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ABSTRACT

This Technical Review encapsulates the methods and numerical techniques that have been so successfully used over the
years to study the electron scattering of atoms and molecules. In the past few decades, these approaches have also proven
effective in treating the time-dependent interaction of strong electromagnetic fields with atoms and molecules. There are clear
synergies between the two that can be exploited computationally. The ideas discussed in this Technical Review have played an
important role in shaping modern atomic and molecular physics and we expect that future developments will build heavily on
these foundations.

[H1] Introduction
Our ability to compute the ground and excited state energies of atoms and molecules, as well as electron/atom and elec-
tron/molecule collision cross sections, is central to understanding the quantum mechanical nature of matter. The theoretical
foundations of atomic, molecular and optical (AMO) physics are derived by combining classical electromagnetic theory and
quantum mechanics. In contrast to nuclear and particle physics, the forces involved in AMO theory are well known. This led
to an early development of theoretical and computational methods to accurately solve the Schrödinger equation and made
the comparison of these methods to one another and to experiments possible. In addition, the development of alternative
computational methods enabled the assessment of numerical uncertainties and in many instances the actual prediction of
experimental outcomes, which might be difficult or impossible to perform in practice. The data derived from calculations are
often required in other branches of physics, such as modeling astrophysical phenomena or fusion plasmas, and lighting devices.
In this Technical Review, we discuss and compare a number of the existing numerical methods used in AMO physics.

[H2] Early history
[H3] Atomic and molecular structure
Most of computational AMO physics has its roots in developments which started only shortly after the discovery of the
Schrödinger equation. The early pioneers used a variety of approaches to understand the structure of atoms and how atoms
come together and form chemical bonds. The concept of the self-consistent field was put forward by Douglas Rayner Hartree1, 2,
John Clarke Slater3, Vladimir Fock4 and others (see Ref.5 for a historical perspective.) Its extension to include exchange
effects, as in the Hartree-Fock equations, were first solved for atoms using numerical techniques developed to approximate
differential equations by difference equations on an analog computer called the differential analyzer6. In such calculations, each
electron moves in the average field (self-consistent field) produced by the other electrons and the instantaneous electron-electron
interaction (correlation) of the particles is neglected.

The initial approach to computationally solve the integro-differential Hartree-Fock equations used finite-difference methods
on a discrete grid. Although the required numerical calculations were laborious, they were still possible using the hand
calculators available at the time. In the early 1950s a new method to tackle molecular calculations was independently pioneered
by Clemens C. J. Roothaan7 and George G. Hall8. With it it became possible to solve the self-consistent field equations by
approximating the atomic orbitals as linear combinations of analytic functions such as exponentials (Slater orbitals). The
development of digital computers around the same time lead to widespread use of Hartree-Fock computations for atomic,
molecular and nuclear systems.9–13

Radial integrals are used for forming the matrix elements of the Hamiltonian. For atoms, they can be computed using
semi-analytic numerical techniques that result in reducing the problem to the solution of a matrix-eigenvalue problem. However,
the lack of spherical symmetry in molecules does not straightforwardly afford the reduction of the problem to one dimensional
radial equations. Nonetheless, once it became clear that atomic orbitals can be approximated by linear combinations of
simpler functions, the methods developed for atoms could be generalized for molecules, albeit with a more complex numerical



procedure to compute the integrals.
Parallel to the development of the self-consistent field methods, other researchers14–19 were pursuing an alternative numerical

treatment of He and H2. They abandoned the concept of a single orbital for each electron and expanded the wavefunction
of both electrons using physically-motivated analytic forms containing parameters optimized by the variational principle.
This idea, led to extremely accurate treatments of both He and H2. These early calculations were also performed by hand or
using mechanical calculators. A number of these early calculations explicitly included terms containing the inter-electronic
distance in the variational wavefunction and required the calculation of matrix elements that rapidly become quite expensive to
compute with a growing system size. Nonetheless, some works pushed the basic ideas even to calculations with as many as four
electrons.20–24.

The idea of using more than a single orbital for each electron may be generalized naturally leading to the construction of a
set of configurations which may then be superposed using the variational principle to get the optimal energy. This approach,
termed configuration interaction (for very early applications, see Refs25, 26 and for a historical overview Ref.27) remains
today28, 29 one the more accurate numerical approaches for the calculation of the ground and excited states of small molecules.

The insight gained and the methodologies developed have been refined over many decades and with the advent of modern
computing technology led to our current ability to accurately compute the ground and even the excited states of fairly complex
molecules and materials.

[H3] Atomic collisions
It is perhaps a bit less known that in the early 1930’s there were parallel efforts to describe the collisions of electrons with
atoms and simple molecules .30–32 At the time, it had already become clear that approximations such as those developed by
Max Born and J. Robert Oppenheimer33 would fail for slow electrons where the wavefunction deviated strongly from a plane
wave form. The use of the differential analyzer enabled calculations of the cross sections for low energy scattering of electrons
from the He atom.32

For scattering processes there is no variational principle guaranteeing that some quantity, such as the phase shift, would
satisfy a minimum principle. Nevertheless, methods very similar to the numerical integration and variational techniques used
for bound states can be applied with considerable success to collisions.34–39 Variational principles were eventually developed
applicable to both electron and heavy particle collision problems. Variants of these methods are are still in use today (See Ref.
40 for a thorough discussion.)

[H2] Electron correlations
Mean-field methods can give a broad picture of electron motion in atoms and molecules, but electron correlation is responsible
for other important phenomena observed in molecular systems. This is evident in quantum chemistry where it is essential
to obtain the quantitative details of a potential energy surface correctly to understand the molecular dynamics. Similarly, to
accurately predict atomic and molecular spectra, photo-processes, and electron collision cross sections, the understanding of
electron correlation is critical. But this is not easy because multiple electronic states come into play and ways to balance the
treatments of electron correlation in systems involving significant changes from their initial configuration are needed.

Numerical methods are also important in the context of modeling of astrophysical, fusion and lighting plasmas. Experiments
cannot supply the data needed for this modeling due to time limitations and systems inaccessible in the laboratory. Reliable
theoretical and computational methods provide a cheaper alternative, but for the obtained data to be meaningful it is necessary
to control of the errors present in the calculation .

In this Technical Review, we selected only a few of the many methods that have been developed over the past few decades
to treat systems in the continuum. The close-coupling, R-Matrix, and Kohn-Variational methods have proven their robustness.
In conjunction with the method known as complex scaling, it has been possible to accurately solve problems thought to be
intractable for many years.

The key ideas we introduce here provided the foundations for more recent developments involving the interaction of short,
intense radiation with atoms and molecules. They enabled the exploration of atomic and molecular systems on time scales
comparable to the motion of the electrons in these systems and even to manipulate them to control the outcome of chemical
reactions.41, 42 In this case, the problem is actually time-dependent, a further complexity, but in order to understand how these
electromagnetic fields can control the electronic motion in molecular systems, the methods and numerical techniques developed
by time-independent collision theory are needed. Our ability to control the electrons on their natural attosecond time scale has
vastly increased our understanding of the way electrons behave in molecules, enabling studies of processes such as the time
delays of photoejection, double ionization and how charge migration unfolds in polyatomic systems.
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[H1] Discretization of space
Basic to all numerical solutions of the Schrödinger equation is the need to discretize the spatial coordinates and to impose
appropriate boundary conditions. Many of the details of the discretization and boundary conditions depend on whether the
problem is approached as a partial differential equation or the formally equivalent integral equation. There are essentially three
ways to discretize the spatial coordinates: finite-difference43 (FD), a basis set expansion44 (spectral) or the use of numerical
quadrature 45. By adopting an integral equation formalism, it is easier to impose the boundary conditions from the outset.
This leads to more stable numerics since the required solution is already determined at the end points. In addition, numerical
integration is always more stable than numerical differentiation.

The first two approaches have roots in the methods discussed in the previous section. A serious use of integral equations
began in the 1970s (see Refs46–53) and variants of the original methodology still exist. Basis set expansions may be defined
globally or over a set of sub-domains (finite-elements, or FE)54–59 which are linked together by continuity conditions. Under
certain mathematical conditions, such as no derivatives above the second-order, only function continuity is sufficient. FD
approaches are particularly easy to program, but have issues of accuracy if the order of the finite-difference is too low. Higher-
order FD methods can often compete successfully with spectral and FE techniques and deserve consideration when constructing
an accurate and efficient spatial discretization.

Most numerical codes tend to use either FD, spectral, FE or integral equation methods, but recent implementations have
successfully used mixtures of these to optimize the efficiency and accuracy of the numerical results.60–64

FD approaches most naturally appear in solutions of coupled differential and integro-differential equations. Spectral and FE
methods are more naturally rooted in variational approaches but the boundaries are not sharp. Integral equation formulations
can easily replace the differential equations using well-established methods50 where the finite differences are replaced by
numerical quadrature using a Green’s function. Using differential or integral equations is often a matter of choice and a trade
off between simplicity and accuracy.

When these various approaches are used to solve the time-independent Schrödinger equation, the initial partial differential
equations (PDE) are reduced to a set of algebraic equations50, 65, 66. In the time-dependent case, the PDEs are reduced to a set of
coupled, time-dependent algebraic equations. The structure of the equations is very dependent on the method of discretization.
FD and FE methods can often lead to sparsity in the equations, but in the case of identical fermions, the presence of exchange
terms can destroy that sparsity. For variational methods, where global basis set expansions tend to be used, typically there is no
sparsity.

In this Technical Review article, we discuss how these different spatial discretization techniques are integrated into the
solution of the Schrödinger equation for atomic collision problems. We also cover the way in which these methods are
incorporated into the time-dependent Schrödinger equation.

[H1] Expansion of the collision wavefunction
One of the earliest techniques used to solve the Schrödinger equation for the collision of electrons with atoms, the close-coupling
method (CC)67–70, uses an expansion of the collision wavefunction Ψ of the form,

Ψ =
N

∑
c=1

A [ψc(x1 · · ·xN)Fc(xN+1)], (1)

where ψc is a state of the N electron target atom and Fc, the unknown channel function that is antisymmetrized into ψc
as indicated by the A symbol. The separation of the unknown collision wavefunction into the product of a known target
wavefunction times an unknown collisional wavefunction is common to almost all of the theoretical collision methods.

Inserting equation (1) into the Schrödinger equation, and then multiplying successively by ψc and integrating over the target
coordinates, leads to a set of coupled, integro-differential equations of the general form,

(−1
2

∇
2
r−Ec)Fc(r)+

∫
∑
c′

Vc,c′(r,r′)Fc′(r′)dr′ = 0 (2)

where,

Vc,c′(r,r′) =δ (r− r′)Uc,c′(r)+Kc,c′(r,r′). (3)

Here Ec is the channel energy, Uc,c′ is the local part of the interaction potential consisting of the electrostatic interaction of
the scattering electron with the nucleus and the other electrons whereas Kc,c′ is a general non-local interaction due to electron
exchange and correlation. Uc,c′ can be long-range whereas Kc,c′ is short-range and typically vanishes rapidly as the separation
between r and r′ increases.
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The unknown functions Fc in equation (2) may be further expanded in a series of spherical harmonics, leading to a larger set
of coupled equations, but in a single radial variable. The non-local kernel, K, often has a special structure that can be exploited
in the solution of the equations. A short discussion on the numerical methods used to solve the radial CC equations is provided
in Boxes 1 and 2.

There is a generalization of equation (1), to be discussed later,

Ψ =
N

∑
c=1

A [ψc(x1,x2 · · ·xN)Fc(xN+1)]+
M

∑
q=1

bqχq(x1,x2 · · ·xN+1), (4)

The bq are variational parameters and χq terms in the second summation above are chosen so that this entire term vanishes as the
electron coordinate goes to ∞. This term is designed to account for correlation between the target and incident electron at short
range that are absent from the CC expansion. The individual terms in the expansion are often called pseudo-states to distinguish
them from the actual target states in the first summation. This is not an optimal approach as it has serious disadvantages for
re-arrangement collisions. Consider a simple case where an electron collides with an atom with an energy sufficient to excite
and ionize the target. If one restricts the first term in the expansion only to a finite set of neutral target states, it is impossible
to precisely describe ionization using a finite set of pseudo-states. A properly chosen set of pseudo-states have been shown
to approximate excitation to the ionization continuum not accounted for in the standard CC expansion. However, the use of
pseudo-states also has several difficulties. Since they mathematically can mimic a pseudo target state plus a captured electron,
when the electron energy is sufficiently large to excite that target, artificial resonances can appear. In addition, the way to use
them to actually compute impact ionization cross sections is also a matter that requires consideration.

To better account for ionization it is necessary to either include continuum target states or ionic channels in the expansion or
develop a more complete CC method that can account for ionization in a more rigorous manner. Either approach is numerically
difficult, but there has been good progress. The convergent CC (CCC) method and the use of exterior complex scaling (ECS)
have been developed to overcome these difficulties, but by entirely different approaches. ECS uses some elegant mathematics to
turn the continuum problem into an L 2 problem. This is accomplished by replacing the real radial coordinate with a complex
variable outside the interaction region. It becomes possible to extract the required cross sections using either flux or surface
integral techniques. We will discuss ECS in more detail in the next section. The CCC method demonstrated that by using
enough of a complete set of properly defined discrete states, it is possible to avoid the pseudo-resonances and to extract the
differential impact ionization cross sections71, 72. In the CCC method, the CC equations are converted to integral equations in
momentum space, discretized via quadratures and then solved using fairly standard linear systems methods. Extensive use of
parallel programming methods make this possible and efficient on modern supercomputers.

An accurate representation of the collision complex, that is the target and breakup channels, can have a profound effect on
the ability of any given method to accurately predict collisional properties. To a large degree, this is simply a restatement of
the difficulties always encountered in balancing the correlation of quantum mechanical systems made up of many identical
particles.

[H2] Complex scaling
The method of complex scaling has, in one form or another, been successfully used to solve some otherwise intractable problems
in atomic and molecular physics73. The original idea, developed by the mathematician Barry Simon (Ref.74), was to rotate all
the electronic coordinates by a complex phase factor θ as r→ r exp iθ .

Since the rotated wavefunction decays exponentially, it is natural to apply standard bound state variational methods to
compute the resonances. Although this works for simple systems, it was soon discovered that it leads to difficulties, in that the
most tightly bound electrons oscillate rapidly and these oscillations are difficult to capture variationally. In addition, for many
problems, uniform complex scaling cannot be applied as the potential is non-analytic over the entire rotated coordinate.

To circumvent such problems, it was proposed that the complex scaling should be performed only outside the molecular
interaction zone, R0, where the potential has no pathologies75. This ECS can be done abruptly or smoothly, where the transition
from real to complex coordinates is performed over a small interval near R0. There are a significant number of papers (see
Refs76–78 and references therein.) in the literature showing how one can effectively implement ECS for atomic and molecular
scattering problems and problems involving external fields.

There are connections to complex absorbing potentials but in this Technical Review we will restrict ourselves to a few
remarks. Typically, abrupt ECS is performed using the transformation,

r→ R(r) =

{
r r < R0

R0 +(r−R0)eλ+iη r > R0
(5)
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Where λ and η are arbitrary parameters to perform the scaling. In smooth exterior complex scaling, one uses a transformation
such as,

r→ φ(r) = r+λg(r)

λ = exp(iθ)−1

g(r) =

{
0 r < R0

(r−R0)[1− exp−η(r−R0)
2] r > R0

(6)

If a complete basis set expansion is used to solve the Schrödinger equation, the exact solution is independent of θ and η . In
numerical calculations θ may also be used as a variational parameter to minimize the complex energy.

In both abrupt and smooth ECS, the Hamiltonian remains unchanged for r <R0. The method leaves the bound state spectrum
unchanged, but the continuum states now exponentially decay. Thus, variational methods which use only L 2 functions may be
used. It is also possible to use grid based approaches with FD or FE. ECS has also been extended to time-dependent problems.
Note that infinite range smooth ECS can be shown to be equivalent to the introduction of a perfect absorbing potential and has
been used quite successfully in a number of important applications.76–78

One notable success of the approach has been its application to computing impact ionization amplitudes for electrons on the
hydrogen atom73. This application required the iterative solution of a large, sparse set of complex linear equations. This could
only be accomplished by finding a suitable preconditioner. To find a good preconditioner, direct methods, such as SuperLU79,
are used with a low order, but less accurate FD approximation to the problem. This is then used as a preconditioner for the full,
higher order FD method to solve the exact set of linear equations iteratively.

[H2] The R-Matrix method
As mentioned earlier, the reduction of the collision problem to the solution of a set of integro-differential or alternatively,
integral equations, is not an optimal numerical approach. Other procedures, such as those used in quantum chemistry, which
convert the collision problem to one involving the manipulation of matrices, are more flexible and easier to use numerically.
One of the first such approaches, which has its roots in nuclear physics80–82, is the R-matrix method (see Box 3 for the detailed
theoretical formulation of the R-matrix method). In the R-matrix method, the CC expansion is augmented by a set of square
integrable terms and the collision term is expanded in a set of known analytic or numerical functions, u0

ci, inside a finite radius
r ≤ a. It is assumed that exchange vanishes beyond that region and only local interactions remain.

By diagonalizing the Schrödinger equation in this internal region ( r ≤ a ), one obtains a set of discrete states which may be
used to expand the collision wavefunction at any arbitrary energy. This is a significant advantage in that a single, but often
expensive, computational step enables the problem to be solved at many energies. The first applications of the R-matrix in
AMO physics was to calculate the electron scattering off atoms and used basis sets with a fixed boundary condition on the
R-matrix surface.83, 84. Later work showed how to relax the fixed boundary condition and extend the method to molecular
targets85–93. For in-depth reviews see Refs 94–96. A more exact treatment of scattering phenomena from heavier atoms and
molecules often requires inclusion of relativistic effects. For relativistic treatments we recommend the reviews in Refs97–100.

To generalize the relevant equations to molecules the inter-nuclear distances R should be included in the notation. Within
the Born-Oppenheimer approximation, the Schrödinger equation inside the R-matrix radius may be written as,[

HN+1(r;R)+LN+1−E(R)
]
|Ψ(r;R)〉= LN+1|Ψ(r;R)〉 (7a)

LN+1 =
N+1

∑
i=1
|ψc〉

1
2

δ (ri−a)
(

∂

∂ ri
−b
)
〈ψc| . (7b)

Here HN+1 is the N +1 electron Hamiltonian, E is the energy and LN+1 is the Bloch operator101 which has been added and
subtracted to the Schrödinger equation to ensure a well defined boundary condition on the R-matrix surface ( r = a ). The
parameter b may be chosen to be any real number. To solve this equation, we expand the wavefunction in a basis set,

|Ψk〉=
n

∑
c=1

m

∑
i=1

aci,k|ψcu0
ci〉+

M

∑
q=1

bq|χq〉 , (8)

which satisfies the following eigenvalue problem,[
HN+1(r;R)+LN+1−Ek(R)

]
|Ψk〉= 0 (9)
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Here χq are a set of (N +1) electron correlation functions and u0
ci are a suitable set of radial functions to expand the scattering

function. The u0
ci are often chosen to satisfy a set of simpler model scattering equations. The use of a real number b in the

Bloch operator, LN+1, provides a convenient approach to ensure that the R-matrix eigenstate energies are real. In the original
formulation of the R-matrix method, the eigenstates were chosen to have a fixed and zero derivative ( b = 0 ) on the bounding
surface. When a complete set of u0

ci are used, the boundary condition is unimportant, but if one uses a restricted set of functions,
convergence can be quite slow. An approximate correction, first suggested in Ref.102 was used to ameliorate the problem.

By expanding the solutions to (7a) in terms of the solutions to (9) and then projecting onto the target states, ψc and setting
r = a, one obtains,

uc(a) = 〈ψcδ (rN+1−a)|Ψ〉=
n

∑
d=1

Rc,d
[∂ud(r)

∂ r
−bud(r)

]
r=a (10a)

Rc,d =
1
2 ∑

k

uck(a)udk(a)
[Ek(R)−E(R)]

(10b)

uc(a) = ∑
i

aci,ku0
ci(a) . (10c)

In numerical applications, the use of the Bloch operator has important practical consequences. As mentioned earlier, if a
basis is chosen satisfying fixed boundary conditions on the R-matrix surface, convergence to the scattering solution is typically
quite slow since the true scattering function does not satisfy those boundary conditions. Corrections102 can be made to help
alleviate the slow convergence but by using the Bloch operator, it is possible to use an expansion basis u0

ci in (10c) having
arbitrary boundary conditions on the R-matrix surface. This substantially improves convergence and more importantly, widens
the selection of possible basis sets for numerical calculations.

For example, in electron scattering from molecular targets, it is convenient to use multi-center functions such as Gaussians
as a basis and such expansions are possible within the Bloch-operator formalism. In using Gaussians, it has been found that it is
necessary to use formulas for the integrals which remove the contributions between r = a and r = ∞ for diffuse Gaussians which
are needed to represent the scattering orbitals93 This procedure is straightforward since for most of these integrals multipole
expansions are sufficient. For atomic R-matrix calculations both numerical, B-spline and FE orbitals have been successfully
used.103, 104

The R-matrix method may be generalized to include the effects of nuclear excitation and even dissociation. The interested
reader should consult Refs92 for details.

It is possible to choose b in an arbitrary manner. Specific choices of b enable us to recover many of the formal approaches
to the collision problem such as the Kapur-Peierls or Siegert expansions.81, 105, 106.

To obtain the final solution to (10a), its is necessary to match uc(a) to appropriate asymptotic forms at the boundary surface
r = a. If one can find appropriate matching functions for the solutions between r = a and where the potential has vanished,
the process is straightforward. Since exchange is absent in the region beyond the R-matrix surface, the coupled differential
equations may be integrated inward or combined with asymptotic expansions to produce the solutions required for the matching.

A more elegant approach is to devise a method that would propagate the R-matrix from the surface to very large distances
where matching to free waves would be sufficient. A number of R-matrix propagation techniques exist to accomplish just
that.107–109 The idea is basically to apply the R-matrix for a series of sub-regions from r = a to where the potential may be
neglected. In each of these sub-regions, or sectors, approximations are made to the potential which enable the sector R-matrices
to be easily computed and by recursion relations produce the R-matrix on the larger region. Such methods are typically stable
even in the presence of closed channels.

Note that when there are very large numbers of channels in the outer region, the solution of these equations can become
expensive as they need to be repeated at each scattering energy.

One criticism of the R-matrix method is that it introduces an artificial boundary which in reality does not exist. Although
this may be unappealing conceptually, in practice the consequences are minor as long as the matrix elements inside a fixed
radius can be computed. A more serious issue is the need to obtain all of the eigenvalues and eigenvectors of what can be an
extremely large matrix. Even though there are techniques available to do this using distributed memory computers, this can
be costly. There are two methods available to avoid the calculation of all eigenpairs. The first approach is exact: compute
the Green’s function or resolvent by solving a set of linear algebraic equations50. The second approach is to find a reliable
approximation to perform the sum over the higher lying energies of the Green’s function. The first approach loses the advantage
of needing only a single major computational step to obtain the scattering information at all energies. There are ways to make
this more efficient that have not been explored. For example, using an iterative approach to the solution of the linear equations
based on a previous direct solution to a model problem as a preconditioner110, could be effective and has been shown to work
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in other contexts. The second approach, to find an approximate technique to include the higher lying R-matrix energies, has
been explored in Refs.111, 112 Although the second approach has been shown to work in a number of cases by testing against an
exact solution, one clearly needs to be careful in trusting that it does work in practice.

Finally, we should mention the connection of the R-matrix method to quantum defect theory 113. In the present context,
quantum defect theory explores the behavior of quantities such as the reaction matrix, as a function of the energy above and
below the scattering threshold. This enables the understanding of how certain analytic functions of the energy behave when
going from an energetically closed to an energetically open state114. Stated in a somewhat simpler way, the quantum defects
used to describe the energetics of high-lying Rydberg states may be extrapolated above threshold to compute scattering phase
shifts. Since the R and K matrices are related, it is an algebraic exercise to connect the two theoretical formulations.

[H2] R-matrix theory applications
Applications of R-matrix theory to atomic and molecular scattering abound. In this section we restrict ourselves to works
published in the past decade, those that have appeared subsequent to the three major R-matrix review articles published
earlier.94–96. On the molecular front, theoretical studies have been conducted on photoionization of NO (Ref. 115), NO2
(Refs116, 117), N2 (Refs118, 119), Methane119, endohedral fullerenes Xe@C60 (Ref.120), and CO2(Ref.121). Electron scattering
from N2 and CO2, are the best known systems and show good agreement with experimental results and calculations performed
by multiple groups.119, 121, 122

For atomic targets, the Belfast R-matrix codes, whose development began in the 1970s, are being used world-wide to
study atoms and ions of astrophysical interest and of importance to fusion. There are also numerous theoretical studies
and experimental comparisons using the more recently developed B-spline R-matrix (BSR-matrix) code123, to a number of
interesting systems. This code uses a set of nonorthogonal orbitals for the bound and continuum orbitals and a set of B-splines
that define the R-matrix basis functions. It also adds relativistic effects by adding the Breit-Pauli Hamiltonian124 as a first order
correction. Recent calculations using this code include the electron impact excitation of Zn (Ref.125), the single and double
photoionization of Ne (Ref.126), electron-impact excitation and ionization of atomic calcium.127

The R-matrix method has been generalized to include time-dependent interactions (RMT). Using various short-time
propagators in the inner region and a FD grid representation of the single-electron wavefunction in the outer region, it is
possible to account for the interaction of the electrons with time-varying electromagnetic fields.128–130 RMT has also been
applied to double-photoionization of He129, and photodetachment of F− in strong, circularly polarized laser fields.131, 132

Fully relativistic versions of R-matrix codes exist and are used in applications with highly charged ions and heavy atoms,
for example in studies on electron-impact excitation and ionization of W3+, N IV (Ref.133), and Fe II (Refs134, 135).

[H2] Kohn variational method
Walter Kohn developed a variational method36 to treat collision problems as part of his doctoral thesis research with Julian
Schwinger. The method, now known as the Kohn variational method (KV), has been widely applied to collision problems in
nuclear, atomic and molecular physics.40, 136

As in the R-matrix method, the wavefunction is expanded in a basis set, but the basis is required to satisfy the known
asymptotic boundary conditions. The matching at some known radius, as in the R-matrix method, is replaced by computing
the free-free and bound-free matrix elements of the Hamiltonian. Such matrix elements can often be complex to evaluate
because the free basis functions have an oscillatory behavior. The wavefunction is then expanded as the known incident wave
plus a linear set of trial functions with unknown coefficients. The variational conditions are then used to reduce the scattering
problem to a set of linear algebraic equations. As the colliding particles move to larger separations, at least one of the unknown
coefficients contains the desired scattering information.

The variational principle may be applied to the K, T or S matrices, depending on the boundary conditions imposed on the
wavefunction. These matrices are all mathematically related and each provides information on the scattering amplitudes of the
collision problem. The variational principle provides a method to expresses a variationally corrected K, T or S matrix element
in terms of a trial value obtained by solving a set of linear equations. The linear equations in turn are obtained by a variation of
the coefficients in the expansion of the trial solution.137–143

To illustrate the method, consider the s-wave radial scattering problem,

L̂ψ(r) = [Ĥ0 +V (r)−E]ψ(r) = [−1
2

d2

dr2 +V (r)−E]ψ(r) = 0.

Here H0 is the kinetic energy term and V (r) a local potential. The boundary conditions on ψ(r) are

ψ(0) = 0 (11)
lim
r→∞

ψ(r) = f (r)+λg(r) (12)
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where f (r) and g(r) are two, linearly independent solutions to the radial Schrödinger equation of Ĥ0. The choice of the linearly
dependent pairs, determines whether we are looking for λ = K, T or S matrix elements. The KVP for the K matrix has some
unpleasant aspects. Since one has to invert a real, symmetric matrix, it is possible for mathematical singularities to occur. These
make the expressions undefined at certain energies. Although there are workarounds, it seems better to avoid the problem from
the outset by using the KVP for the T or S matrix which do not suffer from this problem. The price paid is that one is required
to deal with a set of complex algebraic equations.

The variational principle is illustrated here using potential scattering in one dimension140. Given the functional

L = 〈ψ|L̂|ψ〉 ≡ 0, (13)

its variation is examined by,

δL = 〈δψ|L̂|ψ〉+ 〈ψ|L̂|δψ〉+ 〈δψ|L̂|δψ〉. (14)

The third term is neglected to first order accuracy. The first term is zero. If δψ = ψ −ψ t where ψ t is an approximate
trial solution satisfying the same boundary conditions as equations (11) and (12), the second term is equivalent to −〈ψ|L̂|ψ t〉.
Integrating in space by parts twice, and using the fact that ψ is the exact solution to the differential equation, yields, 144

〈ψ|L̂|δψ〉=−〈ψ|L̂|ψ t〉=−δλW
2

(15)

where

W = det
(

f (r) g(r)
d f (r)/dr dg(r)/dr.

)
, (16)

is the Wronskian. Therefore,

δ
[
L+

λW
2
]
= 0, (17)

and from here one obtains the Kato identity140, 145

λ
S = λ

t +
2

W
〈ψ t |L̂|ψ t〉. (18)

In Kohn’s variational method, equation 18 is solved by using N +1 trial functions [g(r),φi(r)] with linear trial coefficients,

ψ
t(r) = f (r)+λ

tg(r)+
N

∑
i=1

ciφi(r). (19)

where φi(r) are a set of L 2 functions.
Substituting the solution of equation 19 into the Kato identity and projecting onto 〈g| and then 〈φi| leads to a set of linear

equations. Using the symbol, 0 for f , 1 for g, and b for the set 〈φi|, these matrix equations become,

mmm00 = L̂LL00− L̂LL0bL̂LL
−1
bb L̂LLb0, (20a)

mmm11 = L̂LL11− L̂LL1bL̂LL
−1
bb L̂LLb1, (20b)

mmm10 = L̂LL10− L̂LL1bL̂LL
−1
bb L̂LLb0. (20c)

This formalism incorporates the bound state subspace into the continuum subspace using partitioning. Substituting (19) into (18)
and using (20) plus,

mmm†
10 =

1
2

W +mmm01 (21)

yields a very compact expression for the variationally corrected quantity,

λ =
2

W
[mmm00−mmm†

01mmm−1
11 mmm10] (22)
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The generalization to the full multi-channel problem is straightforward. The trial function is,

Ψ
c = ∑

c′
A [ψc′F

c
c′ ]+∑

i
diχi, (23)

where ψc′ are a set of N-particle target states, Fc
c′ a single-particle function that describes the scattered particle and χi a set

of (N+1)-particle antisymmetric L 2 states. The operator A antisymmetrizes Fc
c′ and ψc′. The channel continuum functions

Fc
c′ can be further expanded in terms of spherical harmonics and radial functions akin to those in Eq.(12) that are linearly

independent continuum orbitals and are regular at the origin. The generalization of the variational principle to the multichannel
case is,

λ
S
c,c′ = λ

t
c,c′ +

2
W
〈Ψc|L̂|Ψc′〉. (24)

There are some important practical numerical issues associated with solving these equations (see Box 4).

[H2] Kohn variational method applications
Applications of the Kohn variational method to electron-atom collisions, seem to have diminished after the 1990s. In contrast,
when it comes to electron-molecule collisions and photoionization, the opposite is true. Here we outline a few of the recent
applications of the method over the past decade.

An interesting example is the use of the complex Kohn and polyatomic Schwinger variational techniques to study inter-
channel coupling correlation effects in the valence photoionization dynamics of SF6 with good agreement between the two
calculations and the experimental results.146 This study revealed the importance of inter-channel correlations and determined a
long debated ordering of the valence orbitals of the compound. Other applications to molecules are calculations of excitation of
water by low energy electron impact,147 experimental and theoretical investigations of the dynamics of dissociative electron
attachment to methane,148 hole localization in K-shell and core-valence-excited acetylene photoionization,149 photoelectron
angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene (Ref.150), to name a few.

The complex Kohn variational method was also used to compute light-driven electronic transitions between continuum
wavefunctions in atomic and molecular systems. This development enabled the study of multiphoton processes in the
perturbative regime for arbitrary light polarization. The method was applied to compute the photoelectron spectrum arising
from a pump-probe, two-photon ionization of helium experiment induced by a sequence of extreme ultraviolet and infrared-light
pulses.151

A final example involves computational studies of positronium (Ps) scattering off of hydrogen. This is a very difficult
problem which has been used as a test case for comparing scattering approximation methods . The Kohn variational method has
often been considered as the gold-standard for this problem. Recent comparisons between the R-matrix method for the S-wave
scattering in Ps-H collisions has shown that the phase shift calculations done with both methods agree to within less than 4%152.
In Ref.153 a study was conducted on Ps-H, e−-H and e+-H scattering using various versions of the Kohn variational method.
The calculations revealed qualitative agreement of the integrated cross sections for the first two processes, but for the same
process there was significant disagreement between the partial wave cross sections at low energies.

[H1] Comparisons of the methods
If we look at the case of scattering of electrons from atoms as an example, where comparisons are possible, both the CCC and
BSR-matrix methods are quite competitive and also quite accurate. By quite accurate we mean that they reproduce the results
of well designed experiments. In fact, in some instances, where discrepancies exist, the calculations have been found to be
more accurate than experiment as shown by performing the experiments again more carefully or with improved experimental
techniques.123 The CCC approach has some advantages for quasi two-electron systems because the codes have been written to
explicitly cover these systems. The Belfast and BSR-matrix codes are fully general codes94, 103, capable of treating atomic
systems with any number of electrons. This places certain practical restrictions on the size of the state expansions that are
computationally tractable. But here too, there have been cases where the calculations have pointed to experimental errors which,
when corrected, agree quite well with each other.

The Kohn variational method saw a number of successful applications to atomic systems when it was introduced in the late
1960s-1980. For some reason, it was not pursued as vigorously as the R-matrix and CCC approaches, which still dominate the
field today. Perhaps this was a consequence of the anomalous singularities present in the K-matrix version of the method, which
require special attention, but it was more likely due to the persistence of a number of groups working diligently to write the
computer codes needed to apply the methods to realistic problems. As an aside, there is no reason why the complex versions
of the Kohn variational method cannot have singularities, but it has been shown154 that these are a consequence of using an
incomplete basis set and rarely occur in practice.
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The situation for molecules is different. Calculations of electron-molecule collisions have been dominated by the R-matrix
method95 and the complex Kohn variational method 136. The former grew out of the Belfast atomic R-matrix codes155 which
were preceded by earlier efforts156. The early complex Kohn work was initiated at Los Alamos National Laboratory138, 141 and
many of the subsequent and important developments came from the Lawrence Berkeley Laboratory/UC Davis group.140

The molecular collisions problem, especially for general polyatomic molecules, is difficult computationally and subject to
limitations in the size of the wavefunction expansion that can be used. Nonetheless, both the R-matrix and Kohn variational
method have been quite successful in describing a number of processes of interest in both electron scattering and photoionization
of small to medium sized molecular systems. Where comparisons between the two approaches are available, they often do not
agree quantitatively and in some instances show qualitative differences.

[H1] Time-dependent problems
Although reformulating the time-independent collision problem as a time-dependent problem using wavepackets can be useful,
the focus of this Technical Review is on problems with a truly time-dependent interaction such as an atom or molecule exposed
to an intense, short-pulse, time varying, laser field. The target, exposed to this external perturbation may undergo excitation
and/or ionization. If the radiation can ionize the target, the continuous spectrum must be treated and many of the approaches
used in time independent collision theory remain formally and often computationally relevant.

However, the mathematical difference is that a time-dependent problem is an initial value problem not a boundary value
problem, which requires that the solution be propagated in time from some starting value, t0, to some final value, t f where
the physically relevant quantities are extracted. In some cases, this last step can be the most difficult to formulate in a
computationally tractable fashion. In most physically interesting problems, the laser field is on for some finite period and
then turned off. The system then propagates in the Hamiltonian of the field-free system and after some suitable time, the
wavefunction is interrogated for the probability of being in some final state of the field-free system. Clearly, during this final
phase, the methods used for the time-independent problem are relevant, but even when the system is exposed to laser radiation,
expansions such as those described in the previous section are useful. Of course, the coefficients of the terms in that expansion
are time-dependent. Consequently, it is not surprising that many of the methods developed for collision problems are also
useful in the time-dependent case.

When ionization becomes a factor in describing the interaction of radiation with an atom or molecule, the stationary state
wavefunctions for the continuum in the absence of the field can be used as a basis for the time-dependent problem. They also
can be useful in reducing the computational effort in computing various probabilities when the field is turned off.

The essential difference is that it is necessary to propagate the wavefunction in a time-dependent potential while the field
is on. There are a variety of methods to accomplish this. Some only require knowledge of the wavefunction at the previous
time steps, others make some use of future information. In the former instance, there are both explicit and implicit approaches.
Implicit methods typically require the solution of a set of algebraic equations at the previous and current time. In this Technical
Review, we will concentrate on methods which approximate the exact propagator,

Û(t; t0) = 1+
∞

∑
n=1

(−i)n
∫ t

t0
dt1
∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtnT [H(t1)H(t2) · · ·H(tn)] , (25)

where T is the time ordering operator. Here Û(t; t0) is the propagator that takes a system from time t0 to t and H(ti) is the
Hamiltonian of the system at time ti. For short times (δ t) the time ordering operator may be neglected and one gets,

Û(t0 +δ t; t0)≈
∫ (t0+δ t)

t0
exp−i[H(t)t] dt (26)

This approximation can lead to error accumulation in the phase and convergence. Therefore the size of the time step should
be treated carefully to monitor the accuracy. There are other more computationally expensive methods that could avoid this
approximation157. If the integral is approximated using the midpoint rule, one obtains,

Û(t0 +δ t; t0)≈ exp
(
−i[H(t0 +

δ t
2
)]δ t

)
(27)

The application of this exponential to the wavefunction at t0 is the major computational process. Since H(t) is, in principle, a
large matrix, if one could easily and efficiently diagonalize H(t), the eigenvalues and eigenvectors could be used to evaluate the
exponential. In general this would be a very computational expensive approach even if the diagonalization was possible. Since
one really only requires the action of the exponential on a known vector, other methods are more effective. One such approach,
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called the Crank-Nicholson method158, approximates the exponential as a Padê approximate,

Û(t0 +δ t; t0)≈
I− i δ t

2 H(t0 + δ t
2 )

I + δ t
2 H(t0 + δ t

2 )
(28)

, (where I is the identity matrix) which leads to the following set of linear equations,

[I− i
δ t
2

H(t0 +
δ t
2
)]Ψ(t0 +δ t) = [I + i

δ t
2

H(t0 +
δ t
2
)]Ψ(t0) (29)

In practice, the composite exponential is ‘split’ into simpler parts and the Padé approximation applied to the separate parts in
order to make the linear equations easier to solve. These manipulations all preserve the second order accuracy of the method.

Another quite effective approach to computing the exponential is the short iterative Lanczos method159 (see Box 5). The
basic idea is to use a vector space constructed from the repetitive application of the Hamiltonian to a vector to perform an
‘effective’ diagonalization of the Hamiltonian.

The takeaway message is that in all of these techniques, the action of the Hamiltonian on a vector is required and some basis
is needed to perform that operation. For this basic operation, a discretization of the Hamiltonian is required. Stated differently,
some spatial basis is required to perform the needed operation. Often, it is the bound and continuum states of the unperturbed
system that are the most convenient or accurate way to perform that operation. They certainly reduce the efforts needed to
extract accurate transition probabilities once the field is turned off. That said, it is often neither practical nor convenient to use
the basis of the unperturbed system to expand the time-dependent wavefunction while the electromagnetic field is on. When
the radiation cannot ionize the target, the easiest procedure is to expand in some computationally convenient L 2 basis with
time-dependent coefficients and reduce the problem to a set of coupled, time-dependent algebraic equations which are solved
using one of the techniques discussed earlier. When the electromagnetic field is such that the system can be ionized, the most
logical and convenient approach is to generalize the CC expansion to have time-dependent coefficients160. So, once again, the
treatments developed for the collision problem come into play. The inevitable conclusion is that all of the efforts of previous
decades are essential to solving today’s problems.

We conclude this section by mentioning that there are numerous newer developments in the treatment of the time-dependent
Schrödinger equation relevant to strong-field laser processes. These include multi-configuration time-dependent Hartree-Fock
approaches161 and orbital adaptive time-dependent coupled-cluster162, where variational principles are applied to a N-body
wavefunction ansatz; configuration interaction (CI) methods with single excitation163, which is effectively a one-electron theory
with coupled channels; Complete-Active-Space Self-Consistent-Field methods164, where both the CI coefficients and the shape
of the orbitals are variationally optimized; Time-Dependent R-matrix methods130, 165, using the usual division of space into two
regions; an inner region where the interaction of the electron and the laser is included and an outer region where a one or two
electron scattering problem is solved on a finite-difference grid.
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Key points:

• We overview the best-of-breed numerical methods being used to compute electron atom and electron molecule scattering
cross sections and to propagate the Schrödinger equation in time.

• We describe close-coupling, the R-matrix method and the Kohn variational method and briefly discuss the importance of
complex scaling to practical scattering theory.

• We outline how these techniques may be extended to treat the time dependent Schrödinger equation.
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Box 1 Solution of radial close-coupling equations
In the numerical solution of the radial integro-differential equations, there are typically three major steps. Near r = 0, the
solutions are expanded in a power series and the coefficients determined by matching. Since the equations are second order,
two starting values are need to continue the solution to larger radial values. The most used approach has been the Numerov
method since the equations do not contain a first order derivative. The Numerov method achieves fourth order accuracy using
three points which is better than the standard three point finite difference method.

The presence of the exchange terms suggests that an iterative solution is needed. However, by suitably rearranging the
exchange terms, the equations may be rewritten so that exchange is separated into a term that may computed using outward
integration plus an inhomogeneity. After the equations for the homogeneous and inhomogeneous terms are computed they
may be combined to form the desired solution. In practice, this leads to a larger set of coupled differential equations which are
integrated outward until the exchange vanishes and the solutions can be matched to free waves or connected to an asymptotic
expansion. The asymptotic expansion has the merits that it avoids the mixing of exponentially growing solutions for closed
channels. Other techniques such as R-matrix propagation, or inward integration have also been used in practical calculations94.

Another approach, which has significant merit, is to convert the integro-differential equation into integral equations. These
equations are initially of the Fredholm form. Introducing quadratures converts them into a set a linear algebraic equations
which may be solved using standard techniques. Although these Fredholm equations are unconditionally stable, they can be
expensive to solve, as the matrices can become quite large in realistic problems. Alternatively, the Fredholm equations may
be converted into a larger set of inhomogeneous, Volterra equations and solved by outward numerical integration. This is
illustrated in the following example.

Box 2 Fredholm to Volterra integral equations
Consider the following Fredholm integral equation of the second kind,

u(r) = sin(kr)+L(r)u(r) (30a)

L(r)u(r) =
∫

∞

0
G(r|r′)V (r′)u(r′)dr′ (30b)

u(r) =sin(kr)+ cos(kr)
∫ r

0
sin(kr′)V (r′)u(r′)dr′+ sin(kr)

∫
∞

r
cos(kr′)V (r′)u(r′)dr′ (30c)

Introduction of quadratures directly into (30a) would reduce the Fredholm integral equation to a set of linear equations
that could be solved by a number of well known techniques. However, the derivative singularity in (30a) can lead to slow
convergence. Under such conditions, using a higher order quadrature formula does not guarantee better accuracy or more rapid
convergence. To avoid these pitfalls, equation (30a) is rewritten as,

u(r) = sin(kr)+L0(r)u(r)+ sin(kr)
∫

∞

0
cos(kr)V (r)u(r)dr (31a)

L0(r)u(r) = cos(kr)
∫ r

0
sin(kr′)V (r′)u(r′)dr′− sin(kr)

∫ r

0
cos(kr′)V (r′)u(r′)dr′ (31b)

The important point to note about the action of L0 on the unknown solution is that due to the symmetry of the operator, a
numerical quadrature can be chosen that only requires knowledge of the solution at previously determined values. Consequently,
the integrals may be computed recursively. Thus once the solution to the equation,

u0(r) = sin(kr)+ cos(kr)
∫ r

0
sin(kr′)V (r′)u0(r′)dr′− sin(kr)

∫ r

0
cos(kr′)V (r′)u0(r′)dr′ (32)

is determined, the solution to u is,

u(r) = u0(r)[1+ c] ; c =
c0

1− c0
, c0 =

∫
∞

0
cos(kr)V (r)u0(r)dr (33)

This approach generalizes to the case of non-local potentials of the form;

U(r|r′) = ∑
i

ui(r)φi(r′) (34)

The solutions to an augmented set of Volterra equations may be linearly combined to form the total solution from a set of easily
computed integrals and some straightforward linear algebra.
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Box 3 Quick R-matrix numerical tutorial
The internal region
Solving equation (9) is often the major computational effort in R-matrix calculations. To accomplish that one needs needs to
compute the Hamiltonian matrices of the operator [HN+1(r;R)+LN+1]. Much of the effort dedicated to this is quite similar to
a standard bound state eigenvalue problem; one and two electron integrals must be computed and the Hamiltonian matrices
assembled. For atomic R-matrix calculations, the most accurate approach is based on using B-splines as a radial basis and
using a non-orthogonal set of configurations103, 166. This variant of the R-matrix enables the target states to be computed very
accurately with compact configuration interaction expansions. In addition, using a B-spline radial basis provides a great deal of
flexibility in the representation of the scattering functions.

The external region: R-matrix propagation
The R-matrix propagation approach can be used to extend an R-matrix defined in a region, i−1 to region i. Assuming that
there is the global R-matrix through region i−1,

u(ri−1) = Ri−1u̇(ri−1), (35)

relates the radial function u(ri−1) and its derivatives, u̇(ri−1) , at the rightmost boundary, where we use a boldface notation to
mean vectors and matrices in the channel indices. In the ith region, one can relate the values of the functions to their derivatives
via,

u(li) = ri(li|ri)u̇(ri)− ri(li|li)u̇(li) (36)
u(ri) = ri(ri|ri)u̇(ri)− ri(ri|li)u̇(li) (37)

where ri are the sector R-matrices for region i. Using equations (35), (36) and (37) and that fact that the functions (derivatives)
on the left in region i are equal to those on the right in region i−1, yields an expression for the new global R-matrix,

Ri = ri(ri|ri)− ri(ri|li)
[
Ri−1 + ri(li|li)

]−1ri(rl |rr) (38)

One may use any approach to compute the sector R-matrices, including expanding in a basis. One popular technique is to make
the sectors small enough that the potential can be taken to be a constant within that sector. This allows a construction of the
sector R-matrices as trigonometric functions after diagonalizing the constant coupling matrix.

Box 4 Kohn method practical numerical issues
In the full multi-channel problem it is computationally convenient to work with an orthonormal (N +1)-particle basis. The
channel orbitals Fc

c′ in equation 23 are expanded as linear combinations of bound and free (that is continuum) states,

Fc
c′ = fc′δcc′ +λ

t
cc′gc′ +∑

i
α

c′
i φ

c′
i (39)

where fc′ and gc′ are the free orbitals, φ c′
i are the bound functions, and α , λ and δ are variational coefficients. The continuum

functions fc′ and gc′ are orthogonalized to all the L 2 functions appearing in equation (39). This has the effect of imposing a
strong orthogonality condition between the Θc target states and the newly orthogonalized channel functions.

The {Θcφ c
i } functions that appear in equation (23) are divided into two categories: functions where the N-particle part

Θc contains one or more determinants containing the added φ c
i orbital and those which do not contain such terms. The first

category functions are required to relax the strong orthogonality constraint that is imposed on the channel wavefunction and are
limited in number. These terms are most easily treated by moving them into the second term of equation (23). This procedure
separates the wavefunction into a PΨc and QΨc part using the terminology of Feshbach resonances167, 168. In contrast to the
single channel case, the P-space part of the multi-channel wavefunction now contains an L 2 part (that is the second category
{Θcφ c

i } functions).
As an example, consider the 2S symmetry of hydrogen atom. The appropriate term to include in Q-space in this case is

the |1s2〉 term51. Other terms that belong to Q-space in this example are terms of the form |φiφ j〉 where i runs over all indices
except 1s. What remains in the P-space are then terms of the form |1sφi〉 where φi is not 1s.

The Q-space part may be formally replaced by an optical potential which results in an effective Hamiltonian,

He f f = LPP +LPQL−1
QQLQP = HPP−Vopt.
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operating only on the P-space part of the wavefunction. Here L−1
QQ is the inverse of the Hamiltonian matrix spanned by the χi

functions and Vopt is the optical potential.
The multichannel form of Eq. 22 is40, 140

λ
S =

2
W

[
Moo−M†

oqM−1
qq Mqo

]
, (40)

Here index o refers to the space spanned by {Θc′ fc′}, and q the space spanned by {Θc′gc′} and {Θc′φ
c′
i }.

At this point, the required theoretical developments are in hand and all that is needed is to construct the Hamiltonian matrix
elements. For atomic systems, this has already been done. For molecules, it is possible to construct all the direct terms in the
Hamiltonian matrix elements by a mixture of analytic and straightforward numerical techniques. This is not the case for the
exchange and optical potential terms. There is a mathematical approximation, which is physically motivated, to eliminate these
terms. It is based on the assumption that once the set of bound state orbitals is sufficiently large, the orthogonalization process
removes all of the amplitude of the channel function inside the molecular region where exchange and correlation are important.
Under these conditions, the exchange and optical potential matrix elements are,

Mex ≈∑
i j
〈A (Θc fc)|φi〉 Mi j 〈φ j|A (Θc′ fc′)〉= 0, (41)

and can therefore be neglected.
The advantage of the approximation is that no free-free or bound-free matrix elements involving exchange of the optical

potential interactions survives. The exchange effect is instead incorporated into the bound-bound components of Heff, which
are readily computed with electronic structure codes.

Box 5 Lanczos iteration
The Lanczos iIteration method was initially developed to find the smallest and largest eigenpairs of a large, sparse, n× n
symmetric matrix159, 169, 170. The method requires the application of an often large, but sparse matrix to a vector. Specific
routines which exploit the structure of the matrix can be developed to perform that operation efficiently.

In effect, the Lanczos method may be viewed as reducing the large, Hn×n matrix to a (hopefully) smaller, H(Λ)
m×m tridiagonal

matrix, where ideally m� n of the eigenpairs of interest may be computed accurately. If the iteration continues until m = n, the
eigenvalues and eigenvectors of H(Λ) would be identical to those of the Hn×n. A naive implementation of the Lanczos iteration
can lead to linear dependence which has a number of undesired side effects110, 170, 171. To circumvent linear dependence often
requires additional and expensive re-orthogonalization procedures.

The transformation between the two representations is given by:

H(Λ) = QT HQ , (42)

where Qn×m=[|q1〉 |q2〉 ... |qm〉] are the Lanczos vectors at the mth step of the process. One can view these vectors as linear
combinations of the so-called Krylov subspace vectors

K(H,q,m) = span{|q1〉,H|q1〉,H2|q2〉, ...,Hm−1|q1〉}= span{|q1〉, |q2〉, |q3〉, ..., |qm〉},

where,

βk+1|qk+1〉= (H−αkI)|qk〉−βk−1|qk−1〉. (43)

The vectors in Eq.(43) form an orthonormal set. The recursion relation may be started with any vector and continued until the
desired eigenvalues are found to sufficient accuracy.

The application of the Lanczos method to time propagation is not directly related to the question of determining the
eigenvalues157, 172–174. The process may be stated as follows:; let the first Lanczos vector, |q1〉 = |ψ(x, t)〉. How can one
determine a small set of additional vectors, |q2〉 . . . |qm〉, which effectively span the new subspace defined by |ψ(x, t +δ t)〉 and
provide a representation of the exponential function over the time-step? Assuming the time-step is small enough that one can
approximate the interaction of the electrons with the field by using the field’s value at the midpoint of the time-step, then the
time evolution operator, Û, may be approximated as

Û(t +δ t|t) = exp [−iĤ(x, t +
δ t
2
)δ t]. (44)
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The size of the Krylov subspace matrix, Q, is a function of the accuracy demanded and the size of the time step. The
tridiagonal matrix,

H(Λ) =


α1 β2
β2 α2

. . .
αm−1 βm

βm αm

 . (45)

may be easily diagonalized for the eigenpairs and the wavefunction at the next time step computed as,

|Ψ(x, t +δ t)〉= ∑
i
|λi〉exp(−iλiδ t)〈λi|Ψ(x, t)〉 . (46)
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Glossary terms
• Self-consistent field: It is often synonymous with the Hartree-Fock method and mean-field method. It is based on

Douglas Hartree’s assumption that each particle in an N-body system could be treated in the average field of the other
N−1 particles of the system.

• Variational principle: A principle used in the calculus of variations concerned with finding functions that minimize,
maximize or make stationary quantities defined by differential of integral equations.

• Born-Oppenheimer approximation: An approximation in molecular systems that treats electronic and nuclear motion
adiabatically. This assumption is based on difference in time-scales of electronic and nuclear motions. Consequently,
the electronic wavefunction can be computed by freezing the positions of the nuclei. Repeating this calculation as a
parametric function of nuclear positions produces a potential in which the nuclei move.

• Padê approximate: A numerical method that approximates a function by a rational function of two polynomials.

• Configuration interaction: A quantum chemical variational method for solving Schrödinger equation of many-body
systems. It relies on constructing linear combinations of Slater determinants of fixed spin orbitals. The unknown linear
coefficients are computed using the Rayleigh-Ritz variational principle. In theory the method is exact, but in practice the
computational limitations arising from large number of configurations force the truncation of the expansions.

• Coupled cluster: is a numerical quantum chemical method used for describing many-body systems. Coupled cluster
takes an assumed reference basic configuration (such as the Hartree–Fock wavefunction) and constructs multi-electron
wavefunctions using an exponential operator ansatz to add electron correlation. The cluster expansion must be truncated
in practice due to the complexity of the resulting non-linear equations.

• Preconditioner: In this context it refers to a matrix transformation of a set of linear equations that are more suitable for
finding a solution by iterative techniques.

• Quantum defect: In this context it refers to an expression for the energy of a Rydberg state in an atom that replaces the
hydrogenic integer quantum number n, by a non-integer value. The deviation from the integer is called the quantum
defect. The correction accounts for the fact that the inner electron partially screen the bare nuclear charge.

• Re-arrangement collisions: are collisions in which the initial and final states are eigenstates of different unperturbed
Hamiltonians.

• S,T, and K-matrix: These are a family of scattering matrices that relate the initial states in a scattering process to the
possible final states. All three matrices are related to each other mathematically. The S-matrix expresses the states in
terms of exponential free waves, whereas the K-matrix expresses the states in terms of sine and cosine functions. The
T-matrix uses a mixture of exponential and trigonometric functions. For exact definitions and relations refer to Ref.94

• R-matrix: “ The R-matrix relates the reduced radial wave function Fi(r), describing the radial motion of the scattered
electron in the ith channel, to its derivative on the boundary r = a0 by the equation:”94

Fi(a0) = ∑
j

Ri j(E)a0dFj/dr|r=a0

TOC blurb: Numerical methods such as close-coupling, R-matrix, the Kohn variational method have been around for decades,
but more recently they have been applied to the treatment of the time-dependent interaction of strong electromagnetic fields
with atoms and molecules.
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