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Background  

Cooking equipment is involved in nearly half of home fires in the USA, with cooktop fires the 

leading cause of deaths and injuries in cooking-related fires [1]. While new electric-coil cooktops 

must pass the UL1 858 [2] “abnormal cooking test,” which aims to prevent cooktop fires, there is 

no such requirement for older and other types of cooktops. In this study, we considered the use of 

gas and particle sensors to provide early warning and/or stop cooktop ignition of foods and oils. 

Thus, the objective of this study is to find new, data-driven ways to reduce the risk of cooktop 

fires. Our approach is to develop and test the performance of sensor-detection algorithms using 

threshold analysis and machine learning methods. 

 

Experimental Methods 

Measurements were made in a mock kitchen using both electric and gas cooktops. There were 

four different burners used in the experiments: the small 15 cm diameter electric coil heating 

element with a measured power of 1.1 kW, the large 20 cm diameter electric coil heating element 

with a measured power of 1.8 kW, the medium gas burner with an estimated heat output of 3.4 kW, 

and the large gas burner with an estimated heat output of 4 kW. Sensors were placed in the exhaust 

duct above the cooktop and exposed to the gases and particles representative of cooking.2 The flow 

in the exhaust duct (15 cm diameter) was characterized using a velocity probe placed in the center 

of the duct about 20 diameters downstream of a bend. The typical average velocity was 3.4 m/s 

with a standard uncertainty of ± 0.1 m/s. The average velocity varied between experiments with a 

standard deviation of 0.2 m/s. Using the electric coil cooktop, the duct temperature increased by 

an average of 9 °C causing an estimated reduction in duct mass flow of 3 %. For the gas cooktop, 

the duct temperature increased by an average of 23 °C, which is estimated to reduce the duct mass 

flow by 7 %. Additional details of the experimental apparatus and methods are described in Ref. 

[3].  

A previous series of electric-coil element cooktop experiments in the same mock-up kitchen 

monitored sensor performance during the heating of vegetable oils, water, hamburgers, and salmon 

[3]. Many of the oil experiments and one salmon experiment led to ignition. The data from those 

experiments were supplemented with data from additional ignition and normal cooking 

experiments covering a wide range of conditions. The additional experiments, described in Table 

1, included cooking bacon, french fries, and chicken. For a few experiments, multiple pans were 

heated on separate burners simultaneously. Some experiments were conducted using a gaseous 

(methane) fueled cooktop. In total, 39 of the 60 experiments led to ignition of the oil or food.  

                                                           
1 Underwriters Laboratories 
2 Future experiments will consider the effects of sensor placement, ventilation, and configuration. 



 

Table 1 Conditions for Experiments Augmenting Ref. [3] 

Ignition 
Heating 
Source Pan Type  Pan Diameter Food and Amount 

N electric coil none N/A N/A 

Y electric coil cast iron 20 cm 50 mL canola oil & 2 L water on separate burners 

N electric coil 
cast iron & 
aluminum 20 cm 50 mL canola oil in each pan 

N electric coil cast iron 20 cm 282 g chicken legs (2), 200 mL canola oil 

Y electric coil cast iron 25 cm 223 g frozen french fries, 500 mL canola oil 

N electric coil cast iron 25 cm 220 g bacon (8 slices) 

Y electric coil cast iron 20 cm 110 g bacon (4 slices) 

Y electric coil cast iron 20 cm & 25 cm 50 mL & 100 mL canola oil in separate pans 

Y electric coil cast iron 20 cm & 25 cm 50 mL & 100 mL olive oil in separate pans 

N methane none N/A N/A 

Y methane cast iron 25 cm 100 mL canola oil 

N methane cast iron 25 cm N/A 

Y methane cast iron 20 cm 50 mL canola oil 

N methane cast iron 20 cm & 25 cm 50 mL & 100 mL canola oil in separate pans 

 

Pan Temperature Measurements  

In each experiment pan temperatures were measured at one or more locations using Type-K 

thermocouples either spot welded or peened to the top surface of the pan. The thermocouples 

showed significant variations in temperature across the pan surface. The standard uncertainty of 

the Type-K thermocouples was ± 3 °C. Figure 1 shows calibrated infrared (IR) images of dry (no 

oil) cast iron pans. The images reveal the distribution of temperature on the small electric coil 

element and on the large gas burner, which was influenced by pan orientation and geometry. The 

maximum temperature the camera could monitor was 370 °C, so regions above that temperature 

are shown as white. The simultaneous thermocouple measurements that were used to calibrate the 

IR images are labeled in the figure. From the thermocouple calibrations, the pan emissivity ranged 

from 0.88 to 0.96, depending on the experiment. The uncertainty in the IR temperatures was ± 8 °C. 

Figure 2 shows the pan surface thermocouple measurements during an experiment that led to 

ignition of canola oil. These figures demonstrate that temperature variation across the pan’s bottom 

surface could reach 50 °C.  

Figure 2 shows that the time series of the pan center temperature lagged temperatures measured 

toward the edge of the pan. Because the hottest region of the pan is where ignition is most likely, 

the maximum temperature was estimated in experiments when only the center pan temperature 

was measured. The estimate was based on a linear regression relationship between the 

thermocouple readings at the pan center and at the edge locations: 5 cm from the center in the 

20 cm diameter cast iron pans, and 6 cm or 7.5 cm from the center in the 25 cm diameter cast iron 

pans. The linear regression relationships for the edge temperatures are shown in Table 2 as a 

function of center temperature for similar experiments (same pan size and burner size).  

The average pan temperature at the time of ignition for all the experiments was 429 °C with a 

standard deviation of 25 °C. For the electric coil experiments, the maximum pan temperature at 

the time of ignition was between 403 °C and 483 °C. For the gas cooktop, the ignition temperatures 

of the pan were lower, between 371 °C and 382 °C. The gas cooktop also took much longer to 



 

ignite. The average time to ignition was 536 s for the 25 cm pan on the large electric coil burner 

and 1104 s for the 25 cm pan on the large gas burner. Heating a pan represents a complex set of 

heat transfer processes involving radiation, convection and conduction, and the burner and pan 

configurations play an important role. Consistent with the slower temperature rise for the gas 

cooktop, ignition was not observed on the 20 cm cast iron pan with 50 mL of canola oil using the 

medium gas burner. For the 20 cm cast iron pan with 50 mL of oil, ignition occurred only when 

the pan was placed on the large gas burner. 

 

Figure 1. IR images showing the distribution of surface temperature of a 20 cm diameter cast iron pan 

heated by the small electric coil heating element (left) and the large gas burner (right).  

 

Figure 2. Pan surface temperatures and cooking regimes for an experiment leading to ignition of 50 mL of 

canola oil in a 20 cm diameter cast iron pan on the small electric coil heating element.  



 

Table 2 Relationships Between Pan Thermocouple Temperatures 

Experiment Type Linear Regression R2 

Electric coil, cast iron 20 cm pan, small burner T5cm = 0.972 Tcenter + 23 °C 0.99 

Electric coil, cast iron 25 cm pan, small burner T6cm = 1.07 Tcenter + 16 °C 1.00 

Methane, cast iron 25 cm pan, large burner T7.5cm = 0.967 Tcenter + 31 °C 0.99 

 

Defining Normal Cooking 

To develop an algorithm that predicts ignition, normal cooking must be defined. This is 

because sensor performance involves not only quantifying the rate of missed ignitions, but also 

the rate of false alarms. A missed ignition means a candidate algorithm would not have been 

triggered before ignition. To ensure there would be enough time for the algorithm to intervene and 

prevent ignition, the thermal lag of the cooktop and burner-pan system must be considered. 

Previous work suggests that a period of 60 s before ignition is enough time to intervene and prevent 

ignition [4]. A false alarm means that the algorithm predicts ignition is imminent, but the 

conditions are that of normal cooking, and ignition is not likely.  

Figure 2 illustrates three periods of a typical experiment: normal cooking, pre-ignition, and 

ignition. Initially, all experiments started as normal cooking. At some point, the conditions 

exceeded some reasonable temperature-based or time-based limit and transition to “pre-ignition.” 

Therefore, any condition that was not defined as normal cooking was labeled as pre-ignition, 

regardless of whether ignition eventually occurred later in the experiment. This was because the 

conditions during pre-ignition were considered beyond the requirements of normal cooking and 

potentially hazardous. Such conditions were accompanied by severely burned food and copious 

amounts of aerosol. The ignition period was defined as starting 60 s before ignition. Since there 

was no experiment in which the ignition period overlapped with normal cooking, it was possible 

for algorithms to predict ignition without interfering with normal cooking.  

While the definition of the ignition period was straightforward, defining the reasonable limits 

of normal cooking required more nuance. The limits of normal cooking were based on either a 

maximum pan temperature, a safe food temperature, or the duration of cooking at an approximate 

pan temperature. For example, because the thickness of the vegetable oils and butter was thin 

(typically 3 mm), we assumed that the pan temperature gave a good indication of the oil 

temperature. When cooking foods such as meat, the pan temperature could be much hotter than 

the food, and food temperature was a better indicator of ignition potential than pan temperature. 

In defining normal cooking for meats, we took into account the USDA3 safe minimum internal 

temperatures for chicken, 74 °C, fish, 63 °C, and ground beef, 71 °C [5].  

The end of normal cooking for all types of oils and butter was defined when the pan 

temperature reached 300 °C. When deep-frying, it is recommended to keep oils below their smoke 

point, and the highest oil smoke points are around 230 °C [6]. Therefore, a limit of 300 °C allowed 

significantly more heating than recommended, while being well below oil ignition temperatures. 

For bacon, a USDA fact sheet states, “It’s very difficult to determine the temperature of a thin 

piece of meat such as bacon, but if cooked crisp, it should have reached a safe temperature.” [7]. 

Instead of relying on a “crispiness” determination, we treated bacon like oils, and the end of normal 

cooking was when the pan temperature reached 300 °C. This was reasonable since bacon is very 

high in fat, and liquid fat quickly coats the pan like vegetable oil. Photos taken at a pan temperature 

                                                           
3 United States Department of Agriculture 



 

of 300 °C showed that the bacon had already begun to blacken. Some bacon experiments led to 

ignition.  

For chicken legs in 200 mL of preheated oil, the burner setting was on medium to maintain a 

pan temperature of about 200 °C for frying. The chicken legs were flipped every 4 min for a total 

cooking time of 18.5 min, which was 10 % longer than the time it took for the thermocouple 

inserted in the middle of the meat to reach 74 °C. This time was defined as the end of normal 

cooking, and the internal chicken temperature was 80 °C. For salmon fried in butter on high power 

for 4 min on each side, the thermocouples inside the meat did not show a steady increase in 

temperature. In most cases, the meat temperature exceeded 63 °C at least momentarily before the 

end of the 8 min of cooking, which was used as the end of normal cooking.  

For hamburgers, the end of the frying procedure used by Cleary [8] was about 10 % longer 

than the time for the temperatures in the middle of the hamburgers to reach 71 °C. At the end of 

this procedure, the meat temperature was about 77 °C, which is an indication of well-done beef 

[9]. Therefore, the end of the frying hamburger procedure was defined as the end of normal 

cooking. For broiling hamburgers, the UL 217 Cooking Nuisance Smoke Test [10] specifies 

25 min of broiling. However, in our experiments, adding an additional 10 % to the time when the 

hamburgers reached 71 °C, was less than 18 min (1122 s). This was defined as the end of normal 

cooking, and at this time the meat temperature was 82 °C. 

For frozen fries in 500 mL of preheated oil, the burner power was adjusted periodically to 

maintain a pan temperature around 200 °C like was done for the experiments cooking chicken legs. 

There is no recommended safe temperature for fries, so the end of normal cooking was defined as 

15 min of frying when the color of the fries had turned medium brown. After the end of normal 

cooking, the burner power was turned to high and the fries and oil later ignited. 

 

Sensor Analysis 

Sixteen sensors were positioned in the exhaust duct, approximately 3 m downstream of the 

range hood opening which was 0.8 m above the cooktop. The sensors monitored various quantities 

including CO2, CO, temperature, humidity, smoke, hydrocarbons, alcohols, H2, ammonia, natural 

gas, propane, volatile organic compounds (VOCs), and dust/aerosols. Raw data were acquired at 

0.25 Hz. After each experiment, the average background signal for each sensor was subtracted 

from the raw signal output. Figure 3 plots the signals for a canola oil experiment on the gas burner, 

where the signals are normalized by the maximum value recorded from that sensor.  

Sensor signal values and their ratios were evaluated to determine if a threshold value could be 

selected that both prevents ignition and ignores normal cooking conditions for all experiments. 

Machine learning was also used to develop algorithms to classify sensor data as representing 

normal cooking or pre-ignition conditions, and a similar performance metric was used. In addition 

to investigating the performance of thresholds of individual sensor values, we also considered the 

ratios between sensor values. CO2 (PPM), duct temperature (K), and humidity (vol %) were used 

in the denominator of ratios. These signals did not include background subtraction to avoid 

dividing by zero because the values during the experiment were typically the same as the 

background.  

 

Threshold Analysis 

A threshold value of a sensor or sensor ratio could potentially miss ignitions as well as trigger 

false alarms. We considered the most conservative sensor or ratio threshold, which is the minimum 



 

value obtained at least 60 s before all ignitions. The false alarm rate to evaluate the threshold 

performance was defined as the ratio of the number of experiments with a false alarm to the total 

number of normal cooking experiments. Table 3 summarizes the results of the threshold analysis, 

listing the best performing sensors and sensor ratios. The operating principle of the signal (in the 

numerator for ratios) is also listed. The sensor name reflects manufacturer product literature, but a 

sensor could respond to other things as well. For example, the dust optical sensor operates using 

light scattering, which can occur for both dust particles and cooking aerosols. Most of the sensors 

are not calibrated, and therefore, only the threshold voltage is reported. The indoor air quality 

sensor outputs in arbitrary units of PPM.  

 
Figure 3. Sensor signals (background subtracted and normalized by sensor peak) and cooking regimes for 

an experiment leading to ignition of 50 mL of canola oil in a 20 cm cast iron pan on the large gas burner.  

The best performance is for the volatile organic compounds (VOCs) sensor with a 2 % false 

alarm rate, or one false alarm in 60 experiments. The false alarm occurred about 2 min. before the 

end of normal cooking in one of the frying hamburger experiments with a 25 cm cast iron pan on 

the large electric coil burner. At that time, the thermocouples inside the hamburgers were both 

68 °C, which is just below the safe temperature for ground beef (71 °C), but still within our 

definition of normal cooking. The ratios of sensors with duct temperature have similar 

performance to the sensor alone, but never better performance. One ratio that performs better than 

the sensor alone is the ratio of alcohol to humidity, which is slightly better than alcohol alone. A 

more significant improvement occurs for the ratio of the CO signals to CO2, with the false alarm 

rate for the ratio of the expensive CO sensor nearly half of the CO sensor alone. The two different 

CO sensors both perform similarly despite the differences in output format (PPM vs. voltage) and 

price. 
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Table 3 Threshold Performance of Sensors and Select Sensor Ratio Pairs 

Sensor Threshold Units False Alarm Rate Operating Principle 

VOCs 0.57 V 0.02 metal oxide sensor 

VOCs / Duct Temp. 0.0019 V/K 0.02 metal oxide sensor 

iAQ 12000 PPM 0.06 electrochemical 

iAQ / Duct Temp. 40 PPM/K 0.06 electrochemical 

VOCs / Humidity 0.28 V/vol % 0.07 metal oxide sensor 

Dust  0.20 V 0.08 optical 

Dust / Duct Temp. 6.3E-04 V/K 0.08 optical 

iAQ / Humidity 6100 PPM/vol % 0.09 electrochemical 

Alcohol / Humidity 0.65 V/vol % 0.11 electrochemical 

CO, expensive / CO2 0.012 PPM/PPM 0.11 electrochemical 

Alcohol 0.92 V 0.12 electrochemical 

Alcohol / Duct Temp. 0.0030 V/K 0.12 electrochemical 

Dust / Humidity 0.081 V/vol % 0.13 optical 

CO, cheap / CO2 2.2E-05 V/PPM 0.16 electrochemical 

Dust / CO2 1.53E-04 V/PPM 0.16 optical 

CO, expensive 4.3 PPM 0.20 electrochemical 

CO, cheap 0.0078 V 0.22 electrochemical 

CO, cheap / Duct Temp. 2.6E-05 V/K 0.22 electrochemical 

CO, expensive / Duct Temp. 0.014 PPM/K 0.22 electrochemical 

CO, cheap / Humidity 0.0060 V/vol % 0.23 electrochemical 

CO, expensive / Humidity 3.4 PPM/vol % 0.24 electrochemical 

Hydrocarbons, low range 0.22 V 0.25 electrochemical 

Combustible gas & smoke 0.41 V 0.27 electrochemical 

Combustible gas & smoke / 
Duct Temp. 

0.0013 V/K 0.27 electrochemical 

H2 0.15 V 0.28 electrochemical 

 

Machine Learning Analysis 

The sensor signals were also used to train a multi-layer perceptron neural network to develop 

a model that differentiates between normal cooking and pre-ignition conditions. TensorFlow4 was 

used as the application program interface (API) to implement machine learning. Two hidden layers 

with 64 neurons and 32 neurons were activated with a rectified linear unit (ReLU) activation 

function. A sigmoid activation function was used to calculate the output. Each time point was 

treated individually with a classification label, which was assigned 0 within the normal cooking 

window and 1 during the pre-ignition period. The method considered over 12 800 time points in 

the 60 experiments.  

                                                           
4 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the 

procedures adequately. Such identification is not intended to imply recommendation or endorsement by the National 

Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are 

necessarily the best available for the purpose. 



 

Using a cross-validation method, the neural network model was trained using the data from 59 

experiments and then tested on the last experiment. This process was repeated 60 times until each 

experiment was excluded from the training and used once as the test set. The output for the test 

experiment was a value between 0 and 1 for each time point, which was the model prediction for 

the probability of pre-ignition. The values were rounded to 0 or 1 and the predictions were 

compared to the labels from the experiment within the normal cooking and the ignition (60 s before 

ignition) windows. The overall performance was evaluated by counting the number of normal 

cooking data sets with any wrongly predicted values of 1 (false alarms) and the number of ignition 

data sets with any wrongly predicted values of 0 (missed ignitions). Predictions between normal 

cooking and the ignition window were ignored. 

The missed ignition rate is the number of ignitions missed by the prediction divided by the 

number of experiments in which ignition was observed (nignitions = 39). The false alarm and missed 

ignition rates are given in Table 4 for a baseline case and cases with only single sensor input. The 

baseline case used 11 sensor signals as input to the neural network. These included the sensors 

listed in Table 3 as well as an electrochemical hydrocarbon sensor with a higher range and an 

electrochemical natural gas sensor. Table 4 summarizes the results of the neural network analysis. 

The sensor operating principles are also listed. The performance of the single sensor input cases 

are listed in order of performance (after the baseline case). The missed ignition rates are low 

because the neural network was trained to predict pre-ignition, which begins well before the 

ignition window. The best performing sensors in Table 4 are similar to the sensors with good 

threshold performance. The baseline model performs worse than many of the individual sensors, 

but better than the performance of the worst individual sensors (e.g. natural gas false alarm rate 

was 0.57 and missed ignition rate was 0.38). The baseline performance was probably negatively 

affected by including input data from the poorest performing sensors.  

Table 4 Neural Network Model Performance of Baseline and Single Sensor Cases  

Input Data False Alarm Rate Missed Ignition Rate Operating Principle 

Baseline, 11 sensors 0.50 0  

Indoor air quality (iAQ) 0.24 0 electrochemical 

Dust 0.26 0 optical 

Volatile organic compounds 
(VOCs) 

0.26 0 metal oxide sensor 

Hydrocarbons, low range 0.28 0 electrochemical 

CO, expensive  0.33 0 electrochemical 

Alcohol 0.35 0 electrochemical 

CO, cheap 0.35 0.03 electrochemical 

Combustible gas & smoke 0.39 0 electrochemical 

Hydrocarbons, high range 0.43 0 electrochemical 

H2 0.43 0.03 electrochemical 

Natural gas 0.57 0.39 electrochemical 

 

Conclusions and Future Work 

Threshold analysis and machine learning analysis were used to estimate the performance of 

individual sensors with a false alarm rate that was similar for both types of analysis. A precise and 

consistent definition of normal cooking versus pre-ignition was required to evaluate that 



 

performance. To prevent ignition any algorithm must be triggered at least 60 s before ignition, 

which is defined as the ignition window. For the threshold analysis, the false alarm rate was 

reported for the threshold that was triggered before all ignition windows, so there were zero missed 

ignitions in every case. For the machine learning analysis, the rates of missed ignition were near 

zero since the neural network was attempting to detect pre-ignition, which began before the 

ignition window.  

The performances of sensors with the lowest false alarm rates were in complete agreement 

between the two types of analysis. The best performing neural network models were based on 

sensors that also had good threshold performance. Although the machine learning false alarm rates 

were slightly higher than the threshold analysis, the initial neural network models were trained 

with only individual sensors as input. Future investigations of sensor performance will consider 

time-series effects to improve performance, such as evaluating sensor rate of change for threshold 

analysis and pre-processing input data to emphasize sensor rate of change for the machine learning 

analysis.  

The combined information from multiple sensors was evaluated in a few limited cases: in 

sensor ratios with threshold analysis, and in the baseline neural network model with 11 sensor 

inputs. Some of the ratios performed as well as or better than the individual sensor values used in 

the ratios, but none of these cases performed better than the VOCs sensor alone. However, training 

neural networks with two or three sensors could provide an additional performance benefit by 

adding robustness and reliability to the model. Future work will involve combinations of two or 

three sensors as input data for neural network training, using the most promising sensors alone and 

in ratios: VOCs, iAQ, dust, CO, alcohol, duct temperature, humidity, and CO2. The effects of 

transport conditions will also be considered. 
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