3 transistors and 1 capacitor and by incorporating strategies such as polarity inversion. They reported 

an impressive two orders of magnitude improvement in energy efficiency for fully-connected layers, 

compared to a modern GPU on many commonly used machine-learning test datasets (MNIST, and 

transfer learning of CIFAR-10 and CIFAR-100). 

Recent learning in the forming and switching operations (set, reset) provides useful guidelines for 

improving the controllability of stochastic variability of ReRAM devices. The forming process is 

reported to follow the statistics similar to those of oxide breakdown, indicating a sufficiently high 

voltage is needed in order to form all devices [2]. The trade-off between inherent randomness and 

the switching symmetry to set and reset the ReRAM devices are presented based on the study using 

the GPR methodology [4], which provides a direction to find optimal operating point by optimizing 

materials and switching pulse conditions. At the circuit-level, Chang et al. demonstrated an adaptive 

self-terminating write scheme against resistance and switch-time variations [10]. Ratio-based 

redundancy encoding techniques have also proven successful as a general mechanism to reduce 

intrinsic variations. Lastras-Montaño et al. [9] recently proposed a memory cell comprised of two 

resistance-switching elements with a minimum-sized transistor (as shown in Fig. 2d), in conjunction 

with an information encoding scheme that uses the resistances ratio of the resistance-switching 

elements to encode information. As a proof of concept, they demonstrated that such a ratio-based 

encoding (Fig. 2c) results in a substantial reduction in bit error rate (BER) of more than two orders of 

magnitude compared to the traditional resistance-based approach (Fig. 2b), and a BER reduction of 

up to 6 orders of magnitude when used together with standard error correcting codes. Whereas this 

ratio-based encoding has a direct use in memory applications, it also has the potential to be used in 

voltage-based analog computing, as experimentally demonstrated in [11] by Liu et al. in which they 

implemented the parallel multiply-accumulate operation in an SRAM array. 
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Concluding Remarks 

PCM and ReRAM crossbars are promising candidates as key multi-bit or analog memory elements used 

in accelerators for the training and inference of deep neural networks. However, device fabrication 

imperfections and the intrinsic stochasticity of the devices result in high variations that must be 

tackled before broad adoption of these technologies. While continuing reduction in device variation 

is fully expected for the next few years, novel, silicon-compatible, and complementary solutions at the 

circuit-, architecture-, and system-levels will be needed as well in order to achieve sufficiently high 

reliability and cost-effectiveness for consumer and enterprise applications. We also anticipate that 

future large-scale systems built upon these technologies will rely heavily on a hierarchical redundancy 

mechanism, including redundancy at the cell-level (such as the use of ratio-based encodings), 

row/column sparing, bank replication, error-correcting codes, and all the way to application-layer 

redundancy, to mitigate the negative impact of device variations.   
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Figure 2.  (a) Forming procedure for three pairs of titanium-based devices (structure shown in the inset). (b) Four consecutive set and 

reset cycles for the same three pairs using the traditional resistance-based current sensing approach (note how a decision resistance 

threshold is hard to define in the read region shown in the inset). (c) Four consecutive write cycles for the same devices, but using a 

ratio-based voltage sensing approach, which results in much tighter state distributions. (d) Proposed ratio-based cell and its array 

architecture. The cell is formed by two anti-serially connected bipolar memristors (left and right) and a minimum-sized field effect 

transistor (mFET). Note that whereas this proof of concept uses devices with a low resistance range (1-100 kohm), this encoding can be 

applied to any resistance range, as the encoding uses the ratio of resistances, and thus it is insensitive to the absolute resistance values. 

The figure is adapted from [9]. 
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Section 9 – The organic redox transistor for neuromorphic computing 
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Status 

Inspired by the in-memory computing architectures of biological systems, neuromorphic 
computing using crossbar arrays of artificial synapses based on non-volatile memory (NVM) 
devices with variable conductances has emerged as a new paradigm to enable massively 
parallel and ultra-low power computing hardware for data centric applications.1   Although 
inference has been demonstrated successfully using crossbars based on a variety of NMV 
technologies, efficient learning and scaling to large arrays (>106 elements) remains a 
challenge due to the synaptic elements’ non-ideal electrical characteristics which degrades 
ANN accuracy3. A further challenge is that in the conductive state memristors draw large 
currents >μA resulting in significant voltage drops in the interconnect wires and increased 
probability of failure in scaled arrays4.  The organic polymer redox transistor (RT) is an 
alternate approach that could solve many of these challenges, enabling both inference and 
parallel outer product updates, as recently demonstrated by Fuller et al.2 An RT consists of 
redox-active channel and gate electrodes in contact with a liquid or solid electrolyte. Ion 
insertion through the electrolyte controls the channel electronic conductivity, while electron 
transfer through an external circuit maintains overall charge neutrality.  Unlike a rechargeable 
battery, in the RT the voltage built-up across the electrolyte is kept to a minimum (typically 
<100 mV) by using the same material for the gate and channel. Elimination of the voltage 
offset simplifies integration of the RT into programmable arrays by enabling the use of various 
selectors2.  RTs based on inorganic and organic materials have been recently demonstrated 
with conductance tuning occurring at potentials of just a few mV and hundreds to thousands 
of linearly and symmetrically programmable conductance states, enabling near ideal accuracy 
in neural network simulations. Introduced in the 1980’s, redox transistors with metallic gate 
electrodes and organic channel materials, also known as organic electrochemical transistors 
(OECTs), have been explored for a variety of applications such as chem- and bio-sensing, 
neural interfaces, and low cost printed circuits5.  A typical channel material for OECTs is the 
conducting polymer poly(3,4‑ethylenedioxythiophene) doped with poly(styrene sulfonate) 
(PEDOT:PSS). PEDOT is a p-type semiconducting polymer with mobile positively charged 
polarons that hop chain-to-chain.   
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Figure 1.  a) polymer RT schematic indicating path of electrons and protons during programming and b) conductance during write 

operations of a polymer-RT, c) estimated (dashed line) and measured (open circles) RT switching speed scaling with channel area. 

Each write pulse corresponds 1% device conductance change, d) Demonstration of >1e8 write-read operations (cycling between 

the low- and high-conductance state) without deterioration of device properties2. Reprinted with permission from AAAS 

 

Current and Future Challenges 

Tuning the electrical properties through composition enables the polymer RT to attain 
the required low ‘read’ currents without the loss of linearity or symmetry.  By adjusting the 
PEDOT:PSS formulation, the average channel conductance can be lowered to <100 nS (i.e. 
read current <10 nA at 100 mV read voltage) while maintaining a high signal-to-noise ratio 
during nearly-linear and symmetric programming (Fig. 1b)2. Although some NVM devices 
have been engineered to operate at <50 nA, they are either binary or suffer from ‘write’ noise 
that severely reduces ANN accuracy 6.  

Fast read and write speeds for the synaptic elements are also essential for practical 
implementation in analog ANNs. The RT switching speed can be estimated by treating the 
write process as charging of a supercapacitor.  With experimentally measured RT 
capacitance values of ~4 µF mm-2 for devices with a channel thickness of 200 nm, a total 
integrated current required to incrementally charge the redox-transistor by ~2 mV (per write 
pulse), and solid electrolyte (Nafion) resistivity of 20 Ohm-cm, a write time of 1 ns was 
estimated for scaled RT dimensions of 300×300 nm2.2 This estimate time compares well with 
the 200 ns write time measured for a 45×125 µm2 PEDOT:PSS device, and the extrapolation 
of measured values as a function of dimensions shown in Fig. 1c. While realizing polymer 
RT devices with sub-micron dimensions remains the subject of active research, OECTs with 
50 nm gate length and well-behaved linear and saturation regimes have recently been 
demonstrated.7, 8 

Another important feature for neuromorphic computing technology is endurance. For 
Li-ion battery, degradation is a well-known problem that limits their use to ~1000 
charge/discharge cycles. However, since RTs can operate near 0 V between the channel 
and gate electrodes, unwanted electrode/electrolyte interfacial reactions that plague 
batteries are diminished or entirely avoided, resulting in experimentally demonstrated 
endurance of > 109 binary write-read operations and > 108 write-read operations sampling 
the entire synapse conductance range (Fig. 1d)2. Nevertheless, polymer degradation due to 
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parasitic reactions with oxygen and/or water can be problematic especially at elevated 
temperatures, making this an important area of continued research.  

 

Advances in Science and Technology to Meet Challenges 

Full realization of the polymer RT concept and its practical implementation in ANN 

accelerators requires significant further development. For example, ion injection through the 

electrolyte-electrode interface is poorly understood in organic electrochemical systems due 

in part to the high degree of structural disorder. Likewise, the presence of both partially 

crystalline and nearly amorphous regions typical of mixed ionic/electronic organic conductor 

like PEDOT:PSS leads to spatially dependent electronic properties, which implies increasing 

variability in device to device electronic conductance as dimensions shrink.  Such variability 

could substantially degrade network accuracy and must be addressed at the nanometer 

scale. Another major hurdle for polymer RTs is integration with Si CMOS and the related 

issue of thermal stability. Polymer based RT are not compatible the >400°C anneal step 

typically used in a back end of the line (BEOL) process. Nevertheless, the development of 

electronic polymers that can withstand these temperatures is an active area of research. 

Recently, polymer blends that exhibit stable charge transport at high temperatures (200 °C)9, 

as well as proton conductors for polymer exchange membranes that function at 200 °C have 

been reported.10 Finally, alternative heterogeneous integration schemes currently being 

explored for other post-Si CMOS technologies could be adapted to polymer RT integration.11 
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Status 
Optical neural networks appeared in the scientific imagination over 30 years ago [1] and again 
over 10 years ago [2]. The fundamental reasoning for combining optics and neural networks 
has not changed in decades: roughly speaking, connectivity and linear operations. Optical 
signals can be transmitted at high bandwidth without degradation, and they can be multiplied 
by tunable attenuators and added in parallel through the accumulation of photocarriers or 
photocurrents. The 2009 investigations into the first spiking photonic neurons have gradually 
evolved into what we now know as the rapidly growing field of modern neuromorphic 
photonic computing. 2013 saw the first proposal for an integrated spiking laser neuron [3], a 
direction that has since been intensely pursued by several research groups [4].  
 
Silicon photonics provides a crucial differentiation with respect to investigations of previous 
decades. Silicon photonic platforms can host high-quality passive optics combined with high-
speed optoelectronics. 2014 brought a proposal for a silicon photonic neural network [5], 
which was demonstrated in 2017 [6] (Fig. 1a) concurrently with two more proposals for silicon 
photonic neuromorphic architectures [7,8] (Fig. 1b,c). While the first architecture uses 
multiple wavelengths and tunable filters, the second relies on coherent interconnects and 
phase shifters, and the third proposes using single photons for communication.   
 
Silicon photonics with energy-efficient non-volatile phase-change materials (PCMs) have 
shown potential for photonic neuromorphic computing. After the first demonstrations of 
multi-level photonic memory in 2015 [9], using PCMs, on-chip photonic synapse and photonic 
in-memory multiplications have been demonstrated in 2017 [10] and 2019 [11] respectively. 
In 2019 an all-optical spiking neural network with PCM integrate-and-fire scheme was 
demonstrated [12] (Fig. 1d). Almost all these utilized well-known optically functional 
materials; further research into functional materials for phase shifters and other photonic 
functionality will enable more efficient photonic architectures and would form an important 
component of any roadmap. 
 
2019 appears to be the year of the silicon photonic neuron, devices capable of cascading 
photonic signals from one layer of the neural interconnect to the next. A neuron for the multi-
wavelength architecture uses a photodiode to drive a microring modulator [13] (Fig. 2a). A 
neuron for the coherent architecture (Fig. 2b) uses an electronic amplifier to remodulate the 
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optical signal [14]. In a PCM-based neuron, WDM signals combine to influence the 
transmission of a microring [12] (Fig. 2c). Neurons for the cryogenic architecture use a 
superconducting amplifier in order to drive a silicon light-emitting diode from a weak single-
photon signal [15] (Fig. 2d). 
 
An advantage of optical neural networks is that both the linear and nonlinear operations can 
be performed on the same substrate, so data traversing multiple layers of neurons does not 
need to shuttle off-chip or even leave the analog domain. In addition, interconnects are 
implemented by direct physical connections meaning that many types of signals can be 
supported by the same interconnect hardware. Unlike many virtual interconnection 
strategies, physical interconnects can support a variety of neural network architectures 
including: multilayered or deep [7], recurrent [6], and spiking [12]. 
 
Neither optics nor neural networks should be viewed as replacements for regular computers, 
yet ultrafast neural networks promise to extend the bounds of machine information 
processing in a range of areas, some discussed below. In the past year alone, significant 
progress has been made on demonstrating the hardware foundations of at least four 
proposed architectures. This experimental drive is expected to intensify in coming years to 
systems that are complete and larger in scale. 
 
Current and Future Challenges 
In the immediate future, efforts to increase the number of photonic neurons in a single 
network will continue. Larger numbers of neurons broaden the repertoire of information 
processing capabilities. A key limiter of scalability today is electronic control. The number of 
programmable parameters in the network scales quadratically with the number of neurons. 
Weight controllers do not need to be high-speed or high-power – the challenge is co-
packaging thousands of controllers with the photonic networks. 
 
Whilst photonic neural networks have difficulty reaching the component density of digital 
electronic processors, they can operate with bandwidths faster than existing electronic 
information processors. Thus, a critical area for further research will be identifying 
applications that are uniquely enabled by such large bandwidths. An example includes 
cognitive radio, where nontrivial decisions about the changing spectrum must be made in 
real-time. Another possibility may lie in predictive control for rapidly changing systems [4]. In 
any control application, decision-making is time bound. Reducing control latency to 10 ns 
would enable control or classification of processes that are uncontrollable by any existing 
technology. 
 
A third key direction will be how to evaluate neuromorphic photonic systems. Unlike digital 
processors, analog processors carry out computations by mapping a problem directly to the 
physics of a network of analog devices. As a result, they are sensitive to noise and parameter 
variations, leading to uncertainties in the results of each computation. Small-scale 
benchmarks will be needed to evaluate the correctness of experimental systems. There has 
been initial progress to this end using small benchmarks in voice recognition [7], pattern 
recognition [12], differential equation solving [6], and statistical estimation. Task-based 
evaluations will be complemented by metric-based evaluations.  
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There are two important bottlenecks in the energy efficiency of state-of-the-art artificial 
intelligence accelerators: data movement (to and from memory and processor), and the 
performance of a basic operation called multiply-accumulate (MAC) that is involved in matrix-
vector multiplications (MVM). While there is not yet consensus on the exact metrics and 
scaling laws of physics-based neuromorphic computers, at present, likely metrics are energy 
efficiency (energy/MAC), throughput per unit area (MACs/s/mm2), speed (MVM/s), and 
latency(s), where both speed and latency are measured across an entire MVM operation. In 
electronics, the state-of-the-art values typically fall around 0.5-1 pJ/MAC, 0.5-1 
TMACs/s/mm2, 0.5-1 GMVM/s, and 1-2 us, respectively. In contrast, photonics MVM units 
could perform in range 2-10 fJ/MAC, 50 TMACs/s/mm2, ~3 ps (1 clock cycle) per MVM 
operation and less than 100 ps. This performance depends on solving a number of practical 
problems which are possible to address in the short term. Photonics ultimately has very 
similar limits to analog electronic crossbar arrays, as analyzed in [16]: single-digit aJ/MAC 
efficiencies, and 100s of PMACs/s/mm2 compute densities. However, photonic MVMs garner 
an advantage for larger MVM units, both in the size of the matrix and in the physical footprint 
of the core. 
 
We stress that more detailed comparisons with existing and future hardware technology 
should also account for the power of the control electronics, laser pumps, and optoelectronic 
conversions. It is expected that the higher operational bandwidth of neuromorphic photonic 
systems could amortize the additional power factors in the wall-plug total; however, a more 
comprehensive, quantitative study of the aspects of wall-plug power and system efficiency 
metrics is called for. 
 
Advances in Science and Technology to Meet Challenges 
Photonic processors have light sources, passive and active devices. Currently, there is no 
single commercial fabrication platform that can simultaneously offer devices for light 
generation, wavelength multiplexing, photodetection, and transistors on a single die; state-
of-the-art devices in each of these categories use different photonic materials (silicon nitride, 
germanium, indium phosphide, gallium arsenide, 2D materials, functional materials, etc.) with 
incongruous fabrication processes (silicon-on-insulator, CMOS, FinFETs). Silicon photonics is 
becoming an ideal platform for integrating these devices while offering a combination of 
foundry compatibility, device compactness, and cost that enables the creation of scalable 
photonic systems on chip.  
 
Materials: Energy efficient and fast switching optical and electro-optical materials are needed 
for non-volatile photonic storage and weighting, as well as high-speed optical switching and 
routing, with low power consumption. Neural nonlinearities are already possible on 
mainstream platforms using electrooptic transfer functions [13], but new materials promise 
significant performance opportunities.  PCMs, and graphene and ITO-based modulators can 
also be utilized for implementing nonlinearities. Plasmonic PCMs are capable of bridging the 
optical and electrical signals, through the dual operation modes[17]. A general material 
design method is in urgent need to develop appropriate photonic materials for different 
photonic components [18]. 
 
Lasers and amplifiers: On-chip optical gain and power will require co-integration with active 
InP lasers and semiconductor optical amplifiers. Current approaches involve either III-V to 
silicon wafer bonding (heterogeneous integration) or co-packaging with precise assembly 
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(hybrid approach) [19]. Quantum dot lasers are another promising approach as they can be 
grown directly onto silicon, but fabrication reliability does not currently reach commercial 
standards [20]. 
 
Electrical control: Co-integrating CMOS controller chips with silicon photonics to provide 
electrical tuning control/stabilization will be critical. Candidates include wire-bonding, flip-
chip bonding, 2.5D integration (interposers), 3D stacking (through-silicon-vias), and 
monolithic integration. Each has performance and design tradeoffs [21]. 
 
System packaging: A photonic processor must be interfaced with a computer. It would need 
to be self-contained, robust to temperature fluctuations, and with electrical inputs/outputs 
[22]. Currently, manufacturers do not assemble electrical/thermal elements and chip-to-fiber 
interconnects. 
 
Algorithms: Significant advances will be required to map abstract neural algorithms to 
photonic processor to usher these platforms into the commercial space. So far, only individual 
devices and small control circuits are described in the literature. The goal is to enable neural 
network programming tools (TensorFlow) to directly reconfigure a neuromorphic photonic 
processor [22]. 
 

Concluding Remarks 
Neuromorphic photonics has reached an inflection point, benefiting from great opportunities 
as the world looks for alternative processor architectures. The physical limits of Dennard 
scaling is galvanizing the community to put forward candidates for next generation 
computing, from bio- to quantum computers. Photonics and in particular neuromorphic 
photonics, are a formidable candidate for analog reconfigurable processing. We expect the 
development of this field to accelerate as neuroscience makes leaps in our understanding of 
the nature of cognition and artificial intelligence demands more computational resources for 
machine learning. As photonics technology matures and becomes more accessible to 
academic groups and small companies, we expect this acceleration to continue. 
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Figure 1 Proposed neuromorphic photonic architectures. a) Broadcast and weight [6], b) Superconducting 
Optoelectronic Network [8]. c) Programmable nanophotonic Mach-Zehnder mesh [7]. d) PCM architecture [12]. 

 

 
Figure 2 Latest hardware research on neuromorphic photonic architectures. a) Microring modulator neuron 
compatible with conventional silicon photonic platforms [13]. b) One cell of a programmable nanophotonic mesh 
using thermal phase shifters [7]. c) PCM-based neuron where WDM signals combine to influence the transmission 
of a microring [12]. d) Drive chain of a superconducting optoelectronic neuron where a single photon triggers a 
superconducting switch, which then drives an all-silicon LED [15]. 
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Section 11 – 2D Materials Based Emerging Memristive Devices 
Deep Jariwala, University of Pennsylvania, Han Wang, University of Southern 
California  
Status 

Two-dimensional (2D) materials are part of an emerging family of materials more broadly termed as 

van der Waals materials that are available in all major electronic classes, namely metals, insulators 

and semiconductors. The atomically-thin nature combined with self-passivated surfaces and van der 

Waals bonding allows their direct integration with most other materials rendering them attractive for 

heterogeneous integration in electronics and opto-electronics. A key advantage among the wide range 

of superlative physical properties of 2D materials is their semi-transparency to electric fields in the 

atomically-thin limit. This enables superior electrostatic control, not just of the single 2D layer but also 

of multiple other layers sitting atop them in direct contact 

or close proximity. As a consequence, even vertical 

heterostructures and nominally buried heterojunctions 

and heterointerfaces are actively tunable with electric 

fields1 which is very challenging to realize in Si, oxide or 

other bulk compound semiconductor heterojunctions. 

      While a majority of materials under consideration for 

resistive switching (also known as “memristive”) 

phenomena are amorphous and oxide or chalcogenide 

materials, 2D semiconductors and insulators are an 

emerging class in this domain of device applications due to 

the above-mentioned unique properties. For seamless 

integration with high performance modern electronics, 

resistive switching devices will need to achieve low-power 

and high operation frequency operation characteristics 

depending on application requirements. As a consequence, 

it is critical for resistive memory devices to realize low SET 

and RESET voltages concurrently with high switching 

speeds which are both directly related to reducing 

switching layer thickness (Figure 1 a,b). This is precisely 

where 2D van der Waals materials with sub-nm control of 

layer thickness2-3 have unique advantages4-5 as compared 

to well established resistive switching media. Further, 

among 2D materials, there is a wide variety of elemental 

and compound semiconductors and insulators with varying 

band-gaps ranging from infrared to UV range that have 

been identified. Several of them, particularly the chalcogenides show a rich variety of structural and 

electronic phase changes that are reversible and can be induced by electric fields, temperature, 

alloying or carrier doping. This provides additional opportunity and static control for resistive memory 

transition from a crystalline to crystalline state6,7 down to individual monolayer thickness which is 

unprecedented. Finally, the semi-transparency to electric fields and superior electrostatic control in 

atomically-thin layers allows unprecedented active tunability or dynamic control of resistive switching 

phenomena in 2D materials and their heterostructures. In addition, it also presents new opportunities 

for resistive switching in open 1D interfaces such as grain boundaries8-9 in a polycrystalline 2D 

 
Figure 1.  a. Schematic of a vertically stacked van der 

Waals heterostructure based memristive device 

with graphene as bottom contact. The layered 

structure of the switching layer which comprises of 

hexagonal boron nitride (h-BN) (zoom in) allows 

atomic thickness level control of active layer and 

hence set voltage. b. I-V characteristics of memristor 

devices shown in a with varying thickness of h-BN. b 

adapted from ref. 3 © Wiley-VCH (2017). 
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semiconductor film (Figure 2 a,b) as opposed to buried interfaces in 3D materials which opens new 

opportunities in basic device and architecture design. An important trade-off between the vertical 

(Figure 1) and horizontal (Figure 2) memristive devices is related to variation and control of 

conductance state. Where the vertical memristors can exhibit tight distribution of set voltages and 

conductance values (variation < 100 mV from distribution 

normal), there is minimal control over the high and low resistance 

states. Whereas for lateral grain boundary memristors, there is 

almost continuous control over the high and low resistance state 

values, but the variance across devices between the ratios of 

conductance states can be as high as half an order of magnitude.     

The key to applications of memristors in machine learning based 

computing architecture would as hardware accelerators to digital 

processors in the form of analog neural networks. To attain a 

functional and competitive advantage in such networks one must 

achieve minimal parasitic power dissipation (such as sneak 

current in cross bar memristor networks) and maintain high 

degree of dynamic synaptic plasticity. 2D materials as discussed 

above can be pattered into a one transistor one memristor 

(1T1M) architecture all within the same layer of material and 

without the need for cross-bars which reduces sneak current 

issues. In addition, the tunability of grain-boundary synapse 

plasticity both with pulse width and gate-voltage allows training 

to implementation of arbitrary target matrices. This could 

potentially enable hardware for general acceleration of any 

matrix operations, critical for data sets that come in large 

matrices. Therefore, despite the relatively mature nature of 

ReRAM and resistive switching technology, 2D and van der Waals 

materials present a tremendous opportunity for breakthroughs 

and transformative impact from fundamental device phenomena 

and design all the way to architectures.   

 

Current and Future Challenges 

While 2D materials based memristor devices have shown significant potential in terms of low power 

and high speed device performance and functionality, a critical challenge with this materials family as 

a whole is their large area scalability, uniformity and as a consequence reliability. The infancy of the 

materials class presents challenges in terms of quality and structure control. A large number of 

candidate materials are binary compounds that can be alloyed into ternary or quaternary compounds 

to tune the band gaps such as the transition metal dichalcogenides of Mo, W, Hf, Zr, Sn etc., noble 

metal dichalcogenides of Pt and Pd as well the group IV monochalcogenides such as Ga and In based 

selenides and sulphides as well as boron based nitrides and oxynitrides. This is a particularly important 

challenge bearing in mind that the memristive/conductive filament forming conditions are a strong 

function of layer thickness and compositions. Therefore, layer by layer, highly uniformity growth with 

precise compositional control will be critical moving forward. For lateral memristors or 

memtransistors, where grain boundary effects and diffusion dominate the device operation, a uniform 

distribution of boundary types, lengths and orientations remains another formidable challenge. 

 Figure 2.  a. Schematic of monolayer 

chalcogenide grain boundary memristive 

device showing the atomic structure of tilt 

grain boundary zoomed in. b. I-V 

characteristics showing gate-voltage induced 

tunability of SET voltages. b adapted from 

ref. 8 respectively © Springer Nature (2015). 
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Likewise, for ultrathin, two-terminal memristive devices from layered chalcogenides that rely on 

phase changes, the electric fields for switching are lower for ternary alloys. This makes control over 

both crystal composition and thickness in thin films over large areas critical for high reliability devices. 

This compositional control is also critical for field-tunable memristive devices since they rely on 

compositional control at lateral grain boundaries which in turn allows dynamic fine control over SET 

and RESET voltages;8 a critical feature for multi-level resistive memory for training of complex neural 

networks.  Another critical issue for van der Waals 2D materials is integration with standard 

semiconductor processes. Many memristive 2D materials including h-BN rely on catalytic metal 

substrates for high temperature CVD synthesis. The growth temperatures are not suitable for direct 

BEOL integration. Post growth room temperature transfer strategy while viable, may introduce 

transfer related defects such as cracks, wrinkles and unwanted contamination that may compromise 

reliability over large areas.  

 

Advances in Science and Technology to Meet Challenges 

The challenges described above are complex and difficult. However, advances in materials growth and 

characterization over the past decade has given much reasons to be optimistic. In particular, large 

area, nearly single crystal synthesis of materials such as graphene and boron nitride over metal foils 

has now been achieved. This combined with the advances in transfer processes makes it viable to 

achieve reliable memristors over wafer scale with 2D materials that can met semiconductor industry 

standards in principle. Further, there has also been tremendous progress in the synthesis of layered 

chalcogenides. In particular, MOCVD has been successfully used for layer by layer, high quality growth. 

However, significant quality improvement is still desired for ternary and more complex alloys and 

thicknesses greater than monolayers. To achieve that, radically new synthesis approaches and 

optimization schemes are desired. In addition, control over nucleation and orientation of growing 

nuclei will be desired to achieve single crystalline multilayer thin films of alloy chalcogenides. Similar 

control over nuclei orientation will be desired for grain boundary memristors and memtransistors. For 

direct BEOL integration, high quality and controlled growth at low temperatures 400 °C or below using 

plasma enhanced CVD or MBE techniques will also present a major breakthrough. Significant progress 

along these lines has already been achieved10 and some 2D chalcogenide materials such as WS2 are 

being considered for foundry introduction with growth scaled upto 300 mm wafers.11Finally, both 

fundamental science advances and techniques for post growth patterning/introduction of controlled 

defects with energetic beams12 will be critical in reliable resistive switching over large number of 

devices on wafer scales that can meet the current standards of semiconductor industry.    

 

Concluding Remarks 

In summary, as new physical and chemical properties continue to be discovered from this emerging 

class of materials, more opportunities will open up for novel devices for resistive switching and 

memristor devices. The associated challenges as with any new material is the potential to scale up and 

quality control. However, judging by the infancy of memristor based electronic systems for machine 

learning algorithm processing, there are tremendous opportunities for exploration and potential for 

innovation that span a range of research areas from fundamental materials synthesis, design and 

defect control to device design, integration and architecture design.   
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Section 12 - Superconducting Hardware for Neuromorphic Computing 

Kenneth Segall and Jeffrey M. Shainline  

 

Challenges for superconducting digital circuits. Digital computing technologies based on 

Josephson junctions (JJs) integrated at the chip scale have been explored since the 1970s. In 

the digital computing domain, the outstanding performance of silicon microelectronics has set a 

high bar for any competing technology. Josephson junctions have received attention in this 

regard, primarily due to their high switching speed and low energy per operation. However, when 

directly competing with a platform as mature as silicon, any weakness can be fatal. 

 

The employment of JJs for digital computing has been held up due to at least four challenges. 

First, dense random-access memory is more difficult to achieve with superconducting circuits than 

with semiconductors. Second, while digital circuits based on JJs have achieved greater than 100 

GHz clock speeds, low-jitter clock distribution for an entire chip has been difficult to implement. 

Third, JJ systems must be kept near 4.2 K, which requires cryogenic infrastructure and introduces 

an I/O challenge when getting large amounts of data into and out of a cryostat. Fourth, 

superconducting circuits operate at millivolt levels due to the scale of the superconducting energy 

gap, causing a voltage mismatch between superconducting and semiconducting circuits.  This 

presents a challenge when attempting to interface cryogenic superconducting systems with room-

temperature semiconducting systems. While significant progress has been made in the last 

several decades regarding JJ circuits for computation, no systems have yet come close to 

displacing CMOS for digital computing. 

 

Superconducting neuromorphic circuits. Upon moving to the neuromorphic domain, the 

primary challenges that have hindered JJ circuits for digital computing improve considerably. In 

neural circuits, memory is co-located with processing in the form of synapses connected to 

neurons. Synaptic memory is sampled each time a communication event occurs between two 

neurons, alleviating the need for large banks of RAM. Several types of superconducting synapses 

have been proposed [1] and demonstrated [2]. Regarding clock speed, neurons based on JJs can 

operate in the 25-50 GHz range [3,4], and analog neural circuits are asynchronous in nature, so 

there is no need for a distributed clock. Large-scale superconducting neuromorphic systems may 

require significant data I/O, but JJ-based synapses and neurons that receive single photons and 

produce faint photonic signals have been proposed [1]. These optoelectronic neurons may 

operate in conjunction with all-electronic JJ neurons to alleviate the I/O challenge by implementing 

data ingress and egress over optical fibers with lower heat load than conventional coaxial cables. 

Production of light by optoelectronic neurons does take more time than ultrafast JJ neurons, but 

it brings the advantage that signals are transmitted via near-infrared photons with 1 eV, which can 

directly interface with semiconductor circuits, thereby bridging the voltage mismatch.  A detailed 

comparison to CMOS is difficult at this juncture.  However, combining both the high speed and 

low power dissipation, a superconducting neuromorphic system could potentially offer a factor of 

10x to 100x better in synaptic operations per watt (SOPS/Watt) [5] than any silicon system to 

date. 
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Biological Realism. Beyond addressing some of the challenges that have limited the adoption 

of JJ circuits for digital computing, JJ circuits may be a better fit to neuromorphic computing than 

digital computing because of the nature of Josephson physics. Thresholding and spiking 

operations, central to neural information processing, are native to Josephson junctions. Many 

types of JJ-based neurons have been proposed and developed, beginning in the late 1980s [6]. 

Recent successful implementations include the so-called JJ neuron proposed by Segall and 

others in 2010 [3], based on the close analogy between JJ behavior and ion channels in neurons. 

Figure 1 (a)-(c) shows the JJ neuron circuit diagram along with numerical simulations of the action 

potential and of inhibitory coupling [3].   

 

These neuron designs achieve spiking behavior in the time domain and are naturally suited for 

development into Spiking Neural Networks (SNNs). While transistor circuits are not naturally 

spiking and may be more suited to implementing static neural networks for deep learning, JJs are 

well equipped to harness the energy efficiency and resilience to noise of SNNs. It has been shown 

in simulations that similar circuits can be employed to extend neuron functionality to harness the 

information processing occurring in the dendritic tree of biological neurons [7].  The spiking 

properties of JJ neurons were experimentally demonstrated in 2017 [4], where the 

synchronization states of two mutually coupled neurons were measured.  Figure 1 (d)-(f) show a 

Scanning Electron Micrograph of the two coupled neurons and the bifurcation map of their firing 

states, measured and calculated [4].   

 

Synaptic weighting in superconducting neurons can be accomplished by several means. One is 

by making use of the variability of the Josephson inductance in an inductive divider. The tunability 

of the critical current in an MJJ can also be used to control the amount of current routed to each 

synaptic connection [2]. Alternatively, the current bias to a Josephson junction can be used to 

adjust the number of fluxons created when the junction is driven above threshold [1]. The weight 

of a synapse can be stored in a flux storage loop, which has the advantage that their state can 

be readily updated based on network activity to implement biologically realistic plasticity 

mechanisms.  Meanwhile, MJJs have the advantage that they can retain their state for a long 

duration, even above superconducting temperatures.  Combined with static neurons made from 

JJs, these synapses could also be used for a low-power deep learning implementation [8].  Mature 

superconducting neural systems are likely to employ multiple synaptic plasticity mechanisms to 

enable rapidly adaptable synaptic weights alongside long-term memory retention. 

 

Interconnection networks. Efficient communication between neurons is central to neuromorphic 

computing. Neurons in large systems must be able to fan signals out to thousands of destinations 

to maintain short path lengths across the network, and the same degree of fan-in is therefore also 

required.  Active Josephson transmission lines and pulse splitters enable high fan-out over 

dissipationless transmission lines. This direct fan-out may overcome the need to implement a 

shared digital communication infrastructure, as is done with CMOS neural systems. The shared 

switching network results in communication bottlenecks and traffic-dependent delays that hinder 

scaling. 
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For large-scale neural systems, multiple die or even multiple wafers are likely to require 

interconnection. At such a scale, photonic communication is advantageous regardless of whether 

semiconducting or superconducting neurons are employed. Superconducting systems have 

unique advantages in this regard due to the light sources and detectors available at low 

temperature. Because silicon can be used as a light emitter at liquid-helium temperature, light 

sources simpler than transistors can be incorporated, leading to scalable, cost-effective 

integration. Similarly, superconducting single-photon detectors provide the possibility for energy-

efficient optical links between neurons producing light and synapses receiving single-photon 

signals. These optical links have been demonstrated in Ref. [9] [see Fig. 2(a-c)], and passive 

photonic routing networks utilizing multiple planes of waveguides have been demonstrated in Ref. 

[10] [see Fig. 2(d-f)]. Optoelectronic neurons based on these devices have been designed as 

straightforward extensions of JJ neuron circuits [1,7]. 

 

Fan in of many signals to a single integrating neuron cell body can be accomplished with mutual 

inductors, thereby avoiding leakage current pathways and cross talk. Taken together, active 

Josephson transmission lines can connect many neurons locally; photonic fan out enabled by 

silicon light sources and single-photon detectors can achieve high connectivity across more 

distant regions of large neural networks; and mutual inductors can provide the high fan-in 

necessary to receive thousands of inputs. These strengths of cryogenic interconnects are likely 

to prove invaluable when scaling to large neural systems. 

 

A roadmap for scaling. It is in the domain of neuromorphic supercomputing that superconducting 

hardware is likely to have an impact. Due to the immature nature of this technology, a roadmap 

for the next several years involves several feasibility demonstrations as well as investigations of 

device limitations. Neurons based on JJs leverage a superconducting electronics process very 

similar to that used for superconducting digital computers, so many core devices have already 

been demonstrated. However, it remains to be seen if variability of JJ critical currents across a 

wafer can be made low enough for functional systems, although adaptive plasticity mechanisms 

may compensate for variability. These adaptive synapses require further investigation to 

determine fabrication yield, variability, and functional range of operation. Regarding 

interconnects, the practical limitations of fan out over superconducting transmission lines must be 

explored and compared to what can be achieved with photonic interconnects. The limits of 

photonic interconnects depend on how many waveguiding planes can be integrated with 

electronic circuits as well as the achievable efficiency of silicon light sources. 

 

Looking forward, superconducting neuromorphic hardware will continue to look better as one 

scales to bigger, cloud-like systems.  With low-power gates and dissipationless interconnects, the 

energy benefit will continue to grow as the system gets larger.  With the high speed and biological 

realism of JJs, one can imagine highly powerful spiking neural networks as a long-term goal for 

the field.   
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Figure 1:  Behavior of the Josephson junction neuron.  (a) Schematic of the Josephson junction 

neuron.  Two junctions (pulse junction and control junction) in parallel are driven by two currents, 

an input current and a bias current.  An LRC-filter following the neuron shapes the action potential 

into a synaptic current.  (b) Action potentials from the JJ neuron.  Black is the flux in the loop, red 

is the pulse junction voltage, and blue is the negative control junction voltage.  The pulse junction 

and control junction behave like ion channels in the Hodgkin-Huxley model.  (c) Inhibitory coupling 

simulation with two JJ neurons.  Black is the postsynaptic neuron and blue is the presynaptic 

neuron.  The red stimulus causes the presynaptic neuron to fire, inhibiting the postsynaptic 

neuron.  (d) SEM micrograph of two mutually-coupled Josephson junction neurons.  (e)-(f) 

Experiment and simulation, respectively, of synchronized firing states of the two mutually-coupled 

neurons.  Red represents anti-phase states while blue represents in-phase states.  (Note: (a)-(c) 

is taken from Ref. [3] and (d)-(f) is taken from Ref. [4])     
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Figure 2: Experimental progress toward superconducting optoelectronic networks. (a) Schematic 

of waveguide-integrated silicon LED. Embedded emitters are shown in the intrinsic region of the 

p-i-n junction. (b) Microscope image of a silicon LED waveguide-coupled to a superconducting-

nanowire detector. (c) Experimental data showing that light is coupled through the waveguide, 

while cross talk to an adjacent detector on the chip is suppressed by 40 dB. (a)-(c) adapted from 

Ref. [9]. (d) Schematic of multi-planar integrated waveguides for dense routing. (e) Schematic of 

feed-forward network implemented with two planes of waveguides. The inset shows the tap and 

transition device. (f) Data from an experimental demonstration of routing between nodes of a two-

layer feed-forward network with all-to-all connectivity. The data is from light at a single input and 

collected at all ten outputs with the designed Gaussian distribution profile. (e)-(f) adapted from 

Ref. [10]. 
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Status 

Neural networks are classified into 3 generations[1]. (Table 1) The third-generation neural networks, 

also termed as spiking neural networks (SNNs), are different from the second-generation artificial 

neural networks (ANNs) by explicitly incorporating time as a computational dependence. In SNNs, 

both neurons and synapses could have local state evolution rules (e.g. Hodgkin-Huxley neuron model, 

spike-timing-dependent plasticity or STDP), which constitute dynamical systems sharing a strong 

resemblance to the brain[2]. Compared to ANNs, SNNs might be more noise-immune, suitable for 

learning spatio-temporal patterns, event-driven, and energy-efficient for a variety of tasks.  

Table 1 Classification of the neural network generations.[1] 

Generation Neuron Types 

1 McCulloch-Pitts neurons with discrete outputs. 

2 Neurons with analogue output (or continuous activation function). 

3 Spiking neurons with time-domain signal outputs. 

 

Efforts have been made to devise hardware for SNNs. These SNNs not only reveal a better 

computational efficiency than conventional computers for certain algorithms but also advance the 

neuroscience. The representative systems are software SNNs on clusters, digital-circuit SNNs, 

analogue-circuit SNNs including those based on emerging devices like magnetic devices, ferroelectric 

devices, memristors and others. The representative example of a software SNN is the Manchester 

SpiNNaker which implements neural and synapse models on up to a million ARM 968 processor 

cores[3]. The system is capable of simulating 460 million neurons and 460 billion of synapses, with 

programmable plasticity, which has been applied to a variety of applications including modelling of 

biological neural systems. (Table 2) Digital-circuit SNNs feature distributed digital neurons and 

synapses, such as IBM TrueNorth and Intel Loihi, with the former for inference only [4] while the latter 

having programmable real-time plasticity[5]. The TrueNorth system, packed with 16 chips, consists of 

16 million neurons and 4 billion synapses with applications like low-power real-time object 

recognition. Intel Loihi-based platform[6], such as the Nahuku system with 32 chips on a single board, 

possesses up to 4.2 million neurons and 4.2 billion synapses, demonstrated efficient simultaneous 

localization and mapping (SLAM). In terms of analogue-circuit SNN, the Stanford Neurogrid, an 

assembly of 16 Neurocore chips, has 1 million analogue spiking neurons, with applications to drive 

prosthetic limbs[7]. SNNs based on transistor-platforms are so far the most mature and large-scale 
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available solution. Nevertheless, because the CMOS devices were not created or optimized for the 

purposes of neuromorphic computing, they do not faithfully resemble synapses and hence lack the 

intrinsic hardware learning capability. Consequently, those silicon synapses and neurons require 

complex circuits based on transistors, which are limited by the scalability and stackability. Bulky 

memory and frequent memory accesses limit the learning rate as well as energy and area efficiency 

in these systems. More energy/area efficient hardware SNNs could be built with emerging devices 

such as memristors[8, 9] and ferroelectric transistors[2, 10]. More importantly, emerging hardware 

are of rich switching dynamics so they can function like spiking neurons[11-13] and analog synapses[8, 

14, 15]. For example, phase change memristors (PCM)[8] and diffusive memristors[8] could simulate 

both neural integrate-and-fire and synaptic STDP, leading to all-memristive SNNs that can detect 

spatiotemporal correlations and cluster patterns, respectively. As a potential outcome of these 

research systems, long-term contributions into improved understanding of how the human brain 

works may lead to other benefits, such as improved therapies, in addition to a more energy efficient 

computer. 

 

Table 2 Summary of the large-scale hardware SNNs. 

 SpiNNaker TrueNorth Loihi (Nahuku) Neurogrid IBM PCM SNN 

System 
Type 

Software on 
customized 
cluster 

Digital-circuit SNN Analogue-
circuit SNN 

Analogue PCM 
SNN 

No. of 
Neurons 

768K 16M 4.2M 1M <4M combined 

No. of 
Synapses 

768M 4B 4.2B 4B 

Plasticity Programmable N. A. Programmable N. A. Simplified STDP 

Application  Objection 
Recognition 

SLAM Robotic 
Control 

Spatiotemporal 
Pattern 
detection 

 

Current and Future Challenges 

Although the biological neural systems have shown remarkable performance at low power, hardware 

SNNs including those based on emerging devices have not yet experimentally revealed their 

advantages. The main challenges are with the training of SNNs. 

One of the popular ways to train SNNs, particularly those based on emerging hardware, is the 

bio-plausible local learning rules, such as biological variants of STDP. However, it is challenging to use 

such local rules in optimizing deep networks with supervised learning signals, which often yields 

relatively poor functionality compared to their ANN counterparts[16, 17]. Searching for powerful and 

scalable local learning rules is a constant pursuit of both machine learning and neuroscience 

communities. In addition, to faithfully duplicate the local learning rules such as the STDP, the weights 

of synapses shall be adjusted according to the relative spike timings of pre- and post-synaptic neurons. 

Physical realization of such mechanism in a simple way with compact emerging devices could be 

challenging. 
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Another method is to convert trained ANNs into SNNs by adapting weights and thresholds of 

the spiking neurons[11]. The converted SNNs have been demonstrated to yield comparable accuracy 

to ANNs on complex datasets such as ImageNet.[17] Since activations of analogue ANN neurons are 

typically translated into firing rates of spiking neurons, or multiple spikes are often needed to 

represent one real-valued activation, the energy-efficiency of such SNNs may not be significantly 

better than that of conventional ANNs[15]. In addition, only the spiking rate, not necessarily the spike 

timing, is utilized in this approach. Furthermore, it is difficult for the training of the corresponding 

ANNs to take advantage of emerging devices by using the popular methods such as the error 

backpropagation. Moreover, the frequently used pooling and negative ANN neuron activations are 

not straightforward to be implemented on emerging devices[15]. 

The third way to train SNNs is through spiking-variants of backpropagation, which aims to find 

a substitute of the error gradient since the transfer functions of spiking neurons are not differentiable. 

Such training methods are usually computationally expensive, while showing no better performance 

than that of the ANN-SNN conversion. However, spike-based error backpropagation techniques can 

be used to optimize the sparsity and inference latency of SNNs to further improve the energy 

efficiency. In addition, similar to the ANN-SNN conversion, the emerging hardware is unlikely to 

benefit the training process which is mostly implemented on conventional computers.  

Traditional applications of SNNs have been in classification problems. While classification of 

images and audio data remain a challenging and important problem, other applications of SNNs are 

also being concurrently pursued[1]. In particular, the stochastic variants of SNNs have strong 

computational properties to solve a large class of problems, including optimization problems. Recent 

work has shown how clusters of SNNs can collaboratively solve non-convex and even combinatorial 

problems[12], with far-reaching applications in data analytics and control. This continues to remain 

an open and promising area with more fundamental work needed both in theory and applications. 

 

Advances in Science and Technology to Tackle Challenges 

One way to close the performance gap between emerging hardware based SNNs and ANNs running 

on conventional computers, is to devise hardware that can better implement local learning rules. An 

example is the second order and diffusive memristors where their Ca2+-like dynamics natively encode 

timing information like the chemical cascades in biological synapses [13, 14]. In addition, some novel 

local learning rules, such as the e-prop[18], may not only help understanding on how the brain works 

but also benefit efficient-learning with emerging hardware. 

In addition to local learning rules, the challenges in ANN-SNN conversion could be addressed 

with the advancement of emerging hardware. So far, memristors has been reportedly applied to the 

inference of the ANNs[2] but not the training. It is yet to implement the error backpropagation on the 

emerging hardware. In addition, current ANN-SNN conversion mostly encodes ANN neuron’s 

activations into SNN neuron’s mean firing rates, the energy-efficiency of which can be further boosted 

with low-precision arithmetic operations. Moreover, event-based ANN-SNN conversion schemes may 

better exploit the rich temporal dynamics of the emerging hardware. 

To overcome the limitation of the spiking-variants of backpropagation, a future direction of 

research may be the incorporation of recurrence into SNNs, such as the reservoir computing where 

the reservoir is made of random, sparse, and recurrent connections between SNN neurons, followed 
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by a fully connected readout layer. The reservoir computing features the lowest training complexity 

by retaining the weights of the reservoir while adjusting those of the readout units to recognize 

instantaneous patterns within the reservoir, which could directly harvest the internal dynamics of 

emerging devices, such as volatile memristors[19, 20]. 

Concluding Remarks 

Although SNNs were originally developed in direct response to neuroscience, they have been widely 

studied for their unique advantages from the standpoint of energy-efficiency and the extra temporal 

dimension for information encoding.  

The emergence of energy-efficient hardware simulators or emulators of SNN has shown great 

promises for SNNs to be used together with or even replace ANNs in a variety of complex tasks. To 

unleash the full potential of the SNNs with emerging hardware, better simulation of local learning 

rules, ANN training with emerging hardware, hardware-algorithm co-design for ANN-SNN conversion, 

and the reservoir computing may help explore and extend the advantages of SNNs over conventional 

ANNs, which may also deepen the understanding of information processing in biological neural 

systems. 
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