
Leveraging Side-channel Information for Disassembly and
Security

JUNGMIN PARK, Florida Institute for Cybersecurity Research, University of Florida, USA

FAHIM RAHMAN, Florida Institute for Cybersecurity Research, University of Florida, USA

APOSTOL VASSILEV, National Institute of Standards and Technology, USA

DOMENIC FORTE, Florida Institute for Cybersecurity Research, University of Florida, USA

MARK TEHRANIPOOR, Florida Institute for Cybersecurity Research, University of Florida, USA

With the rise of Internet of Things (IoT), devices such as smartphones, embedded medical devices, smart
home appliances as well as traditional computing platforms such as personal computers and servers have
been increasingly targeted with a variety of cyber attacks. Due to limited hardware resources for embedded
devices and difculty in wide-coverage and on-time software updates, software-only cyber defense techniques,
such as traditional anti-virus and malware detectors, do not ofer a silver-bullet solution. Hardware-based
security monitoring and protection techniques, therefore, have gained signifcant attention. Monitoring devices
using side channel leakage information, e.g. power supply variation and electromagnetic (EM) radiation, is
a promising avenue that promotes multiple directions in security and trust applications. In this paper, we
provide a taxonomy of hardware-based monitoring techniques against diferent cyber and hardware attacks,
highlight the potentials and unique challenges, and display how power-based side-channel instruction-level
monitoring can ofer suitable solutions to prevailing embedded device security issues. Further, we delineate
approaches for future research directions.1

CCS Concepts: • Security and privacy → Side-channel analysis and countermeasures;

ACM Reference Format:
Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor. 2019. Leveraging
Side-channel Information for Disassembly and Security. ACM J. Emerg. Technol. Comput. Syst. 0, 0, Article 0
(2019), 21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

With the advent of the Internet of Things (IoT), embedded devices, and networked high performance
computation platforms and data centers, various cyber attacks such as malware, ransomware,
distributed denial-of-service (DDoS), etc., have become a signifcant concern in the present world.
1DISCLAIMER: This paper is not subject to copyright in the United States. Commercial products are identifed in order
to adequately specify certain procedures. In no case does such identifcation imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it imply that the identifed products are necessarily the best
available for the purpose.

Authors’ addresses: Jungmin Park, Florida Institute for Cybersecurity Research, University of Florida, Gainesville, FL, 32611,
USA, jungminpark@uf.edu; Fahim Rahman, Florida Institute for Cybersecurity Research, University of Florida, Gainesville,
FL, 32611, USA, fahim034@uf.edu; Apostol Vassilev, National Institute of Standards and Technology, Gaithersburg, MD, USA,
apostol.vassilev@nist.gov; Domenic Forte, Florida Institute for Cybersecurity Research, University of Florida, Gainesville,
FL, 32611, USA, dforte@ece.uf.edu; Mark Tehranipoor, Florida Institute for Cybersecurity Research, University of Florida,
Gainesville, FL, 32611, USA, tehranipoor@ece.uf.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and
the full citation on the frst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specifc permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1550-4832/2019/0-ART0 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
mailto:permissions@acm.org
mailto:tehranipoor@ece.ufl.edu
mailto:dforte@ece.ufl.edu
mailto:apostol.vassilev@nist.gov
mailto:fahim034@ufl.edu
mailto:jungminpark@ufl.edu

0:2 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

All network-connected devices – from high performance PCs and cloud servers to low-cost and
lightweight IoT and embedded devices – are susceptible to such cyber and hardware attacks. Since
low-cost loT devices have limited resources, such as low processing, memory capability and energy,
deploying sophisticated defense mechanisms is extremely difcult and fnancially infeasible making
them attractive targets to adversaries [72]. The attacks and vulnerabilities are expected to be even
more with an estimated 26 billion connected devices by the end of 2020 [49]. Many IoT devices can
be infected by a botnet malware and be used as ‘zombies’ for distributed denial-of-service (DDoS)
attacks [4]. An adversary can extract private data such as credit card numbers and passwords
to log into sensitive portals hosted by these devices, or obtain unauthorized control to critical
infrastructure such as power plants by malware such as Stuxnet [5]. Furthermore, a malware
infection through Internet or physical access can cause malfunction of medical devices and smart
cars, as well as personal computers and cloud devices. It is with no doubt that such successful cyber
attacks can lead to serious economic loss, infrastructural damage, or injury to humans [55].
It is apparent that thwarting the threats and vulnerabilities against cyber attacks requires last-

ing attention. In particular, runtime monitoring of computing devices from all domains is highly
necessary to detect malware, unauthorized access, and illegitimate controls and applications.
Such monitoring techniques can be either software-based and hardware-based. The software-based
method mostly performs control-fow integrity (CFI) assessment [10] which can monitor unexpected
changes by a malicious code by analyzing the runtime control-fow graph (CFG). For instance, in
order to enforce the software-based CFI, machine-code instructions (or instrumentations) for an indi-
rect function call and a corresponding function return can be rewritten in a way that unique IDs are
assigned for the source and the destination functions, and validity of the IDs are checked for the in-
tegrity verifcation [1]. However, such software-based methods have disadvantages of performance
degradation (e.g., CFI in [1] and program shepherding in [38] have 45 % and 100 % performance
overhead for the SPEC2000 benchmark program crafty [34], respectively) and unavailability to
devices with resource-constrained architecture. Further, an attacker can potentially evade such
countermeasures. For example, while non-executable data (NXD) and non-writable code (NWC)
of software-based CFI can be protected by page-based access control (e.g., via write-xor-execute,
W ⊕ E), an attacker can disable it with a syscall command to mprotect()/VirtualProtect() [18].
Traditional signature-based software monitors for standard computing devices, such as common
anti-virus or malware detection software, do not provide sufcient protections as they face difcul-
ties in detecting zero-day threats and the embedded device may not have sufcient resources (e.g.,
memory to store and update known malware signatures) to support such schemes [30].

On the other hand, hardware-based methods usually use embedded and/or independent trusted
hardware to observe the behavior of a program running on the device under monitor. Hardware-
based CFI architecture integrates hardware monitors into processor’s pipeline stages or hardware
debug interface such as the Joint Test Action Group (JTAG) or scan chain is used to validate CFI at
runtime. Hardware-based detection methods require smaller overhead for resource and latency
compared to the software-based counterparts. However, such techniques heavily rely on machine
learning (ML) techniques that need extensive training and validation and, therefore, may require
additional hardware supports [56, 66, 70]. Based on the existing limitations, it is evident that neither
the prevailing software-only or hardware-only techniques can provide a complete defense against
the numerous threats and attacks.
Recently, researchers have paid more attention to hardware-based methods that leverage side-

channel leakages such as power consumption and EM [14, 19, 48, 50, 51, 68]. Such side-channel
leakages can be used for revealing secret data residing inside the device, e.g., private key used
for encryption. This is traditionally known as side-channel attacks (SCA). However, side-channel
information can also be leveraged for analyzing the status of a computing system at runtime. One

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:3

crucial way to do so is to disassemble the runtime code, i.e., to translate side-channel information
into assembly codes consisting of an instruction and operands (such as the source register or the
destination register) in a timely sequence. It can be used for verifcation of programs running on
the device. In this paper, we refer to this as a side-channel disassembler (SCD). Using a SCD, the
control fow of the target device can be tracked in the coarse- or fne-grained granularity, both
in software and hardware domains, without any performance degradation of the target device. A
SCD is multipurpose as it allows to enforce decoupled monitoring of targeted devices. For example,
it can analyze the runtime status of the device and can detect potential malware and security
breaches which is of concern to many. A Defense Advance Research Program Administration
(DARPA) program called Leveraging the Analog Domain for Security (LADS) [16] that is similar
to this concept attempts to achieve security and protection using diferent side channels that
are analog in nature. Additionally, a SCD can potentially perform hardware-frmware attestation
and frmware reverse engineering, even against frmware that is protected by encryption and
anti-tamper technologies. Such a SCD-based reverse engineering may be considered as a potential
threat for Intellectual Property (IP) theft, whereas the same technique can be used for protection
through frmware/software verifcation and authentication. One way to maintain the integrity
of the underlying frmware is to verify whether the frmware is modifed while running on the
device by monitoring the side-channel information. Since disassembly techniques do not require
additional hardware to be embedded in the original processor architecture, legacy devices without
internal hardware monitors, such as performance counters or JTAG, can be greatly benefted. Such
devices, therefore, can be protected by attaching an external side-channel monitor capable to collect
necessary power or EM signature [50].
To date, existing SCD techniques have mostly been implemented on low-performance micro-

controllers due to obvious technical limitations, such as noise-free data acquisition, additional
hardware (e.g, oscilloscope with high sampling rates and high bandwidths, high-gain amplifers, or
flters) cost, complex data processing, etc., that get even more pronounced for high performance
processors used in personal computers and smartphones. For example, noise free data collection
from high-performance multi-core processors is still a challenge and existing SCD techniques are
not always readily scalable for complex systems. One may also argue that it is not economically
feasible to employ expensive and bulk instruments for collecting side-channel leakages for low-cost
IoT and embedded devices using simpler microcontrollers or processing units. As one can see, re-
solving the prevailing challenges requires a unifed and holistic efort from the research community.
We frmly believe that by overcoming the challenges, this technique can ofer a comprehensive
solution to present day cyber-threats in all domains of electronic devices.
In this work, we focus on analyzing hardware-based monitoring techniques leveraging power

side-channels for IoT and embedded devices and highlight potential applications and prevailing
challenges for supporting high-performance computing devices as well. We frst present a taxonomy
of hardware-based monitoring methods to summarize and compare existing techniques based
on diferent threat models. Next, we introduce the assembly-level instruction monitoring and
disassembly technique for embedded devices using power side-channel leakage. We also provide
potential applications such as malware detection and frmware reverse engineering using the
disassembly technique. Finally, we outline the unique challenges in this feld and propose high-level
approaches for future research directions.
The rest of the paper is organized as follows. Section 2 discusses the adversarial threat mod-

els focusing on diferent attacks and attackers’ capabilities. Section 3 presents the taxonomy of
hardware-based monitors and discusses existing side-channel monitors. Section 4 discusses poten-
tial applications leveraging the proposed technique. Section 5 provides challenging problems in
this feld and the future research directions. Finally, we conclude in Section 6.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:4 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

Fig. 1. Controllability and concealment of adversary models.

2 ADVERSARIAL CAPABILITIES AND DEFENSE STRENGTH

Before analyzing diferent side-channel information based monitoring and security schemes in
detail, it is imperative that we understand the underlying threats from the adversary, as well as
diferent levels of defense that may be supported by various techniques against such threats. We
note that the associated threats may have similar components across diferent types of devices
such as IoT and embedded modules as well as high-performance computing platforms.
We defne two diferent adversarial models − Type-I and Type-II − based on the attackers’

capabilities. We assume that Type-I attackers only have access to the device under attack for
information gathering. They cannot manipulate the operation of the given device, i.e., they cannot
control or modify any of the data memory and code memory by adversarial code injection or
malware. We assume that the attackers can access only the data input/output ports and power pins of
the device under attack, and the target device can be modeled as a black box if necessary. Traditional
non-invasive side-channel attacks, such as Diferential Power Analysis (DPA), Correlation Power
Analysis (CPA), and profling attacks, are likely to be performed by Type-I attackers.

On the other hand, Type-II attackers can launch active runtime attacks as they have the ability
to control or modify data memory or code memory depending on the capabilities (controllability)
available to manipulate the original control fow [18]. However, as one can understand, not all
Type-II attackers have the same amount of capabilities and control over the device under attack. For
example, we assume that Type-II level-1 attackers can control only data memory which includes the
stack and the heap, but they cannot modify the code memory. This means that the attackers cannot
perform code injection or code tampering attacks. By modifying data memory and executing an
indirect branch, attackers can redirect control fow of existing code with a malicious result in the
code memory. Code-reuse attack (CRA), such as the return-to-libc or return-oriented programming,
is among such Type-II level-1 attacks [8]. Further, we assume that Type-II level-2 attackers have
control over both the data memory and the code memory. Such attackers can, therefore, inject
malicious code or data structure, referred to as code injection attack [21]. fnally, we assume that
the Type-II level-3 attackers can control all memory elements including registers and fip-fops.
They can perform non-invasive fault injection attacks such as glitching attack [6], temperature
fault attack [32], and CLKSCREW attack [67] as well as other lower level attacks. Additionally, the
attackers can perform semi-invasive attacks on the device.

We note that as the attackers’ control and capability over the device under attack increases, the
concealment of the attack decreases since higher level attacks become more prominent and tend
to show activities and properties that diverge enough for a legit user to identify easily (e.g., the
device under attack may become unresponsive, malfunction, or show unusual network activity).
Therefore, the quality and accuracy of the defense mechanism employed is highly related to the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:5

Fig. 2. Taxonomy of hardware-based monitors.

threat under consideration. A security monitoring and defense scheme based on side-channel
information may ofer a generic coarse-grain monitoring for defending against attacks that utilize
non-/semi-invasive techniques such as fault injections (i.e., Type-II level-3 attacks); however, it
may not be suitable for detecting more subtle attacks that modify the original data/control fow to
make divergent operations from the legit one (e.g. Type-II level-1,2 attacks). Henceforth, a more
powerful monitoring mechanism is required to detect more concealable threats. Fig. 1 shows
the controllability and concealment of the adversary model. We note that the prevailing defense
mechanisms, as mentioned in Section 3, are often geared towards selective threat models and fail
to ofer comprehensive protections against cross-layer threats from all levels and types.

3 TAXONOMY AND EXISTING HARDWARE-BASED MONITORS

Side-channel information, i.e., information that do not directly refer to the functional outcome of
the device but may potentially exhibit the activity of the device, can be obtained from diferent
sources such as supply power, EM radiation, temperature, or by utilizing diferent sensors, registers,
and communication channels. Such information capturing monitors can be generally categorized
into internal monitors, e.g., performance monitoring units (PMUs) with hardware performance
counters (HPCs), and external monitors, e.g., EM probe and monitors, depending on whether they
are integrated into, or external to, the original hardware design. Internal monitors are classifed by
used resources to estimate the activity of the device and external monitors are classifed by the
objective such as extracting data and tracking control fow. As shown in Fig. 2, each monitor has a
range of attack or defense levels. For the sake of simplicity, we mostly focus on the external side
channel information such as power. Details of such monitors are as follows.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:6 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

3.1 Internal Monitors
The internal hardware-based monitoring method exploits various embedded hardware resources
including CFI architecture, debug interface (e.g., scan chain, JTAG, performance monitoring units,
etc.) that is common in many modern SoCs or memory access monitors.

3.1.1 CFI Architecture. A CFI architecture such as shadow call stack (SCS) with a bufer can be
used to detect tampering with the return address during a function call by comparing it from two
diferent and independent stacks where the address copies are stored [13]. Such a technique can
prevent Type-II level-1 attacks such as code-reuse attacks (e.g., return-oriented programming (ROP)
and jump-oriented programming (JOP)) as well as Type-II level-2 and 3 attacks. Additionally, legit
program return addresses can be labeled ‘valid’ and stored in an isolated memory for future runtime
comparison [2]. However, such techniques are potentially vulnerable to control-fow bending (CFB)
attacks [17, 18]. Another major drawback is that the secure on-chip memory, i.e. the shadow stack
or label state memory where the addresses are stored for integrity comparison, may not be readily
available for lightweight IoT devices.

3.1.2 Debug Interface. Hardware debug interfaces can monitor and detect several Type-II level-2
and 3 attacks. For example, an interface following IEEE-ISTO NEXUS 5001 standards [20] can be
used to observe branch target address at runtime to monitor any mismatch from the targets stored in
the branch destination table caused by potential malware [27]. However, such a technique usually
requires an additional unit to collect and process data from the debug interface. Additionally,
performance monitoring units (PMUs) using HPCs can be used for micro-architectural event
monitoring for potential anomaly detection [66, 70]. Alam et al. [3] proposed machine learning
based real-time detection mechanism to deal with security against micro-architectural side-channel
attacks including cache-based attacks and branch-prediction-based attacks, which can identify
abnormalities in the number of micro-architectural events while those side-channel attacks are
being executed. PMUs ofer a fne-grain fltering for individual executions and provide a faster
response than the software-only counterparts. Also, being an integrated part of the hardware,
such monitors operate transparently to any program running on the processor. Being oblivious
of the program that is running, HPCs capture true activity information, and, therefore, it is very
hard for the adversary to control HPCs for evading the malicious footprint generated due to any
external malicious software. However, additional hardware supports as well as extensive training
for machine learning classifcation are required.

3.1.3 Memory Access Monitors. Analyzing memory access patterns using hardware monitors
can ofer defense against Type-II level-2 and 3 attacks. In such attacks, an infected program can
request suspicious memory access for undercover attacks such as rowhammer attack on DRAM
[37]. Yoon et al. [75] utilized profled memory behavior via Memory Heat Map (MHM) collected
by an on-chip hardware module called Memometer for malware detection. Xu et al. [73] utilized
virtual memory access patterns for identifying potential anomalies. In both cases, ML techniques
were used to diferentiate between malicious and benign programs.

These internal monitoring methods often require additional resources such as a control mecha-
nism to collect and process data from internal monitors as well as heavily rely on machine learning
techniques due to limited available information distinguishable features. In addition, real-time
detecting algorithms using internal resources may degrade the performance of the target device.
Further, legacy devices do not usually contain such internal hardware monitors. Therefore, CFI
assessment and monitoring techniques using internal embedded hardware is not readily attainable
for legacy and resource constrained devices.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:7

3.1.4 Control-Flow Protection. Werner et al. [71] proposed a sponge-based control-fow protec-
tion technique which supports the confdentiality of software IP and its authentic execution on
IoT devices. Firmware is stored in a sponge function based authenticated encryption scheme [7]
in the memory and each instruction is decrypted after the fetch pipeline stage such that correct
instructions can be decoded and executed. Since the encryption depends on the previous instruc-
tion states and the current instruction, (i.e., control fow), control fow deviation by code-reuse,
code-injection and fault-injection results in randomized instructions by incorrect decryption. The
randomized instructions can thwart attacker’s control. Also, this method prevenst from frmware
IP theft due to frmware encryption. However, since side-channel leakage is not considered in such
cases, it does not have robustness against side-channel attacks.

3.2 External Side-channel Monitors
The external monitoring methods generally use side-channel leakages such as power consumption,
EM radiation, temperature [33], or timing [53] with the measurement and monitoring units being
independent from the target device. The objective of the side-channel monitor is to extract private
data or estimate control fow (e.g., instruction sequences) at runtime. Side-channel analysis tech-
niques to extract secret data usually involve adversarial intentions, e.g. stealing private encryption
keys, etc., to control and exploit the devices and network. Such data extraction attacks can further
be classifed into non-profling and profling attacks depending on whether a signature profling is
required. Common non-profling attacks are diferential power analysis (DPA) [40], and correlation
power analysis (CPA) [9] attacks. On the other hand, template attacks [11], mutual information
analysis (MIA) [23], and various machine-learning based attacks [31, 57] correspond to profling
attacks that analyze and classify the side-channel signature into certain domains for confdent
extraction of underlying information. Side-channel monitoring methods for data extraction have
been used by Type-I adversaries and well-studied for the last few decades [60, 62, 77]. From a
defense point of view, this monitor can be used to evaluate side-channel leakage of embedded
devices by performing side-channel attacks as well as leakage assessment test such as test vector
leakage assessment (TVLA) t-test [24].
Another objective of side-channel monitoring can be to validate the control fow integrity (CFI).

This defensive technique against various attacks can further be classifed into coarse-grained and
fne-grained CFI methods based on the granularity of monitored activities. If the CFI design is based
on a periodic activity (e.g., loop) in the program [61], a coarse-grained estimation of per-iteration
execution time using side-channel leakage can be statistically compared to a benign program to
ensure the legitimacy of the runtime control fow. In [61], repetitive program activity such as
loops is analyzed by the spectrum of EM side-channel signals with spikes at specifc frequencies
corresponding to the iteration time of the loop. Based on the spectral profling of a benign program,
it is possible to recognize the spectrum of malicious programs. This method, therefore, can be
applied for malware detection with repetitive features [51]. A more precise CFI policy is based on
instruction-level granularity, which is referred to as a fne-grained CFI method. The fne-grained CFI
monitor can be utilized for reverse engineering of instruction code, also known as an instruction-
level disassembler, as well as malware and anomaly detection. As one can see, diferent hardware
monitors (e.g., power-based monitors vs. EM monitors) may lead to diferent implementations and
analysis techniques, nonetheless the basic target applications (attack or defense) remain the same
irrespective of the monitor itself.

3.2.1 Side-channel-based Coarse-grained CFI Methods. Clark et al. [14] proposed a malware
detection technique, called WattsUpDoc, on an embedded medical device and a supervisory control
and data acquisition (SCADA) device via power side-channel. WattsUpDoc collects system-wide

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:8 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

power consumption data at runtime and identifes anomalous activity using supervised ML algo-
rithms using traces of both the normal and abnormal activities. Since the medical and SCADA
devices have a small number of functional states (e.g., idle, booting, shutdown and compound
tasks in case of a pharmaceutical compounder), the normal behavior can be characterized at the
functional-level granularity and WattsUpDoc can detect abnormal behavior caused by known mal-
ware with at least 94 % accuracy and by unknown malware with at least 85 % accuracy. Although
this technique does not necessarily perform standard CFI assessment, it is able to distinguish
intrusive behaviors caused by potential malware.
Nazari et al. [51] proposed a technique called EDDIE that can detect anomalies caused by

code-injection attacks in program execution using EM side-channel. In this approach, the authors
implement a loop-oriented execution where the control fow graph (CFG) of the program represents
the fow from a loop-level state to other loop-level states. The loop-level states at runtime can be
estimated by EM spectrum resulting from short-time Fourier transform (STFT) of collected EM
signals [61]. By comparing monitored control fow to the reference (malware-free) control fow
using thestatistical Kolmogorov-Smirnov (K-S) test, EDDIE can detect malware injected into 10
benchmarks from MiBench [28] with at least 92 % accuracy.

While these coarse-grained monitoring techniques can detect malware from Type-II level-2 and
Type-II level-3 adversary models, they cannot detect the lower-level malware such as sophisticated
code-reuse attacks. Therefore, fne-grained CFI monitoring methods are required to identify more
subtle changes in the control fow caused by potential malware.

3.2.2 Side-channel-based Fine-grained CFI Methods. In order to identify malicious instruction
code that can extract a secret key or redirect the control fow to existing code with a malicious
result (e.g., code-reuse attack), an instruction-level side channel monitor, also called a side-channel
disassembler (SCD), can be used for fne-grained monitoring and analysis. A SCD can be designed
in such a way that the instructions (code) tracked using side-channel, such as power consumption
or EM radiation, can be statistically compared to the reference control fow with instruction-level
granularity to detect any anomaly if it exists. In addition, a SCD can be used for reverse engineering
of software or frmware running in embedded devices since its granularity can be tuned to individual
instructions. Reverse engineering protected frmware or software is very difcult since the software
is stored in the secure memory [29, 65]. In order to prevent software IP piracy, code and data are
encrypted and then stored in the tamper-resistant memory. Despite of the difculty of reverse
engineering, a SCD can recognize the behavior of decrypted code and potentially detect software IP
piracy. For example, a company may want to know whether its software IP is cloned by competitors
or not. Since the side-channel dissembler can recognize the behavior of decrypted code, it can be
utilized to detect software IP piracy. In some cases, one may need to get access to frmware in
a legacy system. Although frmware is encrypted, side-channel analysis would be a useful tool
to reverse-engineer the frmware and understand the functionality of the system. The only other
alternative is to invasively extract the frmware (e.g., probing), which is risky and could destroy the
legacy device (very few may be available).

Researchers have demonstrated various side-channel leakage-based disassembly techniques each
slightly diferent from one another due to the target devices and applications. Vermoen et al. [68]
introduced Java Card reverse engineering methodology that can recognize 10 diferent bytecodes
with at least 90 % accuracy. It correlates a measured power trace during operation of the smart
card at 4 MHz with an averaged power template of each bytecode and then classifes the measured
power into the bytecode with the maximum correlation.
Eisenbarth et al. [19] proposed reverse engineering of the program executed on a PIC16F687

microcontroller at 1 MHz clock frequency. Statistical techniques such as Bayesian classifers are

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:9

used to construct classifcation templates from the known power consumption traces. It achieves
a recognition rate of 70.1 % on 35 test instructions and 50.8 % on real code by applying a priori
statistical model such as a hidden Markov model (HMM).
Msgna et al. [50] accomplished 100 % recognition rate on a chosen set of 39 instructions in an

ATMega163-based smart card running at a clock frequency of 4 MHz. They classify the power
traces by applying k(= 1)-nearest neighbors (kNN) algorithm in combination with principal
component analysis (PCA). The 100 % recognition rate, however, has not been reproduced by
Strobel’s experiments when the Msgna’s approach was applied to diferent a microcontroller,
PIC16F687 (less than 43 % for k=10) [63].

The SCD proposed by Strobel at el. [63] has a recognition rate of 96.24 % on test code and 87.69 %
on real code on a PIC16F687 using localized multiple EM channels (antennas) with a decapsulated
package without the priori statistical model (e.g. Markov chain). Polychotomous linear discriminant
analysis (LDA) is used for the dimensionality reduction and the kNN machine learning algorithm
classifes collected EM leakages with the reduced dimensionality into 33 instruction classes.

Liu et al. [46] proposed code execution tracking on a STC89C52 microcontroller, an implementa-
tion of Intel’s 8051 architecture, at 11 MHz clock frequency using power side-channel. An HMM is
applied, and in order to model good observation symbols, signal extraction with a flter to remove
low SNR frequency components and PCA dimensional reduction is performed. The emission proba-
bility in the HMM is estimated by multivariate Gaussian distribution. Instructions of 9 benchmark
programs are recognized with 99.94 % accuracy and less modifcation of original code (e.g., NOP
instruction is replaced with an ADD A,0x00) can be detected.

McCann et al. [48] proposed an instruction-level power estimator (IPE) on ARM Cortex-M0 using
linear regression to spot even subtle leakage in implementations. It is an inverse function of the
SCD, i.e., if a SCD is defned as a function, y = f (x), a IPE is represented as x = f −1(y), where x
is a power trace and y is an instruction. It allows a programmer to estimate power side-channel
leakage during execution of a program without real measurement. The IPE can be used in order to
detect vulnerable instructions which can reveal secret information via power side-channel leakage.
In addition, for malware detection, the IPE can build a fne-grained power signature of a benign
application for a malware-free signature reference.

Fig. 3. Process flow for our disassembler [54]

Most of the power side-channel based fne-grained CFI assessment techniques follow the similar
basic steps of data collection, preprocessing for noise reduction, and using various machine-learning

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:10 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

techniques to identify the underlying control fow or dissimilarities if any. Existing solutions sufer
from the following shortcomings: (1) the small number of instruction classes to recognize makes
applicability of existing disassemblers limited. The existing methods are not able to recognize
operands such as address of registers, making the reverse-engineering incomplete. (2) Most of the
target devices are running at low clock frequency. Disassembling these devices are easier than
those with the higher clock-frequency since the higher the frequency, the more difcult signal
acquisition would be and consequently more noise to handle during analysis [22]. In a similar
efort, below we present an instruction-level power-based SCD [54]. Our technique can dissect a
runtime program to extract individual instructions, i.e. both the opcode and operands, efciently
with an accuracy of 99.03 %. We assume that there is no dependency between instructions. Under
this assumption, some SCDs, e.g., presented by Eignebarth et al. and Liu et al., are unable to utilize
the control fow information of a given program to be disassembled for a higher accuracy, and it is
impossible to reverse-engineer unknown frmware in IoT devices. However, our SCD can track
code execution of both known and unknown programs since we assume that every instruction can
be executed independently.

Our SCD obtains all instruction templates from an original device (e.g., IoT home security system,
smart thermostat, etc.) and utilizes machine learning algorithms to uniquely identify instructions
executed on the device. The feature selection using Kullback-Leibler (KL) divergence and the
dimensional reduction using PCA in the time-frequency domain are proposed to increase the
identifcation accuracy. Moreover, a hierarchical classifcation framework is proposed to reduce
the computational complexity associated with large instruction sets. In addition, covariate shifts
caused by diferent environmental measurements and device-to-device variations are minimized
by our covariate shift adaptation technique. This technique is demonstrated on an ATMega328P
[35] keeping low-cost and lightweight IoT applications in mind. We would like to emphasize that
this approach can be generalized to devices of similar or higher complexity. Experimental results2

demonstrate that our disassembler can recognize test instructions including register names with a
success rate no lower than 99.03 % with quadratic discriminant analysis (QDA). Fig. 3 shows the
overall workfow for our SCD. We follow the below basic steps to disassemble runtime instructions:

Step 1. Power traces for instructions are collected from a training device.
Step 2. Time-varying power traces are mapped into the time-frequency domain by continuous
wavelet transform.
Step 3. Feature selection and normalization are performed using Kullback-Leibler (KL)
divergence with covariate shift adaptation of which details are presented in Section 5.2.
Step 4. Feature dimensionality reduction (for efcient data analysis) is performed using
principal component analysis (PCA).
Step 5. Traces with reduced features are trained by ML classifers to generate reference
templates (i.e., creates decision boundaries).
Step 6. Power traces collected from a target device (i.e., device under assessment) are classifed
based on the templates, and then the disassembler generates the reverse-engineered assembly
code running on the target device.

Our SCD has advantages as follows: It can identify operands such as the address of source
registers or destination registers as well as opcode via a three-phase hierarchical process –

2In this experiments, 2500 power traces per class are used for the training and 500 power traces per class are collected for
the testing. The accuracy is the ratio of the number of correctly classifed traces to the total number of test traces.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:11

Table 1. Comparison of existing side-channel hardware monitors.

Hardware

monitor
Target
devices

Clock # of classes Accuracy Control fow
Dimensionality

reduction
Classifer Side-Channel Application

WattsUpDoc [14]
x86 CPU

AMD Athlon 64

664 MHz
–

2

(norm. and abnorm.)
94 %/ 88.5 %

99 % / 84.9 %

coarse-grained

(functional)
Mutual

information

3-NN, Perceptron

Random forest
Power

Malware

detection

EDDIE [51] ARM Cortex A8 –
2

(norm. and abnorm.)
92 %

coarse-grained

(loop)
Spectral
profling

K-S test EM
Malware

detection

Vermoen et al. [68] Smart Card 4 MHz
10

Instructions
92 % fne-grained –

Correlation

Coefcient
Power

Reverse-
engineering

Eisenbarth et al. [19] PIC16F687 1 MHz
33

Instructions
70.1 %

fne-grained

(HMM)
PCA, LDA

Multivariate

Gaussian
Power

Reverse-
engineering

Msgna et al. [50] ATMega163 4 MHz
39

Instructions
100 % fne-grained PCA kNN Power

Reverse-
engineering

Strobel at el. [63] PIC16F687 4 MHz
33

Instructions
96.24 % fne-grained

Polychotomous
LDA

kNN Multiple EM
Reverse-

engineering

Liu et al. [46] STC89C52 4 MHz – 99.94 %
fne-grained

(HMM)
PCA

Multivariate

Gaussian
Power

Reverse.
Malware.

McCann et al. [48] ARM Cortex-M0 8 MHz
Emulating

leakage
– fne-grained –

Linear
regression

Power
Leakage

evaluation

Our method [54] ATMega328 16 MHz
112 Insts.
64 Regs.

99.03 % fne-grained PCA
LDA, QDA

SVM, Naive
Power

Reverse.
Malware.

i) identifying the instruction group3 that a collected power trace l belongs to,
ii) identifying a particular instruction (opcode) within the identifed group from the previous

step, and
iii) identifying the associated operands, i.e., source and destination registers (Rs and Rd, respec-

tively) if any.
Hence, this classifcation capability has potential to detect sophisticated malware and various types
of other attacks (see Section 4).
Table 1 shows a comparison of existing side-channel hardware monitors in terms of the tar-

get device, the clock frequency, the number of classes, the accuracy, the granularity of control
fow, the dimensionality reduction, the classifer, type of the side-channel leakage used and the
target application. We see that coarse-grained techniques can sustain a relatively good amount
of hardware complexity and can be implemented on low-level commodity processors. However,
the fne-grained techniques that target instruction-level disassembly are mostly implemented
on lightweight microcontrollers. An obvious reason behind it is that the granularity needed for
instruction-level disassembly is extremely fner and the noise sensitivity afected by the complex
pipeline and instruction set architecture (ISA) plays a big role in properly identifying the instruc-
tions from leakage information (Details on these challenges are presented in Section 5). However,
for lightweight IoT devices, the complexity of the processing unit, i.e. microcontroller unit (MCU),
is much less than that of the high-end commodity processors making the former a suitable choice
for low-cost and resource-constrained applications.

4 POTENTIAL APPLICATIONS

As shown in Fig. 2, a fne-grain CFI assessment technique can be used for defense against several
possible threats, as well as for adversarial attacks. In this section, we discuss some potential
application cases where the user can leverage our proposed power side-channel-based instruction-
level disassembler – for malware detection, frmware reverse engineering, hardware-frmware
co-attestation, and detecting Meltdown and Spectre attacks, as shown in Table 2.

3A total of 112 instructions out of 131 instructions except for residual control, multiplication, and residual branch instructions
can be recognized by the proposed disassembler. For ease of disassembly, these 112 instructions are classifed into 8 groups
based on corresponding operands.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:12 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

4.1 Malware Detection

Due to various reasons, such as lightweight architecture, resource-constrained design, and inade-
quate security, IoT and embedded devices are prone to various malware infections [4, 14, 45, 73].
Here, an adversary can insert malicious code that can leak secret information, provide unauthorized
control, and/or infect other IoT devices connected to the network. The inserted malware may yet
be undetectable as it may remain in a stealthy mode and not hamper the original functionality of
the device unless triggered. However, the activated malware changes the activity of the infected
device, with respect to the legitimate behavior, via interrupts and unauthorized routine calls, and
forces the embedded device to perform malicious activities. For example, to prevent the frst-order
side-channel attack, the original key of the Advanced Encryption Standard (AES) encryption is
masked with a random number [59]. However, if the random number is maliciously turned into
a fxed value, such as all binary zeros or ones, the masking method is useless and the frst-order
side-channel attack is, therefore, possible. The adversary can perform this attack via malware. For
example, we consider the malware that infects the original AES encryption code in the device to
modify the instruction xor r16, r17 into xor r16, r0, where an original 8-bit subkey, a 8-bit
random number, and a zero number are stored in r16, r17, and r0, respectively. That is, the original
key is still stored in r16 after executing the instruction and a following non-linear operation (Sbox)
with the unmasking key generates signifcant side-channel leakage.

Note that the control fow by the example malware is the same as the reference one. Hence,
it is extremely difcult to identify the modifcation via coarse-grained monitors. However, such
sophisticated malware can be confdently detected by an accurate disassembler (e.g., like the one
we discussed in Section 3) due to its capability to detect the change of the source register via the
instruction disassembly. To employ this disassembly technique to detect potential malware, one
needs to collect the runtime power signature from the device and check the integrity of the program
running on the board. If it shows any discrepancy, in terms of opcodes or operands in the monitored
assembly code, a fag is raised for potential malware infection. Therefore, the disassembly technique
can detect malicious activities from the hardware at runtime, even though malware control fow has
similarity with that of goodware. The summarized action steps for malware detection are shown in
Table 2.

4.2 Firmware Reverse Engineering

An adversary can choose to perform frmware piracy by reverse engineering the code for poten-
tial fnancial benefts, unauthorized controls, and creating backdoors, as it allows him to deploy
unauthentic or counterfeit devices with cloned (pirated) frmware in addition to counterfeit and
malicious software and updates. In addition, an adversary can introduce subtle modifcations to
the original functionality by exploiting the frmware code vulnerabilities that may lead to severe
damage to the system [42].
As one can see, an instruction-level SCD (like one we summarized in Section 3) can leverage

power signature to reverse-engineer the frmware residing on an authentic lightweight device
given that the SCD technique can potentially identify both the opcode and operands for a given
device and ISA. To perform the attack, as shown in Table 2, the adversary needs to collect the power
signature during runtime. If the device is designed to run some add-on software, the signature can
be collected during the boot process to separate the frmware signature from the noise generated by
other programs. Given the frmware complexity and a satisfactory amount of power side-channel
data from the target device, the extracted instructions can be sequentially placed to generate the
cloned control fow and frmware image. For reverse engineering accuracy, we assume that the
target device model and instruction set architecture are known to the attacker and the adversarial

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:13

model for instruction profling from the power leakage information is sufciently equivalent to
that of the target device. Also, by employing the covariate shift adaptation technique discussed in
Section 5.2, the adversary can extract distinct and non-varying features from the adversarial power
signature model and focus only on selective features making the reverse engineering attack more
efcient.

Further, reverse engineering of frmware or software for piracy or copyright analysis is common
in industry. For example, a company may want to know whether its software IP is cloned by
competitors. Even though the frmware in a competitor’s devices is encrypted in the tamper-
resistant memory, an instruction-level SCD can recognize the behavior of decrypted code. That is,
a security engineer can use the instruction-level SCD to perform reverse engineering of software
running on the competitor’s device for verifcation of software piracy.

4.3 Hardware-Firmware Co-atestation

To ensure the integrity of an IoT network, all associated devices and frmware residing in them need
to be authentic (not counterfeit), and malware-free. Further, to avoid any adversarial impersonation
[15], e.g., as in the case of relay attacks, a device and its frmware can be bound together to be
considered as a unifed identity. The proposed fne-grained SCD method can ofer a hardware-
frmware co-attestation technique for ensuring the authenticity of both the device and frmware or
detecting counterfeit devices and frmware. The idea behind it is that every hardware device running
the same authentic frmware generates a similar but unique power signature due to manufacturing
process variation, runtime conditions, and process data and workload. It should be noted that the
generated in-feld power signature is often too noisy to be uniquely identifed by the attester using
only regular template matching techniques. A well-designed SCD (similar to the one described in
Section 3) can be potentially implemented to extract distinct and non-varying features. For this, one
needs to identify the features that are much less susceptible to noise and possible covariate shift. If
noise reduction and covariate shift adaption (discussed in Section 5.1 and 5.2) are well applied, the
detection error due to environmental noise can be reduced.
To perform a hardware-frmware co-attestation, the original equipment manufacturer (OEM)

is required to collect and store the power signature of the authentic device with the legitimate
frmware at the beginning of the operational lifetime. During in-feld operation, test signatures can
be collected and verifed against the initially obtained data. If any of the elements of the system (i.e.
either the hardware device or the frmware) is compromised, the power signature will not remain
the same and the unifed attestation will no longer be valid. A further analysis of the signature to
dissect the program into sequential instructions can lead to identifying whether the frmware is
compromised (through unrecognized instruction/control fow) or the hardware is under attack, as
summarized in Table 2. This approach can be further extended for developing a system-level mutual
authentication technique [26] utilizing additional hardware-based IDs and obfuscated frmware.

4.4 Detecting Meltdown and Spectre Atacks
Two major hardware faws in modern CPUs, called Meltdown and Spectre, were revealed in January
2018 [43]. These two bugs allow an attacker to access sensitive data stored in the memory without
any log records. It impacts almost every CPU such as Intel, AMD, and ARM processors built in the
past 10 years meaning that a huge number of computers, smartphones, and cloud servers currently
in use are signifcantly vulnerable to these two security concerns. Although the software patch for
Meltdown, called KAISER [25], is currently available, it still has limitations: The software patch
leaves a small amount of privileged memory exposed in the user space. If the hardware exploits,
namely out-of-order executions and speculative branch predictions, used by the two attacks need to
be addressed, the performance may fall down by 30 %. Since these faws are rooted in the hardware

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:14 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

Table 2. Potential Applications for fine-grained Instruction-level Disassembly

Application Type Assumption Action summary

Malware

Detection

Defense

Mechanism

Malware violates legitimate

CFI by adding/modifying

instructions/registers
(source, destination).

1. Collect power signatures for runtime instruction disassembly.
2. Do in-feld CFI assessment by performing instruction-level
disassembly.
3. Compare against the golden program control fow.
4. Flag suspicious instructions due to malware.

Firmware

Reverse

Engineering

Adversarial
Threat /
Defense

Mechanism

Power signature

model is comparable to

that of the target devices
and instruction sets.

1. Collect power signatures from boot process.
2. Match power templates for known hardware models and

instruction sets.
3. Perform instruction-level disassembly.
4. Do consecutive instruction placement to obtain reverse

engineered frmware.

Hardware-
Firmware

Co-attestation

Defense

Mechanism

Certain non-varying features
are extractable even with

the presence of noise.

1. Collect power signatures from multiple target devices at
time zero (golden data).
2. Extract and store distinct and non-varying features (solving

covariate shift problem).
3. Collect in-feld runtime signatures at time t.
4. Extract runtime features and compare with that from step 2.
5. Verify hardware-software authenticity.

Meltdown/
Spectre

Detection

Defense

Mechanism

Meltdown and Spectre attacks
execute iterative memory

access instructions which

violate legitimate CFI.

1. Collect power signatures from the monitored CPU.
2. Do in-feld CFI assessment by identifying iterative loop modules.
3. Determine if the identifed loop is normal operations
compared to the benign control fow.
4. Flag attack instructions and then terminate the application.

itself, the fundamental solution is to replace the vulnerable modules with updated (redesigned)
hardware. However, it is extremely expensive, time-consuming, and practically infeasible to upgrade
all vulnerable hardware. Thus, detecting and preventing Meltdown and Spectre attacks is necessary
for keeping lowest possible cost and performance degradation in mind.
The fne-grained SCD framework has potential to detect both Meltdown and Spectre attacks,

before the completion of attacks, given that it is adapted and optimized for commodity processors.
If the attacks are detected, termination of the infected application and refreshing memory prevents
an attacker from obtaining confdential information. Spectre attack [39] exploits speculatively
executed indirect branch instructions which should not have been executed during a correct program
execution, with following transient instructions which transmit secret data via microarchitectural
covert channels (e.g., cache timing side-channel). The branch predictor directs the control fow to
the transient instructions which request an access to the private data that is temporarily stored
in the cache until the process redirects to normal control fow reverting the previous state before
execution of the indirect branch instruction. Using cache timing attack (e.g., Flush+Reload attack
[74]), the dump of data can be extracted. In order to detect the Spectre attack, two loops for the setup
and cache timing attack should be identifed by a SCD. The setup loop consists of iterative indirect
branch instructions that mistrain the branch predictor so that it will later make an erroneous
speculative prediction. The loop for the cache timing attack also consists the same instructions to
request access to the secret data. Since these two loops are a deviation from the normal control
fow, they can be detected easily by a fne-grained CFI technique such as our proposed SCD as well
as by a course-grained CFI such as EDDIE [51].
The Meltdown attack [44] exploits the out-of-order execution of transient instructions stored

in the reorder bufer for raising an exception caused by illegal memory access. The transient
instructions to access inaccessible pages such as kernel pages are still executed in the small window

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:15

time between the illegal memory access and the raising of the exception. An attack can extract
the dump of inaccessible memory using cache timing attack such as Flush+Reload attack. Since
our SCD, as well as course-grained CFIs, can identify the cache timing attack, Meltdown can be
detected as well.

4.5 Miscellaneous Applications
A side-channel based instruction disassembler and its variants can ofer several additional ap-
plications for IoT as well as a traditional computing domain. A key application resides in IP/IC
fngerprinting and watermarking. Similar to hardware-frmware co-attestation technique, a SCD
can utilize the power traces to extract distinct features that essentially could be used as an active
fngerprint or passive watermark to the hardware device or the frmware IP under considera-
tion [47]. A similar approach can also be explored for digital rights management (DRM) for the
software/application running on an embedded device.

5 LIMITATIONS AND FUTURE RESEARCH

In this section, we discuss the open issues and challenging problems of existing side-channel
monitors and address high-level approaches for future research directions.

5.1 Increased Complexity

Following the advancement trend, it is expected that the hardware used for IoT and an embedded
applications will get more powerful and complex over the time, making it possible to run more
sophisticated programs and with higher data collection and processing capabilities. For instance,
embedded system in a smart-home collects data from many sensors and processes it continuously
to make a critical decision, such as applying emergency alarms and activating water sprinkler in
case of a fre, based on gathered information. However, the collected data can contain an error due
to failing sensors or injected malicious code leading to a potential inaccurate decision. It requires
that the system should have verifcation methods to decide whether the data is correct or not. If the
data validation is achieved by only software, the control fow of the software generally becomes so
signifcantly complicated that fne-grained CFI methods become infeasible. Furthermore, since an
advanced electrical device requires a high performance computing unit to support the complex
processing, it may contain deep pipelining, multiple cores, and a large ISA. For such cases, the
side-channel templates corresponding to the control fow states at the granularity of instruction
level would grow to tremendous complexity. Therefore, a fne-grained CFI method using only
side-channel leakage may become infeasible to detect malicious codes.
The fne-grained CFI method with internal hardware monitors and sensors such as hardware

performance counters or debug interfaces may become benefcial in such cases. For example, the
fne-grained control fow graph with the granularity of instruction level can be replaced with
hierarchical control fow graphs that have module-level states consisting of additional substates
corresponding to instructions. As a hybrid approach, the higher-level control fow integrity can
be validated using built-in hardware monitors such as performance counters and the lower-level
control fow integrity in each module-level state can be validated by the fne-grained CFI monitor
simultaneously to provide the accuracy in the face of increasing complexity.

5.2 Addressing Covariate Shif Problem

In real life, an embedded device undergoes diferent operating conditions (e.g., power supply and
temperature variation) as well as runs diferent programs with numerous instruction combinations.
The collected power traces for disassembly from a real device in the feld, therefore, may be
signifcantly diferent than that of an experimental device where the data is collected in a controlled

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:16 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

environment with known programs and instructions. This can lead to a poor recognition of
instructions from an in-feld device using an experimentally trained classifer due to the covariate
shift problem. This problem arises due to the diference in the probability distribution of training
data (from experimental device) and testing data (from in-feld device) such that Prte (x) , Prtr (x)
even if the conditional probability of classes given training data is the same as the conditional
probability of classes given testing data (Pr[C |x tr] = Pr[C |x te]) [64]. This problem also occurs in
power measurement at diferent times or across devices and may come in a form of simple DC
ofset, signifcant magnitude and phase changes, or random noise [12].

5.2.1 Covariate Shif Adaptation. Keeping the covariate shift problem in mind, a more rigorous
sample acquisition can be done to highlight distinct features. For example, in case of our SCD in
Section 3.2.2, the collected dataset is extended from 2500 traces to 5700 traces to estimate non-
varying feature points against the training programs with the following covariate shift adaptation;
the KL threshold for within-class divergence calculation can be adjusted to a lower limit for a
fner characterization. Additionally, distinct and not-varying feature points between two diferent
classes are normalized in order to reduce the range of shifted space. Park et al. [54] showed that
the successful recognition rate of classifcation between ADC and AND instructions when the
covariate shift adaptation method is applied can be increased by 73.5 %.

5.2.2 Covariate Shif Caused by Diferent Devices. The covariate shift problem also occurs in
measured powers from diferent devices that are the same model as the trained device. It exhibits
similar challenges to that caused by diferent programs. Based on the template from a trained
device, the measurements from other devices can be adjusted upon testing and validation. In short,
covariate shift problems caused by both diferent programs and devices can be minimized by
expanding sample space and searching not-varying feature points with normalization.

However, the requirement of increased sample space to adapt the covariate shift creates additional
complexity in terms of sample acquisition, data processing, and obtaining fne-tuned signatures.
Further, it requires an extensive amount of validation and adjustment from a large number of devices
which subsequently makes the process costly and time-consuming. Additionally, the extraction of
fner features requires high-end acquisition hardware for collecting noise-less fne-grained data. It
eventually makes the current adaptation scheme somewhat infeasible for low-cost applications.

5.2.3 Aging-induced Shif. Similar to the covariate shift and noise, aging-induced shifting and
SNR variation introduces additional challenges for data acquisition, model building, and verifcation.
In addition, gate/circuit-level countermeasures against traditional power side-channel attacks [76]
also sufer from aging. The predictive aging models [52, 69] can potentially be utilized to fnd
statistical correlation, if any, for the complete system and reduce the shift in the side channel profle
during post-processing.

5.3 Noise Reduction

Signal-to-noise (SNR) of side-channel leakage afects the accuracy of fne-grained CFI monitors
signifcantly. Collected power or EM signals include noise from measurement instruments, envi-
ronmental components, temperature variation, and so on. In order for the fne-grained CFI monitor
to estimate op-codes and operands in an assembly code on a complex Systems on Chip (SoC) pro-
cessor, each power consumption trace/profle corresponding to the op-code and operands should
be extracted from a raw (original) power trace that is measured using an oscilloscope. That is, pure
side-channel signals without noise should be preprocessed for high accuracy before classifcation
or estimation.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

Leveraging Side-channel Information for Disassembly and Security 0:17

Table 3. Challenging problems and future research directions.

Challenging Problem Description Research Direction

Increased

Complexity

Sophisticated software has
complicated CFG.

Hierarchical or Hybrid

Fine-grained CFI

Covariate Shift
In-feld devices produce diferent side-channel

signatures than training devices.
Distinct and Not-varying

Feature Selection

Noise Reduction
Most side-channel leakage is afected by noise.

Low SNR results in low accuracy.
BSS

Signal Processing

Data Acquisition
A high volume of training data is required

for high accuracy or complicated processors.
High-performance

Acquisition Platform

Physical Access
Physical one-spot access has limitation to

simultaneously monitor multiple IoT devices.
RF Side-channel

Generator

Blind source separation (BSS) such as independent component analysis [41] or singular spectrum
analysis [58], i.e., the decoupling of unknown signals that have been mixed in an unknown way, can
be exploited to simultaneously extract independent signals with reduced noise from the leakage.
Each independent signal is used to estimate the opcode or operands. In addition, since such a
signal does not depend on devices and temperature, the covariate shift problem in a non-stationary
environment can be solved.

5.4 Data Acquisition and Measurement
A higher volume of data for training (or profling) is required for high accuracy. In addition, the
number of classes depending on instruction set architecture, the depth of the pipelining, and the
number of CPU cores (e.g., # of classes = # of instruction × # of depth × # of cores) afects the
volume of the training data. This results in an increased cost and delay as collecting side-channel
leakage from state-of-art microcontrollers with measurement instruments (e.g., oscilloscope) is
quite time-consuming. For a fast acquisition of side-channel leakage, the bandwidth speed between
the target device and the control PC and between the measurement instrument and the control PC
needs to be improved. For example, PCI-express based measurement instruments such as NI PXI
platform [36] support automatic and high-performance measurement setup.

5.5 Limitation of Physical Access
To measure power or EM radiation, the target device has to be physically accessed or at least
accessed within its near feld. This physical one-spot access has limitation to simultaneously
monitor multiple IoT devices connected to a network such as a smart home. Remote and parallel
measurement methods are required in order to observe multiple IoT devices simultaneously and
reduce economical cost (e.g., it is expensive for a high-performance instrument measures a side-
channel leakage of a low-cost device).
For this open issue, a dedicated analog device [45] to generate an radio frequency (RF) signal

including the side-channel signal as well as sending data may be a good candidate. The side-channel
signal from the collectively accumulated signal/data is extracted at the monitor and based on the
side-channel, the state of IoT devices can be estimated. Since the monitor can receive RF signals
from multiple IoT devices remotely, it can monitor multiple IoT devices simultaneously. Table 3
shows the summary of challenging problems and future research directions.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

0:18 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

6 CONCLUSION

With extensive concerns about the security of modern computing devices, it is imperative that
hardware-based monitors be developed and deployed to thwart various cyber attacks. Our analysis
shows that the existing hardware-based monitors, especially focusing on side-channel leakage-
based control fow and instruction checking, require further improvement. In this regard, we
illustrate a power-based side-channel instruction-level disassembler. A few simple case studies
show the potential applications of the proposed disassembler. Finally, the challenging problems of
existing side-channel CFI methods and high-level solutions are highlighted.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005a. Control-fow Integrity. In Proceedings of the

12th ACM Conference on Computer and Communications Security (CCS ’05). ACM, New York, NY, USA, 340–353. DOI:
http://dx.doi.org/10.1145/1102120.1102165

[2] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005b. Control-fow integrity. In Proceedings of the 12th
ACM conference on Computer and communications security. ACM, 340–353.

[3] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Sourangshu Bhattacharya. 2017. Performance Coun-
ters to Rescue: A Machine Learning based safeguard against Micro-architectural Side-Channel-Attacks. Cryptology
ePrint Archive, Report 2017/564. (2017). https://eprint.iacr.org/2017/564.

[4] Waqas Amir. 2016. Hackers are increasingly targeting IoT Devices with Mirai DDoS Malware. https://www.hackread.
com/iot-devices-with-mirai-ddos-malware/. (Oct. 2016).

[5] Nate Anderson. 2012. Confrmed: US and Israel created Stuxnet, lost control of it. https://arstechnica.com/tech-policy/
2012/06/confrmed-us-israel-created-stuxnet-lost-control-of-it/. (June 2012).

[6] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. 2011. An In-depth and Black-box Characterization of the
Efects of Clock Glitches on 8-bit MCUs. In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2011, Tokyo, Japan, September 29, 2011. 105–114. DOI:http://dx.doi.org/10.1109/FDTC.2011.9

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2011. Duplexing the sponge: single-pass
authenticated encryption and other applications. Cryptology ePrint Archive, Report 2011/499. (2011). https://eprint.
iacr.org/2011/499.

[8] Tyler Bletsch. 2011. Code-reuse Attacks: New Frontiers and Defenses. Ph.D. Dissertation. Advisor(s) Freeh, Vince and
Jiang, Xuxian. AAI3463747.

[9] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Analysis with a Leakage Model. Springer
Berlin Heidelberg, Berlin, Heidelberg, 16–29. DOI:http://dx.doi.org/10.1007/978-3-540-28632-5_2

[10] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and Mathias Payer. 2017.
Control-Flow Integrity: Precision, Security, and Performance. ACM Comput. Surv. 50, 1, Article 16 (April 2017), 33
pages. DOI:http://dx.doi.org/10.1145/3054924

[11] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2003. Template Attacks. Springer Berlin Heidelberg, Berlin, Heidelberg,
13–28. DOI:http://dx.doi.org/10.1007/3-540-36400-5_3

[12] Omar Choudary and Markus G. Kuhn. 2014. Template Attacks on Diferent Devices. Springer International Publishing,
Cham, 179–198.

[13] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis. 2016. HCFI: Hardware-enforced
Control-Flow Integrity. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy
(CODASPY ’16). ACM, New York, NY, USA, 38–49. DOI:http://dx.doi.org/10.1145/2857705.2857722

[14] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sorber, Wenyuan Xu, and Kevin Fu. 2013.
WattsUpDoc: Power Side Channels to Nonintrusively Discover Untargeted Malware on Embedded Medical Devices.
In Presented as part of the 2013 USENIX Workshop on Health Information Technologies. USENIX, Washington, D.C.
https://www.usenix.org/conference/healthtech13/workshop-program/presentation/Clark

[15] Boris Danev, Heinrich Luecken, Srdjan Capkun, and Karim El Defrawy. 2010. Attacks on physical-layer identifcation.
In Proceedings of the third ACM conference on Wireless network security. ACM, 89–98.

[16] DARPA. 2015. Leveraging the Analog Domain for Security (LADS). (2015). http://www.darpa.mil/program/
leveraging-the-analog-domain-for-security

[17] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014. Hardware-Assisted Fine-Grained Control-Flow Integrity:
Towards Efcient Protection of Embedded Systems Against Software Exploitation. In Proceedings of the 51st Annual
Design Automation Conference (DAC ’14). ACM, New York, NY, USA, Article 133, 6 pages. DOI:http://dx.doi.org/10.
1145/2593069.2596656

[18] Ruan de Clercq and Ingrid Verbauwhede. 2017. A survey of Hardware-based Control Flow Integrity (CFI). CoRR

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://dx.doi.org/10.1145/1102120.1102165
https://eprint.iacr.org/2017/564
https://www.hackread.com/iot-devices-with-mirai-ddos-malware/
https://www.hackread.com/iot-devices-with-mirai-ddos-malware/
https://arstechnica.com/tech-policy/2012/06/confirmed-us-israel-created-stuxnet-lost-control-of-it/
https://arstechnica.com/tech-policy/2012/06/confirmed-us-israel-created-stuxnet-lost-control-of-it/
http://dx.doi.org/10.1109/FDTC.2011.9
https://eprint.iacr.org/2011/499
https://eprint.iacr.org/2011/499
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1145/3054924
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1145/2857705.2857722
https://www.usenix.org/conference/healthtech13/workshop-program/presentation/Clark
http://www.darpa.mil/program/leveraging-the-analog-domain-for-security
http://www.darpa.mil/program/leveraging-the-analog-domain-for-security
http://dx.doi.org/10.1145/2593069.2596656
http://dx.doi.org/10.1145/2593069.2596656

�

Leveraging Side-channel Information for Disassembly and Security 0:19

abs/1706.07257 (2017). http://arxiv.org/abs/1706.07257
[19] Thomas Eisenbarth, Christof Paar, and BjÃ rn Weghenkel. 2010. Building a Side Channel Based Disassembler. In

Transactions on Computational Science X, Marina L. Gavrilova, C.J. Kenneth Tan, and Edward David Moreno (Eds.).
Lecture Notes in Computer Science, Vol. 6340. Springer Berlin Heidelberg, 78–99.

[20] The Nexus 5001 Forum. 2003. Standard for a Global Embedded Processor Debug Interface Version 2.0. IEEE-Industry
Standards and Technology Organization (IEEE-ISTO) (2003).

[21] Aurélien Francillon and Claude Castelluccia. 2008. Code injection attacks on harvard-architecture devices. In Proceedings
of the 15th ACM conference on Computer and communications security. ACM, 15–26.

[22] Jake Longo Galea, Elke De Mulder, Daniel Page, and Michael Tunstall. 2015. SoC it to EM: electromagnetic side-channel
attacks on a complex system-on-chip. IACR Cryptology ePrint Archive 2015 (2015), 561.

[23] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. 2008. Mutual Information Analysis. Springer Berlin
Heidelberg, Berlin, Heidelberg, 426–442. DOI:http://dx.doi.org/10.1007/978-3-540-85053-3_27

[24] Gilbert Goodwill, Benjamin Jun, Josh Jafe, and Pankaj Rohatgi. 2011. A Testing Methodology for Side-Channel
Resistance Validation. In NIST non-invasive attack testing workshop. 158–172.

[25] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice, and Stefan Mangard. 2017.
KASLR is Dead: Long Live KASLR. Springer International Publishing, Cham, 161–176. DOI:http://dx.doi.org/10.
1007/978-3-319-62105-0_11

[26] Ujjwal Guin, Swarup Bhunia, Domenic Forte, and Mark M. Tehranipoor. 2017. SMA: A System-Level Mutual Authenti-
cation for Protecting Electronic Hardware and Firmware. IEEE Transactions on Dependable and Secure Computing 14, 3
(2017), 265–278. DOI:http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TDSC.2016.2615609

[27] Z. Guo, R. Bhakta, and I. G. Harris. 2014. Control-fow checking for intrusion detection via a real-time debug interface. In
2014 International Conference on Smart Computing Workshops. 87–92. DOI:http://dx.doi.org/10.1109/SMARTCOMP-W.
2014.7046672

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop (WWC ’01). IEEE Computer Society, Washington, DC, USA, 3–14. DOI:http://dx.doi.org/10.
1109/WWC.2001.15

[29] Michael Henson and Stephen Taylor. 2014. Memory Encryption: A Survey of Existing Techniques. ACM Comput. Surv.
46, 4, Article 53 (March 2014), 26 pages. DOI:http://dx.doi.org/10.1145/2566673

[30] H. Holm. 2014. Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A Closed Chapter?. In 2014 47th
Hawaii International Conference on System Sciences. 4895–4904. DOI:http://dx.doi.org/10.1109/HICSS.2014.600

[31] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos Vandewalle. 2011. Machine
learning in side-channel analysis: a frst study. Journal of Cryptographic Engineering 1, 4 (27 Oct 2011), 293. DOI:
http://dx.doi.org/10.1007/s13389-011-0023-x

[32] Michael Hutter and Jörn-Marc Schmidt. 2013. The Temperature Side Channel and Heating Fault Attacks. In CARDIS
(Lecture Notes in Computer Science), Vol. 8419. Springer, 219–235.

[33] Michael Hutter and Jörn-Marc Schmidt. 2014. The Temperature Side Channel and Heating Fault Attacks. IACR
Cryptology ePrint Archive 2014 (2014), 190. http://eprint.iacr.org/2014/190

[34] Robert Hyatt. 1999. Crafty (186) SPEC CPU2000 Benchmark. (1999). https://www.spec.org/cpu2000/CINT2000/186.
crafty/docs/186.crafty.html Accessed: 2017-12-14.

[35] Atmel Inc. 2016. AVR Instruction set manual. (2016). http://www.atmel.com/images/
Atmel-0856-AVR-Instruction-Set-Manual.pdf

[36] National Instruments. 2018. PXI Platform. (2018). http://www.ni.com/pxi/ Accessed: 2018-3-3.
[37] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur

Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In
ACM SIGARCH Computer Architecture News, Vol. 42. IEEE Press, 361–372.

[38] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. 2002. Secure Execution via Program Shepherding.
In Proceedings of the 11th USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 191–206. http:
//dl.acm.org/citation.cfm?id=647253.720293

[39] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints
(Jan. 2018).

[40] Paul Kocher, Joshua Jafe, and Benjamin Jun. 1999. Diferential Power Analysis. Springer-Verlag, 388–397.
[41] E. Kofdis. 2016. Blind Source Separation: Fundamentals and Recent Advances (A Tutorial Overview Presented at

SBrT-2001). ArXiv e-prints (March 2016).
[42] Charalambos Konstantinou and Michail Maniatakos. 2015. Impact of frmware modifcation attacks on power systems

feld devices. In Smart Grid Communications (SmartGridComm), 2015 IEEE International Conference on. IEEE, 283–288.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://arxiv.org/abs/1706.07257
http://dx.doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/978-3-319-62105-0_11
http://dx.doi.org/10.1007/978-3-319-62105-0_11
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TDSC.2016.2615609
http://dx.doi.org/10.1109/SMARTCOMP-W.2014.7046672
http://dx.doi.org/10.1109/SMARTCOMP-W.2014.7046672
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1145/2566673
http://dx.doi.org/10.1109/HICSS.2014.600
http://dx.doi.org/10.1007/s13389-011-0023-x
http://eprint.iacr.org/2014/190
https://www.spec.org/cpu2000/CINT2000/186.crafty/docs/186.crafty.html
https://www.spec.org/cpu2000/CINT2000/186.crafty/docs/186.crafty.html
http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
http://www.ni.com/pxi/
http://dl.acm.org/citation.cfm?id=647253.720293
http://dl.acm.org/citation.cfm?id=647253.720293

0:20 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor

[43] Selena Larson. 2018. Major chip faws afect billions of devices. http://money.cnn.com/2018/01/03/technology/
computer-chip-faw-security/index.html?iid=hp-toplead-dom. (Jan. 2018).

[44] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown. ArXiv e-prints (Jan. 2018).

[45] Y. Liu, Y. Jin, and Y. Makris. 2013. Hardware Trojans in wireless cryptographic ICs: Silicon demonstration detection
method evaluation. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 399–404. DOI:
http://dx.doi.org/10.1109/ICCAD.2013.6691149

[46] Yannan Liu, Lingxiao Wei, Zhe Zhou, Kehuan Zhang, Wenyuan Xu, and Qiang Xu. 2016. On Code Execution Tracking
via Power Side-Channel. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). ACM, New York, NY, USA, 1019–1031. DOI:http://dx.doi.org/10.1145/2976749.2978299

[47] Cédric Marchand, Lilian Bossuet, and Edward Jung. 2014. IP watermark verifcation based on power consumption
analysis. In System-on-Chip Conference (SOCC), 2014 27th IEEE International. IEEE, 330–335.

[48] David McCann, Carolyn Whitnall, and Elisabeth Oswald. 2016. ELMO: Emulating Leaks for the ARM Cortex-M0 without
Access to a Side Channel Lab. Cryptology ePrint Archive, Report 2016/517. (2016). http://eprint.iacr.org/2016/517.

[49] Peter Middleton, Peter Kjeldsen, and Jim Tully. 2013. Forecast: The internet of things, worldwide, 2013. Gartner
Research (2013).

[50] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes. 2014. Precise Instruction-Level Side Channel Profling of
Embedded Processors. Lecture Notes in Computer Science, Vol. 8434. Springer, 129–143. DOI:http://dx.doi.org/10.1007/
978-3-319-06320-1_11

[51] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos Prvulovic. 2017. EDDIE: EM-Based
Detection of Deviations in Program Execution. In Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). ACM, New York, NY, USA, 333–346. DOI:http://dx.doi.org/10.1145/3079856.3080223

[52] Fabian Oboril and Mehdi Baradaran Tahoori. 2012. ExtraTime: Modeling and analysis of wearout due to transistor
aging at microarchitecture-level. In IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2012,
Boston, MA, USA, June 25-28, 2012. 1–12. DOI:http://dx.doi.org/10.1109/DSN.2012.6263957

[53] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Countermeasures: The Case of AES. In
Proceedings of the 2006 The Cryptographers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA’06). Springer-
Verlag, Berlin, Heidelberg, 1–20. DOI:http://dx.doi.org/10.1007/11605805_1

[54] Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, and Mark Tehranipoor. 2018. Power-based Side-channel Instruction-
level Disassembler. In Proceedings of the 55th Annual Design Automation Conference (DAC ’18). ACM, New York, NY,
USA.

[55] Siman Parker. 2017. Understanding The Physical Damage of Cyber Attacks. https://www.infosecurity-magazine.com/
opinions/physical-damage-cyber-attacks/. (Oct. 2017).

[56] Nisarg Patel, Avesta Sasan, and Houman Homayoun. 2017. Analyzing Hardware Based Malware Detectors. In
Proceedings of the 54th Annual Design Automation Conference 2017. ACM, 25.

[57] S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic, and N. Mentens. 2017. Side-channel analysis
and machine learning: A practical perspective. In 2017 International Joint Conference on Neural Networks (IJCNN).
4095–4102. DOI:http://dx.doi.org/10.1109/IJCNN.2017.7966373

[58] Santos Merino Del Pozo and François-Xavier Standaert. 2016. Blind Source Separation from Single Measurements using
Singular Spectrum Analysis. Cryptology ePrint Archive, Report 2016/314. (2016). https://eprint.iacr.org/2016/314.

[59] Emmanuel Prouf and Matthieu Rivain. 2007. A Generic Method for Secure SBox Implementation. Springer Berlin
Heidelberg, Berlin, Heidelberg, 227–244. DOI:http://dx.doi.org/10.1007/978-3-540-77535-5_17

[60] Tobias Schneider and Amir Moradi. 2015. Leakage Assessment Methodology. Springer Berlin Heidelberg, Berlin,
Heidelberg, 495–513. DOI:http://dx.doi.org/10.1007/978-3-662-48324-4_25

[61] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic. 2016. Spectral profling: Observer-efect-free profling by
monitoring EM emanations. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–11. DOI:http://dx.doi.org/10.1109/MICRO.2016.7783762

[62] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard. 2016. SoK: Systematic Classifcation of
Side-Channel Attacks on Mobile Devices. CoRR abs/1611.03748 (2016).

[63] Daehyun Strobel, Florian Bache, David Oswald, Falk Schellenberg, and Christof Paar. 2015. Scandalee: a side-channel-
based disassembler using local electromagnetic emanations. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015. 139–144. http://dl.acm.org/citation.
cfm?id=2755784

[64] Masashi Sugiyama and Motoaki Kawanabe. 2012. Machine Learning in Non-Stationary Environments: Introduction to
Covariate Shift Adaptation. The MIT Press.

[65] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas. 2003. AEGIS: Architecture
for Tamper-evident and Tamper-resistant Processing. In Proceedings of the 17th Annual International Conference on

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://money.cnn.com/2018/01/03/technology/computer-chip-flaw-security/index.html?iid=hp-toplead-dom
http://money.cnn.com/2018/01/03/technology/computer-chip-flaw-security/index.html?iid=hp-toplead-dom
http://dx.doi.org/10.1109/ICCAD.2013.6691149
http://dx.doi.org/10.1145/2976749.2978299
http://eprint.iacr.org/2016/517
http://dx.doi.org/10.1007/978-3-319-06320-1_11
http://dx.doi.org/10.1007/978-3-319-06320-1_11
http://dx.doi.org/10.1145/3079856.3080223
http://dx.doi.org/10.1109/DSN.2012.6263957
http://dx.doi.org/10.1007/11605805_1
https://www.infosecurity-magazine.com/opinions/physical-damage-cyber-attacks/
https://www.infosecurity-magazine.com/opinions/physical-damage-cyber-attacks/
http://dx.doi.org/10.1109/IJCNN.2017.7966373
https://eprint.iacr.org/2016/314
http://dx.doi.org/10.1007/978-3-540-77535-5_17
http://dx.doi.org/10.1007/978-3-662-48324-4_25
http://dx.doi.org/10.1109/MICRO.2016.7783762
http://dl.acm.org/citation.cfm?id=2755784
http://dl.acm.org/citation.cfm?id=2755784

Leveraging Side-channel Information for Disassembly and Security 0:21

Supercomputing (ICS ’03). ACM, New York, NY, USA, 160–171. DOI:http://dx.doi.org/10.1145/782814.782838
[66] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2014. Unsupervised Anomaly-Based Malware Detec-

tion Using Hardware Features. Springer International Publishing, Cham, 109–129. DOI:http://dx.doi.org/10.1007/
978-3-319-11379-1_6

[67] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. 2017. CLKSCREW: Exposing the Perils of Security-
Oblivious Energy Management. In USENIX Security Symposium.

[68] Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. 2007. Reverse Engineering Java Card Applets Using
Power Analysis. In Proceedings of the 1st IFIP TC6 /WG8.8 /WG11.2 International Conference on Information Security
Theory and Practices: Smart Cards, Mobile and Ubiquitous Computing Systems (WISTP’07). Springer-Verlag, Berlin,
Heidelberg, 138–149. http://dl.acm.org/citation.cfm?id=1763190.1763207

[69] W. Wang, V. Reddy, Bo Yang, V. Balakrishnan, S. Krishnan, and Yu Cao. 2008. Statistical prediction of circuit aging
under process variations. In 2008 IEEE Custom Integrated Circuits Conference. 13–16. DOI:http://dx.doi.org/10.1109/
CICC.2008.4672007

[70] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison, P. Stergiou, and S. Kim. 2016. Malicious Firmware
Detection with Hardware Performance Counters. IEEE Transactions on Multi-Scale Computing Systems 2, 3 (July 2016),
160–173. DOI:http://dx.doi.org/10.1109/TMSCS.2016.2569467

[71] Mario Werner, Thomas Unterluggauer, David Schafenrath, and Stefan Mangard. 2018. Sponge-Based Control-Flow
Protection for IoT Devices. CoRR abs/1802.06691 (2018). http://arxiv.org/abs/1802.06691

[72] Jacob Wurm, Yier Jin, Yang Liu, Shiyan Hu, Kenneth Hefner, Fahim Rahman, and Mark Tehranipoor. 2016. Introduction
to Cyber-Physical System Security: A Cross-Layer Perspective. IEEE Transactions on Multi-Scale Computing Systems
(2016).

[73] Zhixing Xu, Sayak Ray, Pramod Subramanyan, and Sharad Malik. 2017. Malware Detection Using Machine Learning
Based Analysis of Virtual Memory Access Patterns. In Proceedings of the Conference on Design, Automation & Test
in Europe (DATE ’17). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 169–174.
http://dl.acm.org/citation.cfm?id=3130379.3130417

[74] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-channel
Attack. In Proceedings of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX Association, Berkeley,
CA, USA, 719–732. http://dl.acm.org/citation.cfm?id=2671225.2671271

[75] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, and Lui Sha. 2015. Memory Heat Map: Anomaly Detection in Real-time
Embedded Systems Using Memory Behavior. In Proceedings of the 52Nd Annual Design Automation Conference (DAC
’15). ACM, New York, NY, USA, Article 35, 6 pages. DOI:http://dx.doi.org/10.1145/2744769.2744869

[76] Lu Zhang, Luis Vega Gutierrez, and Michael Bedford Taylor. 2016. Power Side Channels in Security ICs: Hardware
Countermeasures. CoRR abs/1605.00681 (2016). http://arxiv.org/abs/1605.00681

[77] YongBin Zhou and DengGuo Feng. 2005. Side-Channel Attacks: Ten Years After Its Publication and the Impacts on
Cryptographic Module Security Testing. (2005). http://eprint.iacr.org/2005/388 zyb@is.iscas.ac.cn 13083 received 27
Oct 2005.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019.

http://dx.doi.org/10.1145/782814.782838
http://dx.doi.org/10.1007/978-3-319-11379-1_6
http://dx.doi.org/10.1007/978-3-319-11379-1_6
http://dl.acm.org/citation.cfm?id=1763190.1763207
http://dx.doi.org/10.1109/CICC.2008.4672007
http://dx.doi.org/10.1109/CICC.2008.4672007
http://dx.doi.org/10.1109/TMSCS.2016.2569467
http://arxiv.org/abs/1802.06691
http://dl.acm.org/citation.cfm?id=3130379.3130417
http://dl.acm.org/citation.cfm?id=2671225.2671271
http://dx.doi.org/10.1145/2744769.2744869
http://arxiv.org/abs/1605.00681
http://eprint.iacr.org/2005/388
mailto:zyb@is.iscas.ac.cn

	Abstract
	1 Introduction
	2 Adversarial Capabilities and Defense Strength
	3 Taxonomy and Existing Hardware-based Monitors
	3.1 Internal Monitors
	3.2 External Side-channel Monitors

	4 Potential Applications
	4.1 Malware Detection
	4.2 Firmware Reverse Engineering
	4.3 Hardware-Firmware Co-attestation
	4.4 Detecting Meltdown and Spectre Attacks
	4.5 Miscellaneous Applications

	5 Limitations and Future Research
	5.1 Increased Complexity
	5.2 Addressing Covariate Shift Problem
	5.3 Noise Reduction
	5.4 Data Acquisition and Measurement
	5.5 Limitation of Physical Access

	6 Conclusion
	References

