
Error-Free Semantic Segmentation Inference of
Images Larger than GPU Memory

Michael Majurski and Peter Bajcsy
National Institute of Standards and Technology

Information Technology Lab
Gaithersburg, MD 20899, USA

{michael.majurski, peter.bajcsy}@nist.gov

Abstract

We address the problem of performing error-free out-of-core
inference of arbitrarily large images for semantic segmen-
tation using fully convolutional neural networks (FCNN).
FCNN models have the property that once a model is trained
it can be applied on arbitrarily sized images, though it is still
constrained by the available memory (RAM) of the GPU ex-
ecuting the inference. This work is motivated by overcoming
the GPU memory size constraint via a tile-based inferencing
methodology which does not numerically impact the final re-
sult.
We developed mathematical formulas for determining the tile
size and stride of tiles created from an input image too large
to inference on a GPU. The formulas are validated on mul-
tiple configurations of an FCNN U-Net model and tiling pa-
rameters. The numerical accuracy is evaluated by executing
the forward (inference) pass of the U-Net network with each
parameter setting on 20 000×20 000 pixel grayscale images.
This method decomposes the full inference image into small,
overlapping tiles each of which fit into GPU memory for the
forward (inference) pass of the network. This tiling scheme
produces a segmented result as if the whole image had been
inferenced in a single pass. The primary contribution of this
work lies in demonstrating that one can achieve error-free in-
ference using a tile-based (out-of-core) approach if the tiling
parameters are chosen according to the mathematical analysis
of the FCNN model and GPU specification. In addition, we
document the segmentation errors due to tiling configurations
that do not satisfy the formulas.

Introduction
The task of semantic segmentation, assigning a label to
each image pixel, is often performed using deep learn-
ing based convolutional neural networks (CNNs) (Badri-
narayanan, Kendall, and Cipolla 2017; Ronneberger, Fis-
cher, and Brox 2015), for instance, by using a special type of
CNN which only uses convolutional layers. These so-called
”fully convolutional neural networks” (FCNN) have a very
useful property which allows altering the input image size.
Both U-Net (Ronneberger, Fischer, and Brox 2015) and the
original FCN network (Long, Shelhamer, and Darrell 2015)

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are examples of FCNN type CNNs. FCNNs enable training
the network on images much smaller than those of interest
at inference time. For example, one can train a U-Net model
on 512×512 pixel tiles and then perform inference on many
20 000 × 20 000 pixel images. This decoupling of training
and inference image sizes means the semantic segmentation
models can be applied to images much larger than the mem-
ory available on current GPU cards.

The ability of FCNN networks to inference arbitrarily
large images differs from other types of CNNs where the
training and inference image sizes must be identical. Usu-
ally this static image size requirement is not a problem since
the input images can be resized to fit the network. For exam-
ple, if one trained a CNN on ImageNet (Russakovsky et al.
2015) to classify pictures into two classes: {Cat, Dog}, the
content of the image does not change drastically if the cat
photo is resized to 224× 224 pixels before inference.

In another example, performing semantic segmentation of
the scene acquired by a self driving car’s front camera, one
can infer which surfaces are drivable at the native camera
resolution of 720p (1280 × 720 pixels ∼ 1Mpixel). Alter-
natively, one can inference images after down-samplings if
compute time must be decreased in such a time-critical ap-
plication.

In contrast to the above two examples, there are applica-
tions where resizing (re-scaling or down-sampling) the im-
age is not acceptable due to loss of information. For exam-
ple, in digital pathology, one cannot take a whole slide mi-
croscopy image (100 000×50 000 pixels) and fit it into GPU
memory; nor can one reasonably downsample the image to
fit as too much image detail would be lost.

Our work is motivated by the need to design a method-
ology for arbitrarily large image inference on GPU memory
constrained hardware in those applications where the loss
of information due to image resizing is not acceptable. The
original U-Net paper (Ronneberger, Fischer, and Brox 2015)
briefly hinted at the feasibility of an inference scheme sim-
ilar to the one we present in this paper but did not fully
document and explain the inference scheme. The novelty
of our work lies in presenting a methodology for large im-
age tiling which enables error-free inference on GPUs with
limited memory. This work draws on FastImage, a high-



performance accessor library for processing gigapixel im-
ages in a tile-based manner (Bardakoff 2019).

Related Work
It has been known since the initial introduction of fully con-
volutional neural networks that they can be applied via shift-
and-stitch methods as if the FCNN were a single filter (Long,
Shelhamer, and Darrell 2015; Sherrah 2016). The original
U-Net paper by Ronneberger et al. (Ronneberger, Fischer,
and Brox 2015) also hints at inference of arbitrary sized
images in its Figure 2. However, none of the past papers
mentioning shift-and-stitch discuss the methodology for per-
forming out-of-core arbitrary sized image inference.

There are two common approaches for applying CNN
models to large images: sliding window (overlapping tiles)
and patch-based inference. Sliding window (i.e. overlap-
ping tiles) has been used for object detection (Sermanet
et al. 2013; Van Etten 2019) as well as for semantic seg-
mentation (Lin et al. 2019; Volpi and Tuia 2016) infer-
ence. Patch-based inference also supports arbitrarily large
images, but it is very inefficient (Volpi and Tuia 2016;
Maggiori et al. 2016).

Huang et al. directly examine the problem of operating
on images which cannot be inferenced in a single forward
pass. However, the authors focus on different methods for
reducing the error in labeling that arises from different over-
lapping tile-based processing schemes (Huang et al. 2019).
They examine label averaging and the impacts of different
tile sizes on the resulting output error and conclude that us-
ing as large a tile as possible will minimize the error (Huang
et al. 2019). Huang et al. also examine the effects of zero-
padding, documenting how much error it introduces (Huang
et al. 2019). At no point do they produce error-free tile-based
inference. Iglovikov et al. also remark upon error in the log-
its near the edge of tiles during inference and suggest over-
lapping predictions or cropping the output to reduce that er-
ror (Iglovikov, Mushinskiy, and Osin 2017).

To the best of our knowledge, no published method fully
explores a methodology for error-free tile-based (out-of-
core) inference of arbitrarily large images. While tile-based
processing schemes have been outlined, the past publica-
tions do not provide a framework for achieving error-free
tile-based inference results.

Methods
To explain out-of-core image inference we use U-Net (Ron-
neberger, Fischer, and Brox 2015) as the case study FCNN.
The structure of U-Net can be seen in Figure 4. Nonetheless,
the presented methodology applies to any FCNN network,
just the specific numerical values will be different.

U-Net Configuration
Before delving into the out-of-core inference methodology
details, we clarify two modifications of U-Net.

1. Normalization: Batch normalization (Ioffe and Szegedy
2015) was added after the activation function of each con-
volutional layer as it is current good practice in the CNN
modeling community.

2. Convolution Type: Convolutional type was changed to
SAME from VALID as used in the original paper (Ron-
neberger, Fischer, and Brox 2015).

The original U-Net paper uses VALID type convolutions
which shrink the spatial size of the feature maps by 2 pix-
els for each layer. Figure 1 shows an illustration showing
why VALID causes the feature maps to shrink. The effect
of VALID convolutions can also be seen in the first layer of
the original U-Net where the input image size of 572× 572
pixels shrinks to 570×570 (Ronneberger, Fischer, and Brox
2015).

Figure 1: Illustration of VALID type convolution where no
padding is applied to the feature maps, resulting in the fea-
ture maps shrinking from 4 × 4 to a 2 × 2. In this case, all
convolution input values must be present to generate valid
outputs.

Switching to SAME type convolutions requires that within
each convolutional layer zero padding is applied to each
feature map to ensure the output has the same spatial size
as the input. Figure 2 shows an illustration where an in-
put 4 × 4 remains 4 × 4 after the convolution is applied.
While VALID type convolutions avoid the negative effects
of the zero padding within SAME type convolutions, which
can affect the results as outlined by Huang et al. (Huang et
al. 2019), users prefer input and output images of the same
size. Additionally, our tiling scheme overcomes all nega-
tive effects that zero padding can introduce, justifying the
choice of SAME type convolutions. For an excellent review
of convolutional arithmetic, including transposed convolu-
tions (i.e., up-conv), see ”A guide to convolutional arith-
metic for deep learning” (Dumoulin and Visin 2016).

Figure 2: Illustration of SAME type convolutions where zero
padding (empty white squares) is applied to ensure the out-
put feature map has the same spatial dimensions as the input.

The change to SAME type convolutions introduces an ad-
ditional constraint on U-Net that needs to be mentioned.
Given the skip connections between the encoder and de-
coder elements for matching feature maps, we need to en-
sure that the tensors being concatenated together are the
same size. The feature map at the bottleneck of U-Net



is spatially 16× smaller than the input image. As we go
deeper into a network we trade spatial resolution for fea-
ture depth. Given a 512 × 512 pixel input image, the bot-
tleneck shape will be N × 1024 × 32 × 32 (assuming
NCHW 1 dimension ordering with unknown batch size). Thus
the input image height divided by the bottleneck feature
map height is 512

32 = 16. However, if the input image
is 500 × 500 pixels, the bottleneck would be (in theory)
N × 1024× 31.25× 31.25. When there are not enough in-
put pixels in a feature map to perform the 2 × 2 max pool-
ing, the output feature map size is the floor of the input size
divided by 2. Thus, for an input image of 500 × 500 pix-
els the feature map heights after each max pooling layer in
the encoder are: [500, 250, 125, 62, 31]. Now following the
up-conv (fractionally strided/transposed convolution (Du-
moulin and Visin 2016)) layers through the decoder, each of
which doubles the spatial resolution, we end up with the fol-
lowing feature map heights: [31, 62, 124, 248, 496]. This re-
sults in a different feature map spatial size at the third level;
encoder 125, decoder 124. If the input image size is a multi-
ple of 16 this mismatch cannot happen.

To ensure the input image is always a multiple of 16, we
pad the end of each spatial dimension via reflection to meet
the size requirement. So a 500 × 500 pixel image will be
padded on the right and bottom with 12 pixels to bring its
size to 512×512 pixels. Conversely, a 512×512 pixel image
will be inferenced unmodified. Reflection padding is used to
ensure that the summary statistics of the whole image are not
unduly skewed since z-score normalization is used during
inference.

For the purpose of brevity, we will use ’up-conv’ (as the
U-Net paper does) to refer to fractionally strided convolu-
tions with a stride of 1

2 which double the feature map spatial
resolution (Dumoulin and Visin 2016).

Conceptual Framework
Given an FCNN model architecture and a GPU with enough
memory to inference at least a 512×512 pixel image, we can
construct a scheme for inferencing arbitrarily sized images.
There are two important concepts required for this tile-based
(out-of-core) processing scheme.

1. Zone of Responsibility (ZoR): a rectangular region (par-
tition, zone, or area) of the output image currently being
computed.

2. Radius: minimum horizontal and vertical border size
around the ZoR indicating the local context that the
FCNN requires to accurately compute all pixels within
the ZoR.

Each dimension of a square tile is then defined as
TileSize = ZoR + 2× Radius. Figure 3 shows an exam-
ple where a 832× 832 pixel zone of responsibility is shown
as a red square with a 96 pixel radius surrounding it. Since
the pixels within the ZoR and the radius need to be passed
through the network to compute the output, one tile of GPU
input is 832 + 2× 96 = 1024 pixels per spatial dimension.

1NCHW Tensor dimension ordering: N (batch size), Channels,
Height, Width

Figure 3: Left: ZoR (832×832 pixel square) with a 96 pixel
surrounding radius (shaded area) for tile-based inference of
stem cell colonies. Right: segmentation output showing the
ZoR contribution.

Inferencing arbitrarily large input images requires that we
only inference a small enough tile to fit in GPU memory
for any single forward pass and then operate tile-by-tile.
To form a tile, the whole image being inferenced is broken
down into non-overlapping zones of responsibility. For each
ZoR, the local context defined by the radius (where avail-
able) is included and passed through the network. The ZoR
within the inferenced tile result (without the radius) is copied
to the output image being constructed in CPU memory. The
radius provides the network with all the information it needs
to make correct, deterministic predictions for the entirety of
the zone of responsibility. Hence the name, since each ZoR
is responsible for a specific zone of the output. Therefore,
while the full image was broken into tiles for inference, each
pixel had all of the local context required to be predicted as
if the whole image were passed through the network as one
block of memory.

This tile-based inferencing can be thought of as a series
of forward passes, each computing a subregion (ZoR) of the
feature maps that would be created while inferencing the
whole image in one pass. In summary, each tile’s feature
maps are created (inferenced), its ZoR output extracted, and
then the GPU memory is recycled for the next tile. By build-
ing each ZoR in a separate forward pass we can construct
the network output within a fixed GPU memory footprint
for arbitrarily large images.

Determining The Radius
Let U-Net be described by an ordered sequence of convolu-
tional layers c = 1, ..., N with each layer being associated
with a level lc and a square kernel kc × kc. A convolutional
layer (1) convolves a kernel and its input feature maps to cre-
ate a set of output feature maps, (2) applies an element-wise
a non-linearity (ReLu (LeCun, Bengio, and Hinton 2015)),
and (3) performs batch normalization (Ioffe and Szegedy
2015) on its output feature maps. For the network, N de-
fines the number of convolutional layers along the longest
path from input to output. The index of c for each convolu-
tional layer is written on each blue arrow in Figure 4.

Let us define the level lc of an encoder-decoder network
architecture as the number of max-pool layers minus the
number of up-conv layers between the input image and the



Figure 4: U-Net model architecture showing the different convolutional layers (blue arrows) and their respective levels. Each
blue box is a multi-channel feature map with the channel count denoted on top of the box and the spatial dimension at the lower
left edge. White boxes represent copied and concatenated feature maps. Each convolutional layer is numbered sequentially
along the longest path through the network from input image to output segmentation result.

current convolutional layer c along the longest path through
the network. Levels start at 0; each max pool encountered
along the longest path increases the level by 1 and each up-
conv reduces the level by 1.

General Radius Calculation The minimum required ra-
dius can be calculated according to the Equation 1 for a gen-
eral FCNN architecture.

Radius =

N∑
c=1

2lcbkc
2
c (1)

The radius is a sum over every convolutional layer index
c from 1 to N encountered along the longest path from the
input image to the output. Equation 1 has two terms. The 2lc
term is the number of pixels at the input image resolution
that correspond to a single pixel within a feature map at level
lc. Therefore, if a 3×3 convolution is applied at level lc = 4
then 24 = 16 pixels of context are needed at the input image
resolution. This 2lc term is multiplied by the second term
bkc

2 c which determines, for a given c, how many pixels of

local context are required at that feature map resolution to
perform the convolution.

Radius Calculation for U-Net Let us assume that the U-
Net architecture satisfies the following design constraints:
kc = k = const and each level has the same number of
convolutional layers on both decoder and encoder sides nl =
n = const. These constraints are satisfied for the published
U-Net where k = 3 and nl = 2.

In this case, the minimum required radius can be calcu-
lated according to the Equation 2,

Radius = bk
2
c × n× (3× 2M − 2) (2)

where M is the maximum level value lc over all values of c
(i.e., M = max∀c(lc)). The radius is linearly proportional
to the kernel size k and to the number of convolutional layers
per level n and exponentially proportional to the maximum
level M . The derivation of Equation 2 from Equation 1 is
provided in Appendix A.

The published U-Net (Figure 4) has one level per hor-
izontal stripe of layers. The input image enters on level



lc=1 = lc=2 = 0. The first max-pool layer halves the spatial
resolution of the network, changing the level. Convolution
layers c = {3, 4} after that first max-pool layer up to the
next max-pool layer belong to level lc=3 = lc=4 = 1. This
continues through level 4, where the bottleneck of the U-Net
model occurs. In Figure 4 the bottleneck is the feature map
at the bottom with dimensions: N × 1024× 32× 32 (NCHW
dimension ordering); this occurs right before the first up-
conv layer. After the bottleneck, the level number decreases
with each subsequent up-conv layer, until level lN = 0 right
before the output image is generated. This is summarized
in Figure 4 where the levels of each convolutional layer are
indicated.

Following Equation 1 or 2 for U-Net results in a mini-
mum required radius of 92 pixels in order to provide the
network with all of the local context it needs to predict the
outputs correctly. See Appendix B for details on applying
Equation 1 to U-Net. This radius needs to be provided both
before and after each spatial dimension and hence the input
image to the network will need to be 2 × 92 = 184 pixels
larger. This value is exactly the number of pixels the orig-
inal U-Net paper has the output being shrunk by to avoid
using SAME convolutions; a 572 pixel input shrunk by 184
results in the 388 pixel output (Ronneberger, Fischer, and
Brox 2015). However, this runs afoul of our additional re-
striction on the U-Net input size, which requires images to
be a multiple of 16. So rounding up to the nearest multiple of
16 results in a radius of 96 pixels. Unfortunately, one cannot
just adjust the ZoR size to ensure (ZoR+Radius)%16 = 0
because of how convolutional arithmetic works.

Constraints on Image Partitioning
Our tile-based processing methodology operates on the prin-
ciple of constructing the intermediate feature map represen-
tations within U-Net in a tile-based fashion, such that they
are numerically identical to the whole image being passed
through the network in a single pass. Restated another way,
the goal is to construct an input image partitioning scheme
such that the zone of responsibility is building a spatial sub-
region of the feature maps that would exist if the whole im-
age were passed through the network in a single pass.

Stride Selection To properly construct this feature map
subregion one cannot stride across the input image in a dif-
ferent manner than would be used to inference the whole
image. The smallest feature map in U-Net is spatially 16×
smaller than the input image. Therefore, 16 pixels is the
smallest offset one can have between two tile-based infer-
ence passes while having both collaboratively build subre-
gions of a single feature map representation. Figure 5 shows
a simplified 1D example with a kernel of size 3 performing
addition. When two applications of the same kernel are off-
set by less than the size of the kernel they can produce differ-
ent results. For U-Net, each 16× 16 pixel block in the input
image becomes a single pixel in the lowest spatial resolu-
tion feature map. A stride other than a multiple of 16 would
result in subtly different feature maps because each feature
map pixel was constructed from a different set of 16 × 16
input pixels.

Figure 5: A (left): Simplified 1D example of an addition ker-
nel of size 3 being applied at an offset less than the kernel
size, producing different results. B (right): Simplified 1D ex-
ample of reflection padding (reflected through dotted line)
causing a different stride pattern across a set of pixels. The
altered stride prevents the tile-based processing from collab-
oratively building subregions of a single feature map.

This requirement means that we always need to start our
tiling of the full image at the top left corner and stride across
in a multiple of 16. However, this does not directly answer
the question as to why we cannot have a non-multiple of 16
radius value.

Border Padding The limitation on the radius comes from
the fact that if we have arbitrary radius values, we will need
to use different padding schemes between the full image in-
ference and the tile-based inference to handle the image edge
effects. Figure 5 shows for a 1D case how reflection padding
can (1) alter the stride across the full image which needs to
be maintained as a multiple of 16 to collaboratively build
subregions of a single feature map and (2) change the reflec-
tion padding required to have an input image whose spatial
dimensions are a multiple of 16.

ZoR and Radius Constraints Both problems, (1) collab-
oratively building feature maps and (2) different full image
edge reflection padding requirements disappear if both the
zone of responsibility and the radius are multiples of 16.
Thus, we constrain the final values of ZoR and radius to be
the closest higher multiple of the ratio F between the image
size I and minimum feature map size (Equation 3) where
F = 16 for the published U-Net,

F =
min{HI ,WI}

min∀lc{Hlc ,Wlc}

Radius = F dRadius
F

e

ZoR = F dZoR
F
e

(3)

where HI and WI are the input image height and width di-
mensions, and Hlc and Wlc are the feature map height and
width dimensions.



Experimental Results
Dataset
We used a publicly accessible dataset acquired in phase con-
trast imaging modality and published in (Bhadriraju et al.
2016). The dataset consists of three collections, each with
around 161 time-lapse images at roughly 20 000 × 20 000
pixels per stitched image frame.

Error-Free Tile-Based Inference Scheme
Whether inferencing the whole image in a single forward
pass or using tile-based processing, the input image size
needs to be a multiple of 16 as previously discussed. Re-
flection padding is applied to the input image to enforce this
size constraint before the image is decomposed into tiles.

Let us assume that we know how big an image we can
fit into GPU memory, for example 1024× 1024 pixels. Ad-
ditionally, given that we are using U-Net we know that the
required radius is 96 pixels. Then our zone of responsibility
is ZoR = 1024 − 2 × Radius = 832 pixels per spatial
dimension. Despite inferencing 1024 × 1024 pixel tiles on
the GPU per forward pass, the stride across the input image
is 832 pixels because we need non-overlapping ZoR. Figure
6 shows a full image with 6 non-overlapping ZoR in alter-
nating colors (red and blue) with each radius as a shaded re-
gion surrounding each ZoR. The edges of the full image do
not require radius context to ensure identical results when
compared with a single inference pass. Intuitively, the true
context is unknown since it’s outside the existing image.

Figure 6: Non-overlapping ZoR with radius shown in the in-
terior of a large image being inferenced. Each ZoR (denoted
with a line) has a shaded radius region outside the square.

In the last row and column of tiles, there might not be
enough pixels to fill out a full 1024 × 1024 tile. However,
because U-Net can alter its spatial size on demand, as long
as the tile is a multiple of 16 a narrower (last column) or
shorter (last row) tile can be used.

Errors due to Small Radius
To experimentally confirm that our out-of-core image in-
ference methodology does not impact the inference results
we determined the largest image we could inference on our

GPU, performed the forward pass, and saved the resulting
softmax output values as ground truth data. We then infer-
ence the same image using our tiling scheme with varying
radius values. We show that there are numerical differences
(greater than floating point error) when using radius values
less 96.

We trained our U-Net model to perform binary (fore-
ground/background) segmentation of the phase contrast mi-
croscopy images. The largest image we could inference on
our GPU with 24GB of memory is 3824 × 3824 pixels.
We created 20 reference inference results by cropping out
K = 20 random 3824× 3824 subregions of the dataset.

We performed tile-based out-of-core inference for each
of the 20 reference images using a tile size of 512 pixels,
meeting the multiple of 16 constraint. Radius values from 0
to 128 pixels were evaluated in 16 pixel increments.

The tiling codebase seamlessly constructs the softmax
output in CPU memory as if the whole image had been in-
ferenced as a single forward pass. So our evaluation method-
ology consists of looking for differences in the output soft-
max produced by the reference forward pass (R) as well as
the tile-based forward pass (T ). We used the following two
metrics for evaluation: Root Mean Squared Error (RMSE
Equation 4) of the softmax and Misclassification Error (ME
Equation 5) of the resulting binary segmentation masks. ME
is the number of misclassified pixels, which provides a very
intuitive understanding of the error since it directly measures
how many output pixels were incorrect. Both metrics are av-
eraged across the K = 20 reference images.

RMSE =
1

K

K∑
i=1

√∑m
i=1

∑n
j=1(Rij − Tij)2

mn
(4)

ME =
1

K

K∑
i=1

 m∑
i=1

n∑
j=1

[Rij 6= Tij ]

 (5)

The error metrics are shown in Table 1 for 512 pixel tiles.
Once the required 96 pixel radius is met the RMSE falls
into the range of floating point error and ME goes to zero.
Beyond the minimum required radius, all error metrics re-
main equivalent to the minimum radius. The ME metric is
especially informative, because when it is zero, the output
segmentation results are identical regardless of whether the
whole image was inferenced in a single pass or it was de-
composed into tiles.

These error metrics only evaluate the error coming from
the tiling scheme. There is no evaluation of how accurately
U-Net itself is performing. To demonstrate this, results for
1024 pixel tiles (Table 2) were generated using an untrained
4 class U-Net model, whose weights were left randomly ini-
tialized. Additionally, the image data for that result was nor-
mally distributed random noise with µ = 0, σ = 1. No doubt
the segmentation results from that U-Net were nonsense, but
the error coming from tile-based processing is 0 once the re-
quired radius is met.



Table 1: Error Metrics for Tile Size 512
TileSize ZoR Radius RMSE ME

512 512 0 1.30e-2 6052.6
512 480 16 5.85e-3 1555.0
512 448 32 2.89e-3 432.1
512 416 48 9.32e-4 77.4
512 384 64 1.75e-4 10.8
512 352 80 1.17e-5 0.4
512 320 96 0.0 0.0
512 288 112 2.61e-8 0.0
512 256 128 0.0 0.0

Table 2: UnTrained U-Net Error Metrics for Tile Size 1024
TileSize ZoR Radius RMSE ME

1024 1024 0 2.70e-4 55796.3
1024 992 16 1.32e-6 532.4
1024 960 32 2.49e-7 113.8
1024 928 48 7.71e-8 43.5
1024 896 64 2.00e-8 8.5
1024 864 80 8.71e-9 3.7
1024 832 96 0.0 0.0

Errors due to Violation of Partitioning Constraints
To demonstrate how the inference results differ as a func-
tion of how the network strides across the input im-
age we have constructed 32 overlapping, 2048 × 2048
pixel subregions of an image; each offset from the pre-
vious subregion start by 1 pixel. So the first subregion is
[xst, yst, xend, yend] = [0, 0, 2048, 2048], while the second
subregion is [1, 0, 2049, 2048], and so on. In order to com-
pare the inference results without any edge effects confound-
ing the results, we only compute RMSE (Equation 4) of the
softmax output within the area in common between all 32
images, inset by 96 pixels; [128, 96, 1920, 1952]. The results
are shown in Figure 7 where identical softmax outputs only
happen when the offset is a multiple of 16.

Figure 7: Impact of the stride offset on the RMSE of the
U-Net softmax output.

Application to a Modified U-Net Architecture
Up to this point we have shown that our ZoR and Radius
tiling scheme produces error-free out-of-core semantic seg-
mentation inference for arbitrarily large images when us-
ing the published U-Net model architecture. This section

demonstrates the tiling scheme on a modified U-Net as a
proxy for any modification to a FCNN that someone might
want to make. First, the number of convolutional layers be-
tween each spatial resolution changing layer is increased to
nl = 3. Second the lowest level l = 4 is removed, changing
M = 3. Following Equation 1 or 2 for this modified U-Net
model produces a required radius value of 66.

This modified U-Net has one additional difference from
the published U-Net. With M = 3 the smallest feature map
is [N×512×64×64] which according to Equation 3 means
the size ratio between the input image and the smallest fea-
ture map is F = 8. Therefore the inference image sizes need
to be a multiple of 8, not 16 like the original U-Net. Thus,
the computed 66 pixel radius is adjusted to 72.

Table 3 shows the error metrics for a tile size of 1032
pixels (multiple of 8) over a range of radius values from 0 to
72 with a step of 8.

Table 3: Modified U-Net Error Metrics for Tile Size 1032
TileSize ZoR Radius RMSE ME

1032 1032 0 7.51e-3 2688.4
1032 1016 8 5.18e-3 1678.0
1032 1000 16 3.81e-3 947.5
1032 984 24 2.33e-3 545.8
1032 968 32 1.31e-3 203.1
1032 952 40 4.16e-4 61.6
1032 936 48 6.50e-5 7.9
1032 920 56 1.81e-6 0.1
1032 904 64 3.70e-8 0.0
1032 888 72 1.20e-8 0.0

Conclusions
This paper outlines a methodology for performing error-free
out-of-core semantic segmentation inference of arbitrarily
large images. We provide formulas for determining the tile-
based inference scheme parameters and demonstrated the in-
ference results are identical whether or not tiling was used.
While we used U-Net (and its modifications) as an example
FCNN model for this work, the same principles apply to any
FCNN model while being robust across different choices of
tile size.

Test Data and Source Code
The test data used in this paper are available at https://isg.
nist.gov/deepzoomweb/data/stemcellpluripotency.

The U-Net Tensorflow v2.0 source code used in this
paper is available at https://github.com/usnistgov/semantic-
segmentation-unet/tree/ooc-inference.

While the available codebase in theory supports arbitrar-
ily large images, we made the choice at implementation time
to load the whole image into memory before processing it
through the network. In practice this means the codebase
is limited to inferencing images which fit into CPU mem-
ory. However, using a file format which supports reading
sub-sections of the whole image would support inference of
disk-backed images which do not fit into CPU memory.



Disclaimer
Commercial products are identified in this document in or-
der to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the
products identified are necessarily the best available for the
purpose. Analysis performed [in part] on the NIST Enki
HPC cluster. Contribution of U.S. government not subject
to copyright

References
Badrinarayanan, V.; Kendall, A.; and Cipolla, R. 2017. SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Image Seg-
mentation. In IEEE transactions on pattern analysis and machine
intelligence.
Bardakoff, A. 2019. Fast image (fi) : A high-performance accessor
for processing gigapixel images.
Bhadriraju, K.; Halter, M.; Amelot, J.; Bajcsy, P.; Chalfoun, J.;
Vandecreme, A.; Mallon, B. S.; Park, K.-y.; Sista, S.; Elliott, J. T.;
and Plant, A. L. 2016. Large-scale time-lapse microscopy of Oct4
expression in human embryonic stem cell colonies. Stem Cell Re-
search 17(1):122–129.
Dumoulin, V., and Visin, F. 2016. A guide to convolution arith-
metic for deep learning. arXiv preprint arXiv:1603.07285.
Huang, B.; Reichman, D.; Collins, L. M.; Bradbury, K.; and Malof,
J. M. 2019. Tiling and stitching segmentation output for remote
sensing: Basic challenges and recommendations. arXiv preprint
arXiv:1805.12219.
Iglovikov, V.; Mushinskiy, S.; and Osin, V. 2017. Satellite im-
agery feature detection using deep convolutional neural network:
A kaggle competition. arXiv preprint arXiv:1706.06169.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. nature
521(7553):436.
Lin, H.; Chen, H.; Graham, S.; Dou, Q.; Rajpoot, N.; and Heng,
P.-A. 2019. Fast ScanNet: Fast and Dense Analysis of Multi-
Gigapixel Whole-Slide Images for Cancer Metastasis Detection. In
IEEE Transactions on Medical Imaging, volume 38, 1948–1958.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolu-
tional networks for semantic segmentation. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition.
Maggiori, E.; Tarabalka, Y.; Charpiat, G.; and Alliez, P. 2016. Fully
convolutional neural networks for remote sensing image classifica-
tion. In International Geoscience and Remote Sensing Symposium
(IGARSS). IEEE.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. In Inter-
national Conference on Medical image computing and computer-
assisted intervention, 234–241.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.;
and Fei-Fei, L. 2015. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision 115:211–
252.
Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.;
and LeCun, Y. 2013. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks. arXiv preprint
arXiv:1312.6229.
Sherrah, J. 2016. Fully convolutional networks for dense se-
mantic labelling of high-resolution aerial imagery. arXiv preprint
arXiv:1606.02585.
Van Etten, A. 2019. Satellite imagery multiscale rapid detection
with windowed networks. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), 735–743. IEEE.
Volpi, M., and Tuia, D. 2016. Dense semantic labeling of sub-
decimeter resolution images with convolutional neural networks.
In IEEE Transactions on Geoscience and Remote Sensing, vol-
ume 55, 881–893. IEEE.


