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Abstract. Efficient circuits for multiplication of binary polynomials use 
what are known as Karatsuba recurrences. These methods divide the 
polynomials of size (i.e. number of terms) k · n into k pieces of size n. 
Multiplication is performed by treating the factors as degree-(k−1) poly-
nomials, with multiplication of the pieces of size n done recursively. This 
yields recurrences of the form M(kn) ≤ αM(n) + βn + γ, where M(t) is 
the number of binary operations necessary and sufficient for multiplying 
two binary polynomials with t terms each. Efficiently determining the 
smallest achievable values of (in order) α, β, γ is an unsolved problem. 
We describe a search method that yields improvements to the best known 
Karatsuba recurrences for k = 6,7 and 8. This yields improvements on 
the size of circuits for multiplication of binary polynomials in a range of 
practical interest. 

1 Introduction 

Polynomials over F2 are called binary polynomials. They have a number of ap-
plications, including in cryptography (see [2,5] and the references therein) and in 
error correcting codes. Let A, B be binary polynomials. We seek small circuits, 
over the basis (∧, ⊕, 1) (that is, arithmetic over F2), that compute the polyno-
mial A · B. In addition to size, i.e. number of gates, we also consider the depth 
of such circuits, i.e. the length of critical paths. 
Notation: We let M(t) denote the number of gates necessary and sufficient to 
multiply two binary polynomials of size t. 

Suppose the polynomials A, B are of odd degree 2n−1. Karatsuba’s algorithm 
([11]) splits A, B into polynomials A0, A1 (B0, B1 resp.) of size n. Then it recur-
sively computes the product C = A · B as shown in Figure 1. Careful counting 
of operations leads to the 2-way Karatsuba recurrence M(2n) ≤ 3M(n)+ 7n − 3 
(see [9], equation (4)). 
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A = (a0 + a1X + · · · an−1X
n−1) + Xn · (an + an+1X + · · · a2n−1X

n−1) 

A = A0 + XnA1 

B = (b0 + b1X + · · · bn−1X
n−1) + Xn · (bn + bn+1X + · · · b2n−1X

n−1) 

B = B0 + XnB1 

U ← A0 · B0 

V ← A1 · B1 

W ← (A0 + A1) · (B0 + B1) + U + V 

C ← U + XnW + X2nV. 

Fig. 1. Karatsuba’s algorithm 

The product C is A0B0 + Xn(A0B1 + A1B0) + X2nA1B1. The constant 3 in 
the 2-way Karatsuba recurrence comes from the fact that 3 multiplications are 
necessary and sufficient to calculate the three terms A0B0, A0B1 + A1B0, and 
A1B1 from A0, A1, B0, B1. The term 7n − 3 counts the number of F2 additions 
necessary and sufficient to produce the term W and then combine the terms 
U, V, W into the result C (see [9]). 

The generalized Karatsuba method takes two polynomials with kn terms, 
splits each into k pieces A0, . . . , Ak−1 , B0, . . . , Bk−1 , computes the polynomials 

X 
Cm = AiBj 

m=i+j 

and finally combines the Ci’s by summing the overlapping terms. 

Karatsuba recurrences have been studied for some time. The paper [12] gives 
recurrences for the cases n = 5, 6, and 7. These recurrences have been improved 
over the years. The state of the art is [9]. 

The work [9] provides a unifying description of the generalized Karatsuba 
method, allowing for a systematic search for such recurrences. The steps in the 
search are outlined in Figure 2. Steps 1 and 4 involve solving computationally 
hard problems. We rely on experimental methods to gain reasonable assurance 
that we have found the best Karatsuba recurrences in the defined search space. 

2 Finding minimum-size spanning bilinear forms 

In this section we describe the method for computing (or finding upper bounds 
on) the constant α in the Karatsuba recurrence. 



1. find sets of bilinear forms of minimum size α from which the target Ci’s 
can be computed via additions only. 

2. as per [9], each set of bilinear forms determines three matrices T, R, E 
over F2. 

3. the matrices T, R, E define linear maps LT , LR, LE . 
4. let the number of additions necessary for each of the maps be µT , µR, µE , 

respectively. 
5. then the maps yield the recurrence 

M(kn) ≤ αM(n) + βn + γ 

with β = 2µT + µE and γ = µR − µE . 
6. pick the best recurrence. 

Fig. 2. Methodology 

2.1 Description of the problem 

Consider the two n-term (degree n − 1) binary polynomials 

n−1 n−1X X 
i i f(x) = aix , g(x) = bix ∈ F2[x] 

i=0 i=0 

with (2n − 1)-term product 

2Xn−2 2Xn−2 X 
k k h(x) := (fg)(x) = ckx = aibj x 

k=0 k=0 i+j=k P 
We wish to describe the target coefficients ck = i+j=k aibj as linear combina-
tions of bilinear forms of the form �X �� X � 

ai bi , S, S0 ⊆ [n − 1] = {0, 1, . . . , n − 1} 
i∈S i∈S0 

Each such bilinear form represents one field multiplication, and the smallest 
number required to express the target coefficients equals the multiplicative com-
plexity of the polynomial multiplication. 

Finding these sets of bilinear forms involves searching a space that is doubly 
exponential in n. Because of this, we will mostly restrict our attention to the 
symmetric bilinear forms, those for which S = S0 . Two justifications for this 
simplification are that heuristically they stand a good chance of efficiently gen-
erating the target coefficients, which are themselves symmetric, and also that in 
practice all known cases admit an optimal solution consisting solely of symmetric 
bilinear forms. However it should be noted that there do exist optimal solutions 
containing non-symmetric bilinear forms. 



2.2 Method for finding spanning sets of bilinear forms 

Barbulescu et al. [1] published a method for finding minimum-size sets of bilinear 
forms that span a target set. Their method, which substantially reduces the 
search space, is described below in the context of Karatsuba recurrences. 

The first step is to guess the size of the smallest set of symmetric bilinear 
forms that spans the target polynomials. Call this guess θ. If θ is too low, then no 
solution will be found. For the cases of 6, 7, 8-terms θ is 17, 22, 26, respectively. 

We now assume that the target polynomials are contained in a space spanned 
by θ of the (2n − 1)2 symmetric bilinear vectors. Checking all spanning sets of � � 

(2n−1)2 

size θ is of complexity Ω , and even if we restrict attention to symmetric θ � � 
(2n−1) bilinear forms as explained above, this is of complexity Ω , which is still θ 

prohibitively large, even for n = 7, θ = 22 (for n = 6, θ = 17, this is about 250 

and thus close to the limit of what we can compute in practice). 
The Barbulescu et al. method is as follows: Let B be the collection of (2n −1) 

symmetric bilinear products and T the collection of 2n − 1 target vectors. For a 
subset S ⊂ B of size θ − (2n − 1), let G = T ∪ S be a generating set of vectors 
of size θ and let C be the candidate subspace generated by G. 

We compute the intersection B ∩ C by applying the rank test to all B in B: 

B ∈ C ⇐⇒ θ = rank(C) = rank(hC, Bi) 

which can be computed efficiently via Gausian elimination. 
Now let C0 := hB ∩ Ci be the subspace spanned by the intersection. In order 

to determine T ∩C0, the collection of target vectors in C0, we again apply a rank 
test to all T in T : 

T ∈ C0 ⇐⇒ rank(C0) = rank(hC0, T i) 

If all the target vectors are spanned, i.e. if T 0 = T , then each set of θ independent 
vectors in B ∩ C is a solution. 

We iterate through the different choices of S until a solution is found. This � � �� 
(2n −1) reduces the complexity to O 2n , which in the cases of n = 6, 7, 8 

θ−(2n−1) 

transforms the problem from computationally infeasible to feasible. For details, 
see [1]. 

This method generates a potentially large number of solutions with the tar-
get multiplicative complexity. Each such solution allows one to produce an arith-
metic circuit that computes the product of two n-term polynomials. [9] describes 
a way to translate this arithmetic circuit into three F2-matrices T, R, E, the 
top,main, and extended matrices. The additive complexities µT , µR, µE , respec-
tively, of these matrices determine the parameters α, β, γ of a recursion (see 
Figure 2). In the next section we describe our methods for bounding these ad-
ditive complexities. 



3 Finding small circuits for the linear maps determined 
by each bilinear form 

The problem is NP-hard and MAX-SNP hard [4], implying limits to its approx-
imability. In practice, it is not currently possible to exactly solve this problem 
for matrices of the size that arise in this research. SAT-solvers have been used 
on small matrices, but at size about 8x20 the methods begin to fail (see [10]). 
The sizes of the matrices T, R, E in the method of [9] are given in Table 1. 

n T R E 

5 13x5 9x13 10x26 

6 17x6 11x17 12x34 

7 22x7 13x22 14x44 

8 26x8 15x26 16x52 

Table 1. Dimensions of linear optimization problems. 

For small-enough matrices (those with dimensions in written in bold) in 
Table 1, we used the heuristic of [4] (henceforth the BMP heuristic). For the 
larger matrices we used the randomized algorithm of [3]. More specifically, we 
used the RAND-GREEDY algorithm with generalized-Paar operation, allowing 
less than optimal choices in the greedy step (see [3], section 3.4-3.6). 

4 Experimental results 

We looked for recurrences for 6,7, and 8-way Karatsuba. Only symmetric bilin-
ear forms were considered. There exist spanning sets of bases, of optimal size, 
that contain one or more non-symmetric bilinear forms. However, it is believed, 
but has not been proven, that there always exists an optimal size spanning set 
containing only symmetric bilinear forms. 

In the following subsections, we give the best T and R matrices found for 
n = 6, 7, and 8. In each case, the matrix E is defined as follows: letting Ri be 
the ith row of R, the matrix E is 

⎞ ⎛ 

E = 

⎜⎜⎜⎜⎜⎝ 

R1 0 
R2 R1 
. . . 

R2k−1 R2k−2 

0 R2k−1 

⎟⎟⎟⎟⎟⎠ 
. 



4.1 6-way split 

The search included all symmetric bilinear forms. We searched but did not find 
solutions with 16 multiplications. We conjecture that the multiplicative complex-
ity of multiplying two binary polynomials of size 6 is 17. 54 solutions with 17 
multiplications were found. This matches results reported in [1]. For the matrices 
T and R, the BMP heuristic was used. For the E matrix, RAND-GREEDY was 
used. The best recurrence thus obtained was 

M(6n) ≤ 17M(n) + 83n − 26. 

The best Karatsuba recurrence known before this work was ([9]) 

M(6n) ≤ 17M(n) + 85n − 29. 

The matrices are ⎞ ⎛ 

T6 = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 0 0 0 
0 1 0 0 0 0 
1 1 0 0 0 0 
0 1 1 0 0 0 
1 1 1 0 0 0 
0 0 0 1 0 0 
1 0 1 0 1 0 
0 1 1 0 1 0 
1 1 0 1 1 0 
0 0 0 0 0 1 
0 1 1 0 0 1 
0 1 0 1 0 1 
1 0 1 1 0 1 
0 1 0 0 1 1 
0 1 1 0 1 1 
0 1 0 1 1 1 
1 1 1 1 1 1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

R6 = 

⎞ ⎛ 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 
1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 
0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 
0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 
0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

4.2 7-way split 

The search included all symmetric bilinear forms. There are no solutions with 21 
multiplications. This leads us to conjecture that the multiplicative complexity 
of multiplying two binary polynomials of size 7 is 22. 19550 solutions with 22 
multiplications were found, which matches results reported in [1]. For the matrix 
T the BMP heuristic was used. For the R and E matrices, the RAND-GREEDY 
heuristic was used. 

Both the BMP heuristic and the RAND-GREEDY are randomized algo-
rithms. The way to use these algorithms is to run them many times and pick 
the best solution found. Since the linear optimization problem is NP-hard, we 
expect that at some value of n, we should no longer be confident that we can 
find the optimal solution. In practice, we aimed at running the algorithms about 



100 thousand times. Since we wouldn’t be able to do this for all 19550 sets of 
matrices, we proceeded in two rounds. In the first round, we ran the algorithms 
for 1000 times on each set of matrices. The results yielded four sets of matrices 
that implied values of the β parameter which were better than the rest. We then 
ran the algorithms for 100 thousand times on each of the four sets of matrices 
and picked the best. 

The best recurrence thus obtained was 

M(7n) ≤ 22M(n) + 106n − 31. 

The best Karatsuba recurrence known before this work was ([9]) 

M(7n) ≤ 22M(n) + 107n − 33. 

The matrices are 

⎞ ⎛ 

T7 = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 1 0 0 0 0 0 
0 0 1 0 0 0 0 
1 0 1 0 0 0 0 
1 0 1 1 0 0 0 
0 1 1 1 0 0 0 
0 0 1 0 1 0 0 
1 0 1 0 1 0 0 
0 0 0 0 0 1 0 
0 1 0 0 0 1 0 
0 0 0 1 0 1 0 
0 1 0 1 0 1 0 
0 1 1 0 1 1 0 
0 0 0 0 0 0 1 
1 0 1 0 0 0 1 
1 0 1 0 1 0 1 
1 1 0 1 1 0 1 
1 1 1 1 1 0 1 
0 0 0 0 0 1 1 
1 0 1 1 0 1 1 
1 1 1 1 1 1 1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

R7 = 

⎞ ⎛ 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 
1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 
1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 
1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 
0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 
0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

4.3 8-way split 

It is known that the multiplicative complexity of 8-term binary polynomials is 
at most 26 ([8]). We were not able to improve on this, the search for solutions 
with multiplicative complexity 25 appears to require either a huge investment 
in computation time or an improvement in search methods. 

For multiplicative complexity 26, we were not able to search the whole space 
of symmetric bilinear forms. We verified that there are no solutions with either 



7 or 8 “singleton” bases (i.e. bases of the form aibi), and there are exactly 77 
solutions with 6 “singleton” bases. Additionally, we restricted the search space 
to sets of bases containing the bilinear forms a1b1 and (a0 +a2 +a3 +a5 +a6)(b0 + 
b2 + b3 + b5 + b6) and three among the following 

(a1 + a3 + a4 + a5)(b1 + b3 + b4 + b5) 

(a1 + a2 + a3 + a6)(b1 + b2 + b3 + b6) 

(a2 + a4 + a5 + a6)(b2 + b4 + b5 + b6) 

(a0 + a2 + a3 + a4 + a7)(b0 + b2 + b3 + b4 + b7) 

(a0 + a1 + a2 + a5 + a7)(b0 + b1 + b2 + b5 + b7) 

(a0 + a1 + a4 + a6 + a7)(b0 + b1 + b4 + b6 + b7) 

(a0 + a3 + a5 + a6 + a7)(b0 + b3 + b5 + b6 + b7). 

Our search yielded 2079 solutions, including 63 of the 77 solutions with 6 
singletons. For the matrix T , the BMP heuristic was used. For the R and E 
matrices, RAND-GREEDY was used. Among these 2079 solutions, we found 
one for which T8 could be computed with 24 gates, R8 with 59 gates and E8 

with 99 gates. 
The matrices are 

⎞ ⎛ 

T8 = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 0 1 0 0 0 0 0 
0 1 0 1 1 1 0 0 
0 0 0 0 0 0 1 0 
0 1 1 1 0 0 1 0 
0 0 1 1 1 0 1 0 
1 0 1 0 0 1 1 0 
1 0 1 1 0 1 1 0 
0 1 0 0 1 1 1 0 
0 0 1 0 1 1 1 0 
0 0 0 0 0 0 0 1 
1 0 1 0 0 0 0 1 
1 1 1 0 1 0 0 1 
1 0 1 1 1 0 0 1 
1 1 1 0 0 1 0 1 
0 1 1 0 1 1 0 1 
1 0 0 1 1 1 0 1 
0 0 0 0 0 0 1 1 
1 1 0 1 0 0 1 1 
1 1 0 0 1 0 1 1 
1 1 0 1 1 0 1 1 
1 0 1 0 0 1 1 1 
1 1 1 1 1 1 1 1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

R8 = 

⎞ ⎛ 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 
0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 
0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 
1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 
0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 
0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 
0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 



This yields the recurrence 

M(8n) ≤ 26M(n) + 147n − 40. 

The new recurrence for 8-way Karatsuba may be of practical interest. The 
smallest known Karatsuba-based circuit for multiplying two polynomials of size 
96 has 7110 gates ([9]). Using the new recurrence, along with M(12) ≤ 207, 
yields 

M (96) = M(8 · 12) ≤ 26 · 207 + 147 · 12 − 40 = 7106. 

5 Implications for the circuit complexity of binary 
polynomial multiplication 

This work yielded three new Karatsuba recurrences: 

M(6n) ≤ 17M(n) + 83n − 26 

M(7n) ≤ 22M(n) + 106n − 31 

M(8n) ≤ 26M(n) + 147n − 40. 

As per [9], the circuits for these recurrences can be leveraged into circuits for 
multiplication of binary polynomials of various sizes. Doing this, we found that 
the new recurrences improve known results for Karatsuba multiplication starting 
at size 28. The circuits were generated automatically from the circuits for each 
set of matrices for n = 2, . . . , 8 (the cases n = 6, 7, 8 are reported in this work). 
We generated the circuits up to n = 100. The circuits were verified by generating 
and validating the algebraic normal form of each output. Table 2 compares the 
new circuit sizes and depths to the state of the art as reported in [9]. The table 
starts at the first size in which the new recurrences yield a smaller number of 
gates. The circuits have not been optimized for depth. The circuits will be posted 
at cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html. 

A different approach to gate-efficient circuits for binary polynomial multipli-
cation is to use interpolation methods. These methods can yield smaller circuits 
than Karatsuba multiplication at the cost of higher depth (see, for example, 
[6,7]). An interesting open question is to characterize the depth/size tradeoff of 
Karatsuba versus interpolation methods for polynomials of sizes of practical in-
terest. In elliptic curve cryptography, multiplication of binary polynomials with 
thousands of bits is used. 
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n size in [9] new size depth [9] new depth n size in [9] new size depth in [9] new depth 
28 944 943 14 15 64 3673 3673 13 13 
29 1009 1009 13 13 65 3920 3920 15 15 
30 1038 1038 13 13 66 4041 4041 15 15 
31 1113 1113 12 12 67 4152 4152 14 14 
32 1156 1156 11 11 68 4220 4220 14 14 
33 1271 1271 12 12 69 4353 4353 14 14 
34 1333 1333 12 12 70 4417 4417 14 14 
35 1392 1392 11 11 71 4478 4456 25 20 
36 1428 1428 11 11 72 4510 4489 25 20 
37 1552 1552 15 15 73 4782 4782 18 18 
38 1604 1604 14 14 74 4815 4815 18 18 
39 1669 1669 14 14 75 4847 4847 18 18 
40 1703 1703 14 14 76 5075 5075 17 17 
41 1806 1806 16 17 77 5198 5198 16 16 
42 1862 1859 16 17 78 5255 5255 16 16 
43 1982 1982 15 16 79 5329 5329 16 16 
44 2036 2036 12 12 80 5366 5366 16 16 
45 2105 2105 14 14 81 5593 5593 19 20 
46 2179 2179 14 14 82 5702 5697 19 19 
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52 2725 2725 13 13 88 6413 6413 15 15 
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62 3553 3553 15 15 98 7636 7636 20 20 
63 3626 3626 14 14 99 7801 7801 19 19 
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