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Abstract

This is the first in a series of articles which present a new framework
for computing the standard uncertainty in electron excited X-ray micro-
analysis measurements. This article will discuss the framework and apply
it to a handful of simple but useful sub-components of the larger problem.
Subsequent articles will handle more complex aspects of the measurement
model. The result will be a framework in which sophisticated and practi-
cal models of the uncertainty for real-world measurements. It will include
many long overlooked contributions like surface roughness and coating
thickness. The result provides more than just error bars for our measure-
ments. It also provides a framework for measurement optimization and,
ultimately, the development of an expert system to guide both the novice
and expert to design more effective measurement protocols.

1 Introduction

With the ascendancy of the silicon drift detector (SDD), energy dispersive x-
ray spectrometry has attained new levels of precision and accuracy[Newbury
& Ritchie, 2015, 2016a,b, 2018; Ritchie & Newbury, 2012]. Many quantita-
tive compositional measurements which had been exclusively the purview of
the wavelength-dispersive spectrometer (WDS), have become equally or bet-
ter addressed with the SDD. Both detectors have strengths and weaknesses.
There is no doubt that WDS is better for trace measurements and that the
SDD handles softer X-rays and major and minor elements well. There has been
talk about combining the strengths of both techniques as equal partners into
the future electron probe microanalyzer. Not simply by collecting WDS and
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energy-dispersive X-ray spectroscopy (EDS) data simultaneously (which many
microprobes have done for decades), but by explicitly designing measurements
around the strengths of each detector (see [Armstrong, 2014; Bullock, 2019; Ca-
mus, 2015; Moran & Wuhrer, 2016; Terborg & Richter, 2019; Thompson, 2018].)
The data from both techniques would be combined, according to their strengths,
into a single measurement protocol.

This is easier said than done. The electron microprobe built around WDS
detectors is already considered a very complex instrument that require exten-
sive training to operate effectively. Each measurement requires many subtle
decisions for which there are few hard-and-fast rules and mostly experience
and rules-of-thumb as guidance. For any given element, there may be multiple
choices of characteristic X-ray lines and, for WDS, choice of monochromator.
Furthermore, there are choices about sample preparation, conductive coatings,
beam energy, probe current, acquisition times and other measurement param-
eters. A single measurement may involve tens of such decisions with complex
interactions between the choices. The optimal beam energy for one element may
not be the optimal beam energy for another. Depending upon the nature of the
desired measurement, it may be desirable to optimize one element over another.
As a result of the complexity of the measurement process, the electron micro-
probe operators have become like a guild where membership is earned through
many years of apprenticeship with another guild-member. As we integrate the
SDD into the measurement process, the choice of when to favor the SDD and
when to favor the WDS makes the problem even more complex.

This is not a growth model for the electron microprobe as a measurement
technique. Only a small number of problems have proven sufficiently signifi-
cant that someone is willing to invest a graduate school career in becoming an
electron microprobe expert. Regardless, as evidenced by the popularity of SDD
on the scanning electron microscope (SEM)-platform, there is a market-based
desire for measurements of composition by non-experts. Unfortunately, the
marketplace has bifurcated. On one side, microprobe measurements provide re-
liable and robust measurements of composition for the guild-trained few and, on
the other, scanning electron microscope with energy dispersive X-ray spectrom-
eter (SEM/EDS) measurements providing sometimes accurate but sometimes
inaccurate measurements to those outside the guild.

How do we, as a community, remedy this situation? How do we assist more
people to make high quality measurements? How do we ensure that fewer peo-
ple make poor quality measurements? The commercial EDS vendors deserve
credit for making software that makes it easier to make moderate quality EDS
measurements with relative ease. Standardless analysis or remote-standards
analysis (where vendor-collected standards are used in place of locally collected
standards) have made it relatively easy to make quantitative measurements al-
beit with unknown (and generally larger) uncertainties. When used with care on
a well characterized system, remote standards can provide reasonably accurate
measurements over a broad range of common measurement domains. Regard-
less, it remains fairly common to see in the scientific literature poor quality
measurements from when the tools are misapplied. Often this happens when a
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spectrum is collected from an inappropriate sample morphology but there are
many other reasons.

One way to avoid this is to develop tools that help the user to design a
good measurement protocol - to warn them away from pitfalls and to guide
them towards best-practices. However, this is a complex problem that requires
a profound level of insight into the subtleties of electron and X-ray transport, X-
ray detector physics, matrix correction protocols, sample preparation and many
other pieces of esoteric understanding that go into the typical electron probe
micro-analysis (EPMA) measurement.

When would I benefit from adding a WDS spectrometer? Do I need a
dedicated electron microprobe or is an SEM/EDS sufficient? What level of
accuracy can I expect from my measurement? How well do I need to prepare my
sample? What are the likely consequences of measuring my sample as is? How
do I optimize my measurement for the disparate performance characteristics of
the SDD and WDS? These are all difficult questions that usually require guild
membership to answer.

The answers to these and many other similar questions fall under the head-
ing of measurement optimization. Given a set of constraints, how do we design
the best measurement? The constraints include such things as available in-
strumentation, capabilities of the instrumentation, available standards, budget
(expressed in dollars or time) and sample limitations. Optimizing a measure-
ment is dependent on being able to estimate the consequences of varying the
measurement parameters. Estimating the consequences requires a profound un-
derstanding of the measurement process. In fact, optimization is closely related
to the problem of placing error bars on a measurement. The optimal measure-
ment is the one that minimizes the uncertainty within a set of constraints.

In the end, a microprobe measurement of composition is a multi-output
measurement. It is not possible to measure one element without also establishing
values for all the others. Measurement optimization depends upon being able
to define a metric function and a set of constraints. The metric function might
involve the uncertainty over all the elements simultaneously or one element
alone. The constraints may include a limit on how much time the analyst is
willing to expend, the availability of standards and instrumentation or the beam
sensitivity of the sample. It is almost always possible to make a more precise
measurement by spending more time but often time and money are limited.

Finally, this complex problem must be distilled into a solution that abstracts
the complexity by only asking questions that the analyst can realistically be ex-
pected to be able to answer with the knowledge they have available. Some
information is fixed and can be entered only once (instrument properties, stan-
dard material availability, etc.) while other pieces of information will need to be
entered on a per-problem basis. For one, optimizing a measurement will require
an estimate of the composition of the unknown. A standard-less quantitative
analysis of an EDS spectrum may be a quick, effective and sufficiently accurate
way to enter this information.

Clearly, this is a large and complex problem and one that can not be solved
in a single article. Over the years, estimating the uncertainty associated with
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microanalysis measurements has been the focus of much research[Lifshin et al.,
1999; Marinenko & Leigh, 2010; Ziebold, 1967]. While much progress was made
in quantifying the sources of uncertainty related to the precision of WDS mea-
surements, not much progress was made being able to quantify sources of inac-
curacy until recently[Ritchie & Newbury, 2012]. Precision is largely dependent
upon instrument stability and X-ray count statistics. Accuracy is largely de-
pendent upon matrix correction, the process of correcting the measured X-ray
intensities for the physics of X-ray generation and transport. Accuracy depends
upon the models and the parameters that go into the models and is complex
and subjective to quantify. It is made more complex because of the circular
nature of the matrix correction problem. The matrix correction depends upon
the composition of the unknown which is in turn the quantity being measured.
Furthermore, a complete model of the measurement uncertainty must include an
understanding of the limitations of aspects of the measurement process. Take,
for example, the probe current. The probe current drifts on all instruments but
on some more than others. As the probe current drifts, spending more time
collecting X-ray counts becomes less productive. Similarly, all probe current
meters (picoammeters) have non-linearities in their response and are less than
idealized measurement devices. The best standalone meters are manufacturer-
specified when new to have an accuracy better than 1 % over a broad range
of currents. The current meters built in to many SEMs are likely to be less
well engineered and based on less high-performing digital-to-analog converters
and analog electronics. As a result, they tend to be more accurate measuring
similar currents than those that differ substantially. These instrument specific
contributions can be modeled and included in the uncertainty.

Furthermore, there are benefits to designing measurements in which the
uncertainties in certain parameters fortuitously cancel. This happens routinely
when a standard similar to the unknown is selected. But there are other ways
that we can work with correlations to minimize the uncertainty.

There is an unfortunate collision of language between microanalysis and
statistics with respect to the word standard. In statistics, the phrase standard
uncertainty can be read as the “estimated standard deviation”. In microanaly-
sis, a “standard” is a material against which we compare our unknown material.
Hopefully, the use of the word standard will not be ambiguous. In this docu-
ment, the modifier standard is often dropped and the standard uncertainty is
simply referred to as the uncertainty.

1.1 Strategy

The strategy we will take to address this complex, almost overwhelming prob-
lem, is to divide it into many simpler sub-problems. The sub-problems can
be pulled together in various different combinations to define the measurement
model. To ensure understanding, we will provide sufficient background material
to allow a typical microanalyst to follow the gist of the solution. While the
solution does involve linear algebra (vectors and matrices) and basic differential
calculus, the linear algebra is not that sophisticated and the differential calculus
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is mostly at the introductory level.

1.2 Uncertainty

The ISO Guide to the Expression of Uncertainty in Measurement[JCGM (Joint
Committee for Guides in Metrology), 2008] (JCGM:100) maintained by the
Joint Committee for Guides in Metrology (JCGM) defines uncertainty as “a
parameter associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand.”
The source of the dispersion can either be attributed to statistical fluctuations
(Type A) or other causes (Type B). Type A uncertainty can be characterized by
a distribution function that is selected to match an observed frequency distribu-
tion. Type B uncertainty is based on an assumed probability distribution that
expresses the measurer’s beliefs about measured values likely relationship with
the true value.

The magnitude of both types of uncertainty is often quantified by the esti-
mated variance, u2. For Type A sources, the estimated variance can be calcu-
lated from an ensemble of repeat observations. For Type B sources, an estimate
of the variance is constructed from the best-available information. The standard
deviation is the positive root of the estimated variance, σ = |

√
u2|. In the simple

case, the measurand is measured directly and the uncertainty can be estimated
from the measurement process. However, in many situations, the measurand is
determined indirectly and is the result of a combination of N other quantities
some of which may be directly measured values and some of which may be model
parameters. If the measurand is Y and the other quantities (measurements and
parameters) are X = {X1, X2, . . . , XN}, the measurand can be be related to
the other quantities through a measurement model,

Y = f(X) = f(X1, X2, . . . , XN ). (1)

Here we are adopting the same convention as JCGM:100. The “true value”
of an input variable is labeled in capital letters X = (X1, X2, . . . , XN )

T
. An

estimate of X is labeled in lower case x = (x1, x2, . . . , )
T

. The “true value”
of the output variable is Y and an estimate of this dependant variable is y.
The model equations are based on the “true value” Y = f(X) but all we have
access to is the estimated input y = f(x). The “true value” is unattainable but
determining an accurate estimate of it is the aspiration of our measurement.
Although the models presume knowledge of the true value, all we have access to
is an estimate - the measured value - so that is what we work with. Furthermore,
we will label scalars in italics (e.g., xi or yi), vectors in bold (e.g., X or x) and
matrices in “blackboard bold” letters (e.g., J or U)

Each of the xi in x can have associated uncertainties which will contribute to
the uncertainty in y. JCGM:100 discusses strategies for determining u2y based
on f(x) and the uncertainties associated with the xi. The primary strategy
is based on a Taylor series expansion of the function about x. This they call
the law of propagation of uncertainty. An alternative strategy is based on a
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Figure 1: A visualization of the difference between a univariate measurement
model and a multivariate measurement model.

Monte Carlo technique in which f(x) is evaluated for many different values of x
which are selected from the assumed probability distributions functions for the
parameters. The Monte Carlo technique is discussed in detail in ISO Evaluation
of Measurement Data Supplement 1 to the “Guide to the Expression of Un-
certainty in Measurement” Propagation of Distributions Using a Monte Carlo
Method[JCGM (Joint Committee for Guides in Metrology), 2008] (JCGM:101).
For either strategy, the xi may be statistically independent or there may be
correlations between two or more. The techniques in JCGM:100 and Evalua-
tion of Measurement Data Supplement 2 to the “Guide to the Expression of
Uncertainty in Measurement” Extension to Any Number of Output Quanti-
ties[JCGM (Joint Committee for Guides in Metrology), 2011] (JCGM:102) can
handle any combination of dependent and independent parameters.

Both JCGM:100 and JCGM:101 focus on univariate measurement models -
those in which there is a single measurand, y. However, many types of mea-
surements involve multiple related measurands. These are called multivariate
measurement models and require an approach that goes beyond the standard
law of propagation of uncertainty as presented in JCGM:100. Figure 1 shows
this distinction graphically. Even when the Xi are independent, the measure-
ment model can introduce correlations between the Yi which are not handled
correctly by treating the multivariate measurement model as a set of indepen-
dent univariate measurement models. The multivariate measurement model
case is discussed in JCGM:102. The strategies for handling the propagation of
uncertainty in multivariate measurement models are extensions of the strate-
gies used for univariate measurement models. The law of the propagation of

6



uncertainties in JCGM:100 is replaced with a multivariate Taylor expansion in
JCGM:102 which can be elegantly expressed using vectors and matrices. The
Monte Carlo methods in JCGM:101 are easily extended to handle multivariate
models.

1.3 The Propagation of Uncertainty

1.3.1 Univariate Measurement Models

JCGM:100 makes the following suggestion for calculating uncertainty in a uni-
variate measurement process. If Y (X1, X2, . . . ) is a function of the independent
variables (input parameters) X1, X2, . . . then the uncertainty in y (result es-
timate) can be estimated based on the first-order terms in the Taylor series
expansion as

uc(y(x1, x2, . . . )) =

∑
i=1,n

(
∂Y

∂Xi

)2

u(xi)
2

1/2
∣∣∣∣∣∣∣
X=x

. (2)

However, if the input parameters x1, x2, . . . are dependent then the combined
standard uncertainty (uc) of y is

uc(y(x1, x2, . . . )) =

∑
i=1,n

(
∂Y

∂Xi

)2

u(xi)
2 + 2

∑
i=1,n
k=i+1,n

∂Y

∂Xi

∂Y

∂Xk
u(xi, xk)


1/2
∣∣∣∣∣∣∣∣∣
X=x

(3)

where u(xi, xk) is the covariance between xi and xk. u(xi, xk) = u(xi)u(xk)ρi,k
where ρi,k ∈ [−1, 1] is the correlation coefficient. Note that ρi,i = 1 and ρi,j =
ρj,i. The correlation coefficient can be thought of as a measure of the amount
of information about xk that we can garner from a measurement of xi (or vice-
versa). When the absolute value of the correlation coefficient is close to unity,
then the result of one measurement tells us a lot about a measurement of the
other. When the correlation coefficient is close to zero, a measurement of one
tells us very little about the other (almost independent).

From these Equations 2 and 3 come the standard undergraduate formalism
for propagation of uncertainty. For example, if y = f(x1, x2) = x1

x2
and x1 and

x2 are uncorrelated (independent) then ∂y
∂x1

= 1
x2

and ∂y
∂x2

= −x1

x2
2

and

uc

(
x1
x2

)2

=

(
1

x2

)2

u(x1)2 +

(
−x1
x22

)2

u(x2)2 (4)

or if x1 and x2 are correlated (dependent)

uc

(
x1
x2

)2

=

(
1

x2

)2

u(x1)2 +

(
−x1
x22

)2

u(x2)2+2

(
1

x2

)(
−x1
x22

)
u(x1, x2). (5)
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The complexity of expressions like Equation 5 has given uncertainty propaga-
tion the well-earned reputation for being unwieldy even for relatively simple
measurement models.

1.3.2 Multivariate Measurement Models

The multivariate strategy presented in JCGM:102 is an linear algebra extension
of the univariate strategy presented in JCGM:100. In JCGM:102, an explicit
measurement model is expressed as a vector valued function of vector arguments,
Y = f(X) where Y = {Y1, Y2, . . . , YM}. The vector valued extensions of the
partial derivatives is the Jacobian matrix, a M × N dimensional matrix with
elements consisting of the partial derivatives ∂Yi

∂Xj
where i ∈ [1,M ] and j ∈ [1, N ].

J(Y) =


∂Y1

∂X1

∂Y1

∂X2
. . . ∂Y1

∂XN
∂Y2

∂X1

∂Y2

∂X2
. . . ∂Y2

∂XN

. . . . . . . . . . . .
∂YM

∂X1

∂YM

∂X2
. . . ∂YM

∂XN

 (6)

The uncertainties associated with the input parameters xi are expressed in an
uncertainty matrix, U(x).

U(x) =


u21 u1,2 u1,3 . . . u1,N
u1,2 u22 u2,3 . . . u2,N
u1,3 u2,3 u23 . . . u3,N
. . . . . . . . . . . . . . .
u1,N u2,N u3,N . . . u2N

 (7)

where u2i is the variance associated with xi and ui,j is the covariance associated
with xi and xj and ui,j = uj,i. The law of propagation of uncertainties for an
explicit multivariate measurement model as expressed in terms of these matrices
is

U(y) = J(Y)|X=x · U(x) · J(Y)
T
∣∣∣
X=x

(8)

It is easy to confirm that this matrix expression is equivalent for M = 1 to the
univariate law of propagation of uncertainties (Equation 3).

The conciseness of Equation 8 is both elegant and utilitarian. It is rela-
tively easy to implement by computer compared to the univariate equivalent in
Equation 3. The bookkeeping is simplified by the matrix notation. More impor-
tantly however, Equation 8 is much easier to extend to multi-step measurement
models.

Consider a composite measurement model in which y is broken into a series
of steps. In the first step the input X is transformed into h(X) and then in the
second step h(X) is the input to a second function, f(X) = g(h(X)). Equation
8 can be applied directly to f(X). Alternatively, Equation 8 can be applied to
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h(X) first and then to g(Z) where Z = h(X).

U(g(h(X))) = J(f(X)) · U(X) · J(f(X))
T

= J(g(Z)) ·
(
J(h(X)) · U(X) · J(h(X))

T
)
· J(g(Z))

T
∣∣∣
Z=h(X)

= J(g(Z))|Z=h(X) · J(h(X)) · U(X) ·
(
J(g(Z))|Z=h(X) · J(h(X))

)T
(9)

where J(h(X)) ·U(X) ·J(h(X))
T

= U(h(X)). For complex measurement models,
it often easier to evaluate the Jacobians of h(X) and g(Z) than the Jacobian of
g(h(X)).

This step-wise approach is not an approximation as can be demonstrated
through the chain rule of differential calculus. The chain-rule for a function of
a single variable states that if f(x) = g(h(x)) then

∂f(x)

∂x
=
∂g

∂z

∣∣∣∣
Z=h(x)

∂h

∂x
(10)

For a vector function of a vector argument, the chain rule can be expressed in
terms of the Jacobians. If f(X) = g(h(X)) then the multivariate equivalent of
the chain rule is

J(f(X)) = J(g(Z))|Z=h(X) J(h(X)). (11)

The chain rule can be applied recursively as necessary to construct a final Jaco-
bian that is the product of an arbitrary number of chained Jacobians. The final
Jacobian will have rows associated with the output variables and columns asso-
ciated with the input variables. The intermediate Jacobians will have varying
numbers of rows and columns as the inputs are transformed into intermedi-
ate values and intermediate values are transformed into yet other intermediate
values until the final step transforms intermediate values into the output values.

The chain rule allows us to decompose a complex multi-variate measurement
model into a series of simpler steps without any additional approximations. The
final Jacobian makes it possible to track the uncertainty contributions from the
input variables through complex measurement models to the output variables.
This permits an analysis of the sensitivity of the output values to the input
parameters. The Jacobian is also useful for optimization. The Jacobian can
also be used to implement a gradient-descent optimization scheme to efficiently
predict the optimal experimental parameters.

1.4 Implicit Models

Up to this point, we have considered measurement models taking the explicit
form

Y = f(X). (12)
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Many practical models fall into this class, however, matrix correction requires
a more general form called an implicit multivariate measurement model. An
implicit measurement model is one in which the relationship between the input
quantity X and the output quantity Y can not be expressed in the form in
Equation 12 but must be expressed in the more general form

h(Y,X) = 0 (13)

where h = (h1, h2, . . . , hny
)
T

. An estimate of the quantity Y, y, given a mea-
surement of X, x, is given by the solution to

h(y,x) = 0. (14)

The associated covariance matrix of y is an ny × ny matrix defined by the
equation

JyUyJyT = JxUxJxT (15)

where Jy is the Jacobian matrix containing the partial derivatives of h with
respect to Y and Jx is the Jacobian matrix containing the partial derivatives of
h with respect to X. The derivatives are evaluated at Y = y and X = x.

For example, in EPMA measurements we measure the k-ratio, defined as
the ratio of the measured X-ray intensity on the unknown over the measured
intensity on a standard under similar measurement conditions, and apply a
measurement model to convert a set of k-ratios into measures of composition.
It is not possible to write the k-ratio measurement model in an explicit form
(see Equation 12). The k-ratio measurement model can however be written in
the implicit form (see Equation 14) as a set of coupled equations

ki −
Cu,i
Cs,i

ZAFu,i(Cu)

ZAFs,i(Cs)
= δi, (16)

where i indexes the elements in the unknown and Cs,i is the mass fraction of

the i-th element in the standard,
ZAFu,i(Cu)
ZAFs,i(Cs)

is the matrix correction factor for

unknown relative to the standard, and Cu is the composition of the unknown
for all i. We wish to find the Cunk such that each of the δi are sufficiently close
to zero. The process of solving for the Cu has classically been called “iteration”
in the field of X-ray microanalysis but, from a mathematical perspective, it is
an root-finding problem.

It is worth noting that, in practice, the termination criterion for the iteration
procedure is not typically based on the difference between the computed k-ratio
and the measured as suggested here. Instead the termination criterion has been
based on the the change in the estimated Ci from iteration step to iteration
step. For example, see Figure 12.1 in Heinrich[Heinrich, 1981] and the source
code for CalcZAF (https://github.com/openmicroanalysis/calczaf/blob/
master/zaf.bas, commit 9ab9414, lines 2016-2022). While minimizing the
change in Ci is a necessary criterion for convergence and may work in practice, it
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is not sufficient. The correct convergence criterion is minimizing δi in Equation
16. Convergence criteria based on change in Ci are not equivalent. Further
investigation is necessary to determine if this is a problem in practice.

Iteration converges quickly and reliably to 4 significant figures using Weg-
stein iteration[Reed & Mason, 1967] in 3 or 4 steps for binary unknowns[Springer,
1976] and, in the authors experience, less than 10 steps for multi-element un-
knowns. In the authors experience, it is necessary to normalize the mass-fraction

inputs to
ZAFu,i(Cu)
ZAFs,i(Cs)

(but not the other Cu,i and Cs,i in Equation 16) to en-

sure convergence. Other iteration algorithms generally converge slower[Springer,
1976] and some fail to converge in certain circumstances like soft X-rays in highly
absorbing matrices[Pouchou & Pichoir, 1991].

2 Building the Pieces

We will start with some simple but useful examples of applying JCGM:102 to
EPMA calculations. In these cases, calculating the partial derivatives for the
Jacobian (see Equation 6) is relatively straightforward.

2.1 Expressions of Composition

Measures of composition serve as both inputs and the output of a typical X-ray
microanalysis measurement. The input compositions can have associated uncer-
tainties which, in some cases, may represent a significant source of measurement
uncertainty. Historically, the uncertainty in the composition of the standards
has been largely ignored. It is worth noting that no standard is perfect and even
pure elements standards often have native oxide surface layers and/or trace im-
purities. This is particularly true for engineered or natural materials which may
also have unanticipated inhomogeneities.

The output compositions may need to be transformed from one representa-
tion to another. In the following sections, the set of mass fractions is represented
by {Ci}, the set of normalized mass fractions by {N [Ci]}, the set of atom frac-
tions by {Ai}, the set of material fractions by {Mi}, and the set of material
dependent atomic weights by {Ai}.

2.1.1 Mass Fraction to Atom Fraction

The composition of a material is expressed in a handful of common represen-
tations. In microanalysis, the most basic representation is as mass-fractions as
these are the natural inputs and output of the k-ratio correction model. How-
ever, it is often desirable to report the composition as the normalized mass
fraction, the atom fraction or the oxide fraction. To convert from mass-fraction
(Ci) to atom-fraction (Ai),

Ai =
Ci/Ai∑
k

Ck/Ak
. (17)
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A)



Quantity Value
CAg 0.4020
CAu 0.5950

N [CAg] 0.4032
N [CAu] 0.5968
AAg 0.5523
AAu 0.4477
Total 0.9970
Z 65.8990

A 160.5583


±



CAg CAu N [CAg ] N [CAu ] AAg AAu Total Z A
(0.0090)2 − − − − − − − −
− (0.0120)2 − − − − − − −
− − (0.0073)2 −1.00 · σRσC 1.00 · σRσC −1.00 · σRσC −0.09 · σRσC −0.31 · σRσC −0.34 · σRσC
− − −1.00 · σRσC (0.0073)2 −1.00 · σRσC 1.00 · σRσC 0.09 · σRσC 0.31 · σRσC 0.34 · σRσC
− − 1.00 · σRσC −1.00 · σRσC (0.0075)2 −1.00 · σRσC −0.09 · σRσC −0.31 · σRσC −0.34 · σRσC
− − −1.00 · σRσC 1.00 · σRσC −1.00 · σRσC (0.0075)2 0.09 · σRσC 0.31 · σRσC 0.34 · σRσC
− − −0.09 · σRσC 0.09 · σRσC −0.09 · σRσC 0.09 · σRσC (0.0150)2 0.98 · σRσC 0.97 · σRσC
− − −0.31 · σRσC 0.31 · σRσC −0.31 · σRσC 0.31 · σRσC 0.98 · σRσC (1.0381)2 1.00 · σRσC
− − −0.34 · σRσC 0.34 · σRσC −0.34 · σRσC 0.34 · σRσC 0.97 · σRσC 1.00 · σRσC (2.5552)2



B)

Element Z A Mass Fraction Normalized Mass Atom Fraction
Silver 47 107.87± 0.00 0.4020± 0.0090 0.4032± 0.0073 0.5523± 0.0075
Gold 79 196.97± 0.00 0.5950± 0.0120 0.5968± 0.0073 0.4477± 0.0075
Mean/Total 65.90± 1.04 160.56± 2.56 0.9970± 0.0150 1.0000 (exact) 1.0000 (exact)

Table 1: Two different representations of the composition of a Gold/Silver al-
loy expressed as mass fraction (Ci), normalized mass fraction (N [Ci]), atom
fraction (Ai), analytical total (Total), mean atomic number (Z) and mean
atomic weight (A ). A) Shows the full details of the uncertainty matrix. The
values for each quantity are listed in the left-hand matrix and the variances and
covariances in the right-hand matrix. To facilitate interpretation, the diago-
nal matrix elements (the variances) are formatted as the square of the σ, the
uncertainty, and the off-diagonal elements are shown as the correlation coeffi-
cient times σR and σC , the uncertainties associated with the covariance’s row
and column. B) shows a subset of this information, namely the values and the
uncertainties. B) is the appropriate representation when reporting final results
as these uncertainties represent the best estimate of the observed uncertainties.
However, A) is the optimal representation if these values are going to be used
in subsequent calculations.

∂Ai
∂Cj

=


Ai(1−Ai)

Ci
if i = j,

−AiAj

Cj
if i 6= j.

∂Ai
∂Aj

=


Ai(Ai−1)

Ai
if i = j,

AiAj

Aj
if i 6= j.

The Jacobian is an N × 2N matrix where N is the number of elements. The
input uncertainty matrix is 2N × 2N for each of the Ai and Ai and the output
uncertainty matrix is N × N . The resulting atom fractions are normalized to
100 % regardless of the normalization of the mass fractions.

2.1.2 Mass Fraction to Normalized Mass Fraction

Normalization is a common practice in compositional measurements and other
fields in which the result is expressed as a fraction or percent of the whole. In
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EPMA, each element is measured independently so the analytical total, defined
as the sum of mass fractions over all elements, does not necessarily equal unity.
However, the deviation of the analytical total from unity is useful for appraising
the reliability of a measurement. While a measurement that totals close to unity
is not guaranteed to be accurate, deviation of more than 1 mass % to 2 mass %
from unity is a clue that there is likely to be a problem.

Normalization of a set of quantities, {xi} is defined

N [xi] =
xi∑
k

xk
(18)

∂N [xi]

∂xj
=


N [xi](1−N [xi])

xi
for i = j,

−N [xi]
2

xi
otherwise.

Normalizing mass fraction results improves the calculated error budget be-
cause the number of degrees-of-freedom is reduced by one. However, normal-
ization does not always improve the accuracy. In part, it depends on whether
the deviation from unity is statistical or systematic. If an element is omit-
ted from the analysis, normalizing is likely only to mis-attribute this error to
the measured elements. However, even when the deviation is statistical, indi-
vidual uncertainty components can increase through normalization. Typically,
the uncertainty associated with major element constituents improve and those
associated with minor and trace quantities deteriorate.

2.1.3 Element-by-Difference

While typically the uncertainty calculations for compositional measures are rel-
atively simple, one must be careful. For example, it is quite common for a
material to be defined in terms of quantities of certain minor or alloying ele-
ments with the remainder being made up of the majority element. For example,
stainless steel 304 (SS-304) is defined as 18 % to 20 % Cr and 8.0 % to 10.5 %
Ni (with trace quantities of C which we will ignore for this example) and the
remainder being Fe. You might be tempted to define SS-304 in terms of three
independent uncertainties as [ (Cr, 0.19± 0.01), (Ni, 0.0925± 0.0125) and (Fe,
0.7175± 0.0160) by mass] where 0.012 + 0.01252 = 0.01602 as shown in Table 2.
However, this is not correct because there is the explicit constraint that the sum
of the elements must be unity that is not consistent with the assumption of inde-
pendence. The element-by-difference scenario happens when defining standards
and when it is used to estimate hard-to-measure elements during the iteration
process.

The Jacobian consists of N output rows and N − 1 input columns.

C∗
N = 1−

N−1∑
j=1

Cj (19)
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A)
Element Z A Mass Fraction Normalized Mass Atom Fraction
Chromium 24 52.00± 0.00 0.1900± 0.0100 0.1900± 0.0100 0.2021± 0.0105
Iron 26 55.84± 0.00 0.7175± 0.0160 0.7175± 0.0160 0.7107± 0.0159
Nickel 28 58.69± 0.00 0.0925± 0.0125 0.0925± 0.0125 0.0872± 0.0118
Mean/Total 25.81± 0.03 55.38± 0.05 1.0000 (exact) 1.0000 (exact) 1.0000 (exact)

B)
Element Z A Mass Fraction Normalized Mass Atom Fraction
Chromium 24 52.00± 0.00 0.1900± 0.0100 0.1900± 0.0090 0.2021± 0.0094
Iron 26 55.84± 0.00 0.7175± 0.0160 0.7175± 0.0123 0.7107± 0.0122
Nickel 28 58.69± 0.00 0.0925± 0.0125 0.0925± 0.0115 0.0872± 0.0109
Mean/Total 25.81± 0.59 55.38± 1.27 1.0000± 0.0226 1.0000 (exact) 1.0000 (exact)

Table 2: The composition of SS304 defined using A) Fe by difference and B)
the assumption of independence. The differences are pronounced in the Mean/-
Total row in which the uncertainties associated are clearly different. When the
element-by-difference assumption is made, the uncertainty in the mass fraction
total is zero in A) but is 0.0226 in B). Normalizing the composition doesn’t
change the uncertainties in A) because a sum of unity is built in but normaliza-
tion makes a spurious difference in B). Furthermore, the individual normalized
uncertainties are different from A) to B) as is also the case in the atom fraction
column.

∂C∗
N

∂Cj
= −1

The difference between the naive model of independence and this more careful
model is demonstrated in the example in Table 2.

2.1.4 Element-by-Stoichiometry

Element-by-stoichiometry is implemented by assigning to each element, zj , an
integer valence, vj , a measure of its affinity to combine with other elements.
Molecules tend to form in elemental ratios in which the sum of the valences is
balanced (equals zero). The most common element which is quantified using
valence is oxygen which has a valence, vO = −2. Other elements which may
combine with oxygen have a positive valence, like vAl = 3, vSi = 4. Two
atoms of aluminum combine with three atoms of oxygen (Al2O3) to give a net
valence of 2vAl + 3vO = 0 and one atom of silicon combines the two atoms of
oxygen (SiO2) to give a net valence of VSi + 2VO = 0. If N is the index of the
element-by-stoichiometry calculated from the N − 1 other elements,

C∗
N =

AN

−vN

N−1∑
j=1

(
vj
Aj

)
Cj (20)

∂C∗
N

∂Cj
=

AN

−vN
vj
Aj
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∂C∗
N

∂Aj
=

 AN

−vN

(
−vj
A 2

j

)
Cj for j 6= N

C∗
N

AN
for j = N

This model does not address the problem of multi-valent cations. However, it
would not be difficult to create a model in which the material is a fractional
mixture of an element’s cations with different valences with an uncertainty in
the fractional proportions.

2.1.5 Atom Proportion to Normalized Mass Fraction

Converting from atom proportion to mass fraction is routine when dealing with
stoichiometric compounds or materials initially expressed in terms of the relative
number of atoms (expressed either as a fraction or as stoichiometry). The
results is necessarily normalized to unity. In theory, atom proportions can be
without error as we could, at least in theory, count the individual atoms in a
material with absolute precision. The resulting mass fraction will always have
the additional uncertainty contributed by the elemental atomic weights.

N [Ci] =
AiAi∑
k

AkAk
. (21)

∂N [Ci]

∂Aj
=


N [Ci](1−N [Ci])

Ai
for i = j,

−N [Ci]N [Cj ]
Aj

for i 6= j.

∂N [Ci]

∂Aj
=


N [Ci](1−N [Ci])

Ai
for i = j,

−N [Ci]N [Cj ]
Aj

for i 6= j.

These expressions demonstrate that even when the input uncertainty matrix
is diagonal, meaning that the uncertainties for each element are uncorrelated,
the output uncertainty matrix will have correlations between element i and
element j, i 6= j, whenever ∂Yi

∂Xj
6= 0.

2.1.6 Mixtures

Many geological material exist in pure end-member forms and also in mixtures
of end-members. For example, feldspar is a tectosilicate mineral with three
end-members, potassium feldspar KAlSi3O8, albite NaAlSi3O8 and anorthite
CaAl2Si2O8. It is common to find individual crystals with a range of admixtures
of potassium feldspar, albite and anorthite. These minerals in which “a crystal
containing a second constituent which fits into and is distributed in the lattice
of the host crystal” are often called solid solutions though the preferred name is
mixed crystals[McNaught & Wilkinson, 2020]. Similarly, engineered glasses are

15



A)

Material Mass Fraction Uncertainty
MgO 0.1933 0.002
FeO 0.0996 0.002
SiO2 0.4535 0.002
CaO 0.1525 0.002
Al2O3 0.0927 0.002

B)

Element Z Mass Fraction Norm. Mass Atom Frac.
Fe 26 0.0774± 0.0014 0.0781± 0.0013 0.0308± 0.0006
Al 13 0.0491± 0.0010 0.0495± 0.0009 0.0404± 0.0008
O 8 0.4276± 0.0006 0.4312± 0.0012 0.5940± 0.0011
Ca 20 0.1090± 0.0012 0.1099± 0.0011 0.0604± 0.0007
Si 14 0.2120± 0.0005 0.2138± 0.0006 0.1678± 0.0004
Mg 12 0.1166± 0.0010 0.1176± 0.0009 0.1066± 0.0008
Totals - 0.9916± 0.0024 1.000(exact) 1.000 (exact)

Table 3: An example of calculating the elemental composition of the glass K412
as define in the NIST SRM-470 certificate in terms of a melt of the constituent
oxides shown in A). Note that there is an implicit normalization operation that
is not represented in the uncertainties in A). While the uncertainty in any one
of the constituent materials might be 0.0020, the sum of mass fractions must be
unity. B) shows the mass fraction, normalized mass fraction and atom fraction
for the elemental constituents as calculated from A).

16



often defined defined by the mass of the constituent oxides in the melt. Assume
that we have mixture of N materials of masses Mi and with mass fraction of
element z, Ci,z.

The mass fraction in the resulting mixture is

CM,z =

N∑
i=1

MiCi,z (22)

∂CM,z

∂Mj
= Cj,z

∂CM,z

∂Cj,z
= Mj,z

It is possible (albeit unusual) that the isotopic abundances in each material
are different so we assign a material dependent atomic weight Ai,z to each ele-
ment in each material. The atomic weight of the resulting material for element
z is

AM,z =

∑N
i=1MiCi,z∑N
i=1

MiCi,z

Ai,z

(23)

∂AM,z

∂Mj
=

Cj,z∑N
i=1MiCi,z

(
AM,z −A2

M,z/Aj,z
)

∂AM,z

∂Cj,z
=

Mj∑N
i=1MiCi,z

(
AM,z −A2

M,z/Aj,z
)

∂AM,z

∂Aj,z
=
CM,zA

2
M,z

Aj,z

A practical calculation might proceed in the following manner. Given a mass
fraction, we might want to express the same composition in normalized mass
fractions and atomic fraction forms.

Anorthoclase ([K, Na](AlSi3O8)) is an intermediate between mineral end-
members sanidine (K(AlSi3O8)) and albite (Na(AlSi3O8)). We might know
that a particular instance of anorthoclase is (40.0± 0.1) mass % sanidine and
(60.0± 0.1) mass % albite. The first step in the calculation would involve trans-
forming sanidine which is 1/13 K, 1/13 Al, 3/13 Si and 8/13 O by atomic fraction
and albite which is 1/13 Na, 1/13 Al, 3/13 Si and 8/13 O into normalized mass
fractions. The second step would involve computing the mixture of 0.4 sanidine
by mass and 0.6 albite by mass. The steps would be combined using Equation
11.

2.2 Mass Absorption Coefficients

Mass absorption coefficients (MACs) have been a long identified source of un-
certainty in X-ray microanalysis. A thin foil or gas of an element will absorb
X-rays through photo-ionization. The magnitude of the transmission through
a thin foil or gas is described by Beer’s Law. The absorption is a function of
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Figure 2: The elemental mass absorption coefficient (MAC) for Ni according
to the FFAST database (https: // physics. nist. gov/ cgi-bin/ ffast/
ffast. pl? Z= 28& Formula= &gtype= 4& range= S& lower= 0. 001& upper=

1000& density= downloaded 19-Nov-2018). The overall trend is towards
smaller coefficients as energy increases but there are a number of energies at
which the mass absorption coefficient (MAC) increases abruptly. These energies
are labeled with the associated ionization edge. The error bars represent the
uncertainties computed using the rules specified by Chantler[Chantler, 2000]
with the following modifications. When an energy matched more than one rule,
the rule giving the largest uncertainty was selected and the maximum fractional
uncertainty was limited to 90 %.
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(a) FeO (b) Cr+3 and Cr+6 oxides

Figure 3: (A) A measured XAFS spectrum from FeO showing XANES and
EXAFS regions (blue) and a smoothed background function (red). (B) XANES
structure for the Cr+3 and Cr+6 oxides. (From [Newville, 2004])

the X-ray energy as expressed by the elemental MAC, [µ/ρ]Z where normalizing
by the density, ρ, eliminates the need to know this quantity. An example of an
elemental MAC is shown in Figure 2. It shows some of the typical character-
istics. The MAC overall decreases with increasing X-ray energy except around
the photoionization absorption edge energies and at low energies.

Typically, an EDS measurement of an element involves multiple lines in a
family often with similar energies. We would expect that the elemental mass
absorption coefficients for lines that are of similar energies to be correlated. If
the tabulated mass absorption coefficient is low for one energy, we expect the
mass absorption coefficient to be low for other nearby energies. The exception to
this is near absorption edges where often the magnitude of the mass absorption
coefficient varies over a range of tens to hundreds of electron-volts due to near
edge structure (see Figure 3). The energy of the edge can also shift, particularly
if a valence electron participates is the transition. When the edge shifts, the
characteristic X-rays can fall below the edge in one material and on the edge in
others. This leads to a large uncertainty and a low level of correlation between
X-rays very close above and below the edge. This is not really an issue for WDS
measurements in which usually only one characteristic X-ray transition per ele-
ment participates in the measurement. However, in EDS measurements multiple
proximate lines participate in each measurement. Assuming the uncertainty in
the mass absorption coefficient between lines is independent overestimates the
total uncertainty.

Samples are typically not pure elements and creating an exhaustive set of
material MACs is unrealistic so the material MAC is typically computed from
the pure elemental MAC for an energy, E, using

[µ/ρ] (C, E) =
∑
Z

CZ [µ/ρ]Z (E) (24)

∂[µ/ρ] (C, E)

∂CZ
= [µ/ρ]Z (E)
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∂[µ/ρ] (C, E)

∂[µ/ρ]Z (E)
= CZ

This expression is essentially equivalent to considering the absorption from
each element as independent. The presence of the other elements has no influ-
ence. To a certain extent, this makes sense since the photo-ionization typically
occurs on core shells where chemistry and solid-state effects have little influence.
However, there are situations in which the other elements through chemistry or
crystallography will influence the photo-ionization. We will discuss this model
breakdown and some thoughts on how to handle it.

The uncertainty in the composition comes either from the uncertainty in the
standard or as part of solving for the uncertainty in the unknown as we will
see in section 2.4. For uncertainty in the MAC, we will turn to the sugges-
tions of Chantler[Chantler, 2000] as implemented in the National Institute of
Standards and Technology DTSA-II1 (a pseudo-acronym) [Ritchie & Newbury,
2012]. Chantler specifies a set of rules based on the X-ray energy and proximity
to absorption edges which provide fractional uncertainty estimates. In some
regions, the uncertainty estimates exceed 100 %. This is of course problem-
atic as if the uncertainty were distributed in a normal distribution, this would
suggest the impossibility of amplification rather than absorption of X-rays. In-
stead, it seems likely that Chantler was suggesting that the absorption might be
much larger than his model suggested under these conditions. Unfortunately,
the JCGM:100 Taylor-series approach to uncertainty doesn’t handle asymmet-
ric uncertainties. However, the Monte Carlo approach can be used to model
arbitrary probability distribution functions (PDFs).

An additional concern is model failure. Equation 24 is an approximation
that is known to fail near absorption edges[Newville, 2004]. Large material-to-
material deviations in the MACs are most often observed in X-ray microanalysis
as a self-absorption problem for X-rays in the L- and M-families. Examples of
the effect in EPMA are the Fe L-lines in the Fe-Si system[Gopon et al., 2013]
and the Ni L-lines in the Ni-Si system[Llovet et al., 2016]. Slightly below the
absorption edge energy, there are pre-edge effects due to local bonding and oxi-
dation state effects. Around the edge energy, the edge may shift as much as 5 eV
per unity change in oxidation state. In the region a couple of hundred electron-
volts above the absorption energy interatomic distances and bond angles can
lead to multiple scattering of the X-rays. Together, these effects are called X-ray
absorption near edge structure (XANES) and extended X-ray absorption fine
structure (EXAFS) (see Figure 3). It is not clear how to handle these model fail-
ures of Equation 24. To an extent, the model fails in the same regions in which
the elemental MACs are uncertain and the uncertainty in the elemental MACs
will be contribute to the uncertainty in the material MAC. There is however, an
additional question of correlation between material MACs computed from the
same elemental MACs. Clearly, XANES and EXAFS diminish the correlation
between the uncertainty in the energy regions near edges. Materials can have
wildly different MACs despite being relatively similar in composition because

1DTSA-II is available for free from https://goo.gl/MI1Ku
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of near edge effects. However, far from edges we don’t expect the correlation to
be diminished in such a manner.

These considerations are important because it is positive correlation between
the material MACs that makes similar standards a useful technique for reduc-
ing overall measurement uncertainties in most case. A reasonable way to handle
this might be to compute the material MAC and then when the X-ray energy
is close to an ionization edge, edit the correlation matrix to reduce the positive
correlation between the uncertainties of the materials. This is a little bit ad
hoc but does seem to have the desired effect. There are a couple of things to
remember when editing the correlation matrix. The MAC has contributions
from the current edge and lower energy edges too. Thus K edge has contribu-
tions from the K shell and from the L- and M-family edges in proportion to
the jump-ratio. The jump ratio is the ratio of the MAC immediately above the
edge to that immediately below the edge.

Assigning uncertainties to MACs is complex. These observations only touch
upon a few of the issues. The subject is worthy of further consideration.

2.3 Computing the k-ratio

The k-ratio is defined as the dose and continuum corrected ratio between the
intensity measured on the unknown relative to the intensity measured on the
standard[Castaing, 1951]. The k-ratio may be computed from data collected on
a WDS or EDS although the mechanisms are usually very different. A typi-
cal WDS measurement involves measuring 6 intensities at typically 3 different
spectrometer positions, two continuum measurements and one on-peak mea-
surement for each of the unknown and the standard. The live-time and probe
current associated with each measurement can vary for each measurement. This
treatment goes beyond Marinenko and Leigh[Marinenko & Leigh, 2010] in that
their treatment assumes that the live-times are equal for the peak and contin-
uum measurements.

Typically, each measured intensity is scaled to counts/(nAs). The scaled con-
tinuum intensities are interpolated to estimate the scaled continuum intensity at
the on-peak position. The estimated, scaled continuum intensity is subtracted
from the scaled on-peak intensity level to give the dose and continuum corrected
on-peak characteristic intensity. This process is repeated for both the standard
and the unknown.

Form ∈ {u, s}, the unknown and standard respectively, and p ∈ {low, high, peak},
there are 24 measured values that enter into the k-ratio calculation.

Im,low Im,high Im,peak Raw intensity measurements
Rm,low Rm,high Rm,peak Spectrometer positions
τm,low τm,high τm,peak Live times
jm,low jm,high jm,peak Probe currents

(25)

Each of these measured values may have an associated uncertainty.

Īm,p =
Im,p

jm,pτm,p
(26)
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∂Īm,p
∂Im,p

=
Īm,p
Im,p

∂Īm,p
∂jm,p

=
−Īm,p
jm,p

∂Īm,p
∂τm,p

=
−Īm,p
τm,p

where Īm,p is the dose-normalized intensity,

Īm,char = Īm,peak−
(Rm,peak −Rm,low) Īm,high + (Rm,high −Rm,peak) Īm,low

Rm,high −Rm,low
(27)

∂Īm,char
∂Īm,peak

= 1

∂Īm,char
∂Īm,low

=
Rm,peak −Rm,high
Rm,high −Rm,low

∂Īm,char
∂Īm,high

=
Rm,low −Rm,peak
Rm,high −Rm,low

∂Īm,char
∂Rm,peak

=
Īm,low − Īm,high
Rm,high −Rm,low

∂Īm,char
∂Rm,low

=

(
Īm,high − Īm,low

)
(Rm,high −Rm,peak)

(Rm,high −Rm,low)
2

∂Īm,char
∂Rm,high

=

(
Īm,low − Īm,high

)
(Rm,low −Rm,peak)

(Rm,high −Rm,low)
2

where Īm,char is the characteristic X-ray intensity (continuum corrected),

ku,s =
Īu,char
Īs,char

(28)

∂ku,s
∂Īu,char

=
1

Īu,char

∂ku,s
∂Īs,char

=
−Īu,char
Ī2s,char

The 24 measured values represent the input to the calculation. The cal-
culation proceeds by first computing the normalized intensity at each of the 3
positions and 2 materials, u and s. In the second step, the normalized intensities
from the 3 positions are combined with the 3 spectrometer positions for the 2
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Figure 4: The three level calculation of a k-ratio. Each of the 24 grayed leaf
nodes represents an input value potentially with an associated uncertainty. Each
non-leaf node represents the result of a calculation.
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materials to calculate the normalized characteristic-only intensity. In the third
step, the k-ratio is calculated from the 2 normalized intensities. This is shown
schematically in Figure 4. The first step represents 6 independent calculations
with 3 independent inputs. The second step combines the 3 of the outputs from
step one with 3 additional inputs for each material.

It is worth considering how to determine the uncertainties associated with
the raw intensities, the spectrometer positions, the live times and the probe
currents. The conventional way to handle the raw intensities is to assume that
the raw intensities are the result of a Poissonian process[Ancey et al., 1977].
Poissonian processes have well understood PDFs. However, the model can go
beyond this to consider such factors as the influence of chemical shifts and other
forms of peak shape variation and of variation which results from irreproducibil-
ity of the spectrometer position. If area peak factors[Bastin & Heijligers, 1986]
are used, the uncertainty in the area peak factor can be integrated into the
model. The live times can take into account any uncertainties in the dead-time
correction protocol. The probe current model can take into account the elapse
since the probe current was measured. More recent measurements are likely to
be more accurate than less recent measurements. By time stamping our probe
current measurements, we can track the stability of our system and build mod-
els of each sub-system that reflect the true performance of our instrument. All
of these factors can be modeled and these models integrated into the overall
measurement model. As the models for each of the input parameters become
more sophisticated, our ability to identify the weaknesses in our measurement
protocols increase and our abilities to improve the measurement protocols is
enhanced.

One of the beauties of this modular/step-wise uncertainty modeling scheme
is that adding refinement to the model is relatively easy. For example, we could
replace the step in which we compute the normalized intensity with a module
that includes area peak factors. An area peak factor involves measuring both
the integrated peak intensity and the on-peak intensity. The factor relates the
quick-to-measure on-peak intensity to the more representative integrated peak
intensity.

There are numerous other schemes for estimating the continuum level under
the characteristic peak - like multi-point continuum models[Allaz et al., 2019]
and mean-atomic number continuum models[Donovan et al., 2011; Donovan &
Tingle, 1995]. While these methods are more complex, there is fundamentally
no reason that similar techniques can not be applied to them to estimate the
associated uncertainties. If a multi-point continuum model is shared between
multiple characteristic lines, the shared-background model [Allaz et al., 2019]
introduces a dependency between the elements which will introduce correlations
between the k-ratios.

2.4 The k-ratio Protocol

As discussed in Equation 16, the k-ratio method of compositional analysis is an
implicit measurement model based on a set of coupled equations. As is the case
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for implicit models, we are not able to solve explicitly for the desired measured
quantities. Instead we use an iterative procedure of successively better ap-
proximations to converge on an approximate answer. In matrix correction, this
process is typically called “iteration” and there are various algorithms that have
historically been used including “simple Newton iteration”, “hyperbolic itera-
tion” (or “α-factor iteration”)[Criss & Birks, 1966], Wegstein iteration[Springer,
1976] and “PAP iteration” [Pouchou & Pichoir, 1991]. While none can be proven
to converge in all cases, iteration has been observed to work sufficiently well in
the field.

The inputs to the uncertainty calculation for the k-ratio method are the set of
k-ratios, k, the estimated composition of the unknown, Cu, the mass fraction of
the i-th element in the standard, Cs,i, and the matrix correction factors relative
to the pure element for the unknown and standards, ZAFu,i and ZAFs,i. The
index i corresponds to the element and transition or set of transitions for which
the k-ratio is measured and the matrix correction is calculated.

hi = ki −
Cu,i
Cs,i

ZAFu,i(Cu)

ZAFs,i(Cs)
. (29)

It is worthwhile to reflect on the meaning of this equation. The iteration process
involves finding the Cu that make all the h sufficiently close to zero. Expressed
another way, we are trying to find the k-ratio computed from the Cu that equals
the measured k-ratios, k.

∂hi
∂ki

= 1 (30)

∂hi
∂ZAFu,j

= −Cu,i
Cs,i

(31)

∂hi
∂ZAFs,j

=
Cu,i
Cs,i

(32)

∂hi
∂Cu,i

= −ZAFu,i(Cu)

ZAFs,i(Cs)

1

Cs,i
(33)

∂hi
∂Cs,i

=
ZAFu,i(Cu)

ZAFs,i(Cs)

Cu,i
C2
s,i

(34)

Applying Equation 14, the Jacobian Jy consists of the partial derivatives
relative to Cu,i and the Jacobian Jx consists of the partial derivatives relative
to ki, ZAFu,s,j , and Cs,i. The uncertainty matrix Ux corresponds to the input
uncertainties and we solve the equation for the uncertainty matrix Uy.

The input uncertainties correspond to the uncertainties in the k-ratios, k, the
uncertainties in the standards Cs and the uncertainties in the matrix correction
ZAFu,s. Each of these terms must be calculated in a previous sub-calculation.
The calculation of ZAFu,s is sufficiently involved that it will be handled in the
second of this series of articles.
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This treatment differs from previous treatments [Lifshin et al., 1999; Mari-
nenko & Leigh, 2010] in that it considers the problem as a multivariate mea-
surement model and not simply a series of univariate measurement models.
It also considers how uncertainty in the composition of the standard and the
other elements in the unknown will influence the uncertainty in the estimated
unknown.

While it is necessary to estimate the mass fraction of every element in the
unknown, it is not necessary to make all of the estimates from the k-ratio mea-
surements. It is also possible to use unmeasured element rules like element-by-
difference, oxygen-by-stoichiometry and waters-of-hydration to estimate hard to
measure elements. Implementation of these rules are described in Sections 2.1.3
and 2.1.4. These rules should be applied the step following the implicit k-ratio
model step.

3 Building the model calculation

As was the case in Section 2.3, a complex calculation is often formed by combin-
ing many simpler calculations. In practice, two ways in which sub-calculations
may be combined could be described as in-parallel and in-series. In the in-
parallel mode, independent sub-calculations can be combined into a single step
represented by a larger Jacobian. An example of this are the 6 dose corrected
intensities calculated as in Equation 26. While the sub-calculations may use the
same set of input parameters, the output of one sub-calculation can not be the
input to another. In in-series mode, the calculation is broken into steps in which
the output of one step becomes the input to a subsequent step. For example,
the 6 dose corrected intensities in Equation 26 must be calculated before being
used in Equation 27. The k-ratio calculation can be easily implemented in three
in-series steps by computing the dose corrected intensities in step 1, the dose
and continuum corrected intensities in step 2, and the k-ratio in step 3.

In a multi-step serial calculation, it is common that the input (not just the
output) from one step will be required as an input to a subsequent step. It is
thus useful to be able to carry input values from one step to the next step. This
is trivially implemented by adding a row to the Jacobian associated with the
function fj(X) = Xi where Xi is the input parameter.

It is critical that each parameter in the model is represented by one-and-
only-one parameter in the input uncertainty matrix. If the same value is used
in different places in the same calculation, they must all refer back to the same
elements in the uncertainty matrix. Vice versa, two values might seem to be
equivalent but actually share different provenances with different uncertainty
characteristics and should be represented by different entries in the uncertainty
matrix. An example is analyzing natural uranium using a depleted uranium
standard. The mean atomic weights of natural and depleted uranium are dif-
ferent and have different uncertainties. It sometimes requires subtle insight to
determine whether a parameter should be shared. An example of this subtlety
is computing material MACs from elemental MACs, a topic which is sufficiently
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important and complex as to deserve a paper of its own. Another example is
the mass-thickness of a coating used to make a insulating sample conductive. If
samples were coated simultaneously it is reasonable to expect the mass-thickness
of the samples coatings to be highly correlated (and consistent). Simultaneously
coated samples should be represented by a single mass-thickness value. How-
ever, if samples were coated at different times, the mass-thickness might be
better represented by a separated value (with independent uncertainties) for
each sample.

Implementing all this becomes an issue of bookkeeping - keeping track of
which rows and columns contain which output and input values. This can be a
particular challenge in microanalysis in which the number of inputs and output
varies with the problem and measurement protocol and can easily reach over one-
hundred. It helps to have software that facilitates labeling quantities and track-
ing these quantities through the uncertainty and Jacobian matrices. It helps to
have software that permits combining sub-calculations in both serial and parallel
modes. It helps to have software that analyzes the full calculation to determine
which parameters are calculated and which parameters must be passed as input.
It also helps if the software can carry inputs from one step to the next and deter-
mine when a parameter is no longer required either as an input to a subsequent
step or as final output and then drop it from the calculation. We have imple-
mented such software to facilitate these calculations as a library called JUncer-
tainty. This library implements the ideas in JCGM:101 and JCGM:102 in Ora-
cle’s Java programming language2 (https://www.java.com/) using the numer-
ical algorithms from the Apache Commons Math library (https://commons.
apache.org/proper/commons-math/). The source is available for both imple-
mentations of the Java language and Apache library. The source code we have
developed is available at https://github.com/usnistgov/Roentgen.

3.1 Interpretation

Working with and interpreting covariance matrices is more challenging than the
single variable approach with which we are familiar. Throughout the calcula-
tion, it is important to maintain the covariance matrix representation to ensure
that the uncertainty relationships between variables are maintained. Typically,
sources of uncertainty enter into most calculations as single variables with an
associated uncertainty. For example, a measure of intensity with an uncertainty
equal to the square-root of the number of counts or a probe current measure
with an estimate of the associated uncertainty. However, this need not be the
case. For example, in the Committee On Data (CODATA) “Internationally
Recommended 2018 Values of the Fundamental Physical Constants”[Tiesinga
et al., 2019], the defined constants are without error and measured constants
are expressed with the best estimate of the uncertainty. The CODATA web
page provides a mechanism to extract the covariance between two measured
physical constants.

2Disclaimer: Any mention of commercial products is for information purposes only; it does
not imply recommendation or endorsement by NIST.
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Figure 5: An example of ten-thousand measurements drawn from two corre-
lated random variables drawn from a normal distribution with X = 5.0± 0.2
and Y = −8.0± 0.3 with a correlation coefficient of 0.6. The top plot shows the
relationship between the two variables and the bottom plots show each variable
considered independently.
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When we ask what uncertainty we expect to see for the measurement of
a particular value, we are essentially projecting the covariance matrix onto a
measuring device which extracts the particular variance associated with the
specific variable. Consider for example, Figure 5 which shows the hypothetical
situation consisting of two normally distributed random variables of Type A with
values X = 5.0± 0.2 and Y = −8.0± 0.3 related with a correlation coefficient
of 0.6. If we measured the variable X ten-thousand times we would expect to
see a histogram like that shown in the lower-left of Figure 5. This histogram
has a mean of approximately 0.5 and σX = 0.2. Likewise, if we measured
the variable Y ten-thousand times we’d expect to see a histogram like that
shown in the lower-right. This histogram has a mean of approximately −8.0
and σY = 0.3 So the values σX = 0.2 and σY = 0.3 are the appropriate values
to report as uncertainties associated with X and Y . However, if the values X
and Y are to be used in subsequent calculations, it is important to retain the full
covariance matrix to ensure that the uncertainties associated with the results of
the subsequent calculations account for the correlation between X and Y .

4 Conclusion

JCGM:100 defines two types of sources of uncertainty - Type A and Type B.
Type A being those sources whose magnitude can be evaluated by “a statistical
analysis of a series of measurements” and Type B being those whose magni-
tude is determined by other means. While we have focused on the uncertainty
associated with the input parameters, both Type A and Type B, there is also
an uncertainty associated with the model. For example, in φ(ρz)-style matrix
correction, the shape of the φ(ρz) curve is chosen to be an analytical expres-
sion that is similar to the distribution observed in tracer measurements or in
Monte Carlo simulations[Pouchou & Pichoir, 1991]. A mathematical model that
is assumed to describe a process without proven justification is sometime called
an ansatz. The ansatz can then be parameterized in terms of other pieces of
information we can calculate from the physical distribution like the integral of
the area under the curve. Model uncertainty due to an ansatz can be viewed as
a separate source of uncertainty which is not handled readily by the JCGM:100
framework. One possible way to handle this other source of uncertainty is to
consider many different ansatz. Fortunately in matrix correction, there is a pro-
liferation of different models of vary effectiveness. This was the approach taken
by the program TRYZAF[Armstrong et al., 2013]. This mechanism should be
viewed as complementary to the approach presented in this paper.

One of the biggest sticking points when one approaches uncertainty analysis
is determining suitable uncertainties for the Type B input parameters. This can
be overwhelming. There are no “correct” answers. The literature is rife with
values without uncertainties. Often the best we can do is use our professional
judgement to make an educated guess. It is easy to argue that these guesses are
wrong - too optimistic or too pessimistic. One analysts judgement about the
state of a certain parameter may be very different from another analysts and
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we should be having these conversations. However, we can all agree that zero
is not the correct answer and that waiting until we have the “perfect” answer
doesn’t help us to understand the measurement process.

This first article presents a new strategy for calculating uncertainties in X-
ray microanalysis measurements. This strategy was applied to some simple
modules within the larger problem of matrix corrected measurements of compo-
sition. While the strategy initially looks complex, it has a couple of significant
advantages which make it easier to apply to complex multi-step measurement
models. Through application of the chain-rule of differential calculus, it is pos-
sible to divide complex problems into a series of simpler steps. The steps can be
made simple enough that the required partial derivatives can be easily evaluated.
After evaluation, each step becomes a matrix which can be manipulated using
readily available matrix algebra routines. Steps can be mixed-and-matched to
produce a flexible model that can be adjusted to fit the measurement model.
This is particularly valuable for X-ray microanalysis in which the number of
elements and the character of the standards can vary. Furthermore, the input
uncertainties can be tracked through to their contributions to the output un-
certainties. This allows us to model the sensitivity of the output values to the
input uncertainties and facilitates measurement optimization.

In this article, a handful of simpler but necessary steps were identified and
the strategy applied. In the next article, the strategy will be applied to a
significantly more complex problem - matrix correction. Matrix correction is
a model involving tens if not hundreds of input parameters each of which can
have an associated uncertainty. Depending upon the measurement conditions,
choice of standard and other measurement model choices, different parameters
can dominate the final uncertainty.

In the next article, JCGM:102 will be applied to the simplified matrix cor-
rection model of Pouchou and Pichoir (also known as XPP)[Pouchou & Pichoir,
1991]. This model requires a multivariate measurement model to handle the
inter-dependencies between the matrix corrections for each of the measured el-
ements. The model is dynamic in the sense that the number of input variables
and output variables depends upon the choice of standards and unknowns. It
might be possible to compute the derivative of the output variables with respect
to the input variables directly using symbolic mathematics software. However,
the resulting expression would be exceeding lengthy and would need to be re-
calculated each time the unknown or a standard changed. The Jacobian-based
model makes it possible to compose multiple computational steps based on the
particulars of the standards and the unknown using the multivariate chain rule.
The steps can be composed to readily handle changes in the standards or un-
known. While the overall calculation remains complex, each individual step can
be sufficiently simple to be easily evaluated and efficiently computed. The sec-
ond article will also contain several examples which show the dependence of the
accuracy of the matrix correction model on the instrumental parameters and
standard choice.
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