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With the rise of Internet of Things (IoT), devices such as smartphones, embedded medical devices, smart 
home appliances as well as traditional computing platforms such as personal computers and servers have 
been increasingly targeted with a variety of cyber attacks. Due to limited hardware resources for embedded 
devices and difculty in wide-coverage and on-time software updates, software-only cyber defense techniques, 
such as traditional anti-virus and malware detectors, do not ofer a silver-bullet solution. Hardware-based 
security monitoring and protection techniques, therefore, have gained signifcant attention. Monitoring devices 
using side channel leakage information, e.g. power supply variation and electromagnetic (EM) radiation, is 
a promising avenue that promotes multiple directions in security and trust applications. In this paper, we 
provide a taxonomy of hardware-based monitoring techniques against diferent cyber and hardware attacks, 
highlight the potentials and unique challenges, and display how power-based side-channel instruction-level 
monitoring can ofer suitable solutions to prevailing embedded device security issues. Further, we delineate 
approaches for future research directions.1 
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1 INTRODUCTION 

With the advent of the Internet of Things (IoT), embedded devices, and networked high performance 
computation platforms and data centers, various cyber attacks such as malware, ransomware, 
distributed denial-of-service (DDoS), etc., have become a signifcant concern in the present world. 
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All network-connected devices – from high performance PCs and cloud servers to low-cost and 
lightweight IoT and embedded devices – are susceptible to such cyber and hardware attacks. Since 
low-cost loT devices have limited resources, such as low processing, memory capability and energy, 
deploying sophisticated defense mechanisms is extremely difcult and fnancially infeasible making 
them attractive targets to adversaries [72]. The attacks and vulnerabilities are expected to be even 
more with an estimated 26 billion connected devices by the end of 2020 [49]. Many IoT devices can 
be infected by a botnet malware and be used as ‘zombies’ for distributed denial-of-service (DDoS) 
attacks [4]. An adversary can extract private data such as credit card numbers and passwords 
to log into sensitive portals hosted by these devices, or obtain unauthorized control to critical 
infrastructure such as power plants by malware such as Stuxnet [5]. Furthermore, a malware 
infection through Internet or physical access can cause malfunction of medical devices and smart 
cars, as well as personal computers and cloud devices. It is with no doubt that such successful cyber 
attacks can lead to serious economic loss, infrastructural damage, or injury to humans [55]. 
It is apparent that thwarting the threats and vulnerabilities against cyber attacks requires last-

ing attention. In particular, runtime monitoring of computing devices from all domains is highly 
necessary to detect malware, unauthorized access, and illegitimate controls and applications. 
Such monitoring techniques can be either software-based and hardware-based. The software-based 
method mostly performs control-fow integrity (CFI) assessment [10] which can monitor unexpected 
changes by a malicious code by analyzing the runtime control-fow graph (CFG). For instance, in 
order to enforce the software-based CFI, machine-code instructions (or instrumentations) for an indi-
rect function call and a corresponding function return can be rewritten in a way that unique IDs are 
assigned for the source and the destination functions, and validity of the IDs are checked for the in-
tegrity verifcation [1]. However, such software-based methods have disadvantages of performance 
degradation (e.g., CFI in [1] and program shepherding in [38] have 45 % and 100 % performance 
overhead for the SPEC2000 benchmark program crafty [34], respectively) and unavailability to 
devices with resource-constrained architecture. Further, an attacker can potentially evade such 
countermeasures. For example, while non-executable data (NXD) and non-writable code (NWC) 
of software-based CFI can be protected by page-based access control (e.g., via write-xor-execute, 
W ⊕ E), an attacker can disable it with a syscall command to mprotect()/VirtualProtect() [18]. 
Traditional signature-based software monitors for standard computing devices, such as common 
anti-virus or malware detection software, do not provide sufcient protections as they face difcul-
ties in detecting zero-day threats and the embedded device may not have sufcient resources (e.g., 
memory to store and update known malware signatures) to support such schemes [30]. 

On the other hand, hardware-based methods usually use embedded and/or independent trusted 
hardware to observe the behavior of a program running on the device under monitor. Hardware-
based CFI architecture integrates hardware monitors into processor’s pipeline stages or hardware 
debug interface such as the Joint Test Action Group (JTAG) or scan chain is used to validate CFI at 
runtime. Hardware-based detection methods require smaller overhead for resource and latency 
compared to the software-based counterparts. However, such techniques heavily rely on machine 
learning (ML) techniques that need extensive training and validation and, therefore, may require 
additional hardware supports [56, 66, 70]. Based on the existing limitations, it is evident that neither 
the prevailing software-only or hardware-only techniques can provide a complete defense against 
the numerous threats and attacks. 
Recently, researchers have paid more attention to hardware-based methods that leverage side-

channel leakages such as power consumption and EM [14, 19, 48, 50, 51, 68]. Such side-channel 
leakages can be used for revealing secret data residing inside the device, e.g., private key used 
for encryption. This is traditionally known as side-channel attacks (SCA). However, side-channel 
information can also be leveraged for analyzing the status of a computing system at runtime. One 
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crucial way to do so is to disassemble the runtime code, i.e., to translate side-channel information 
into assembly codes consisting of an instruction and operands (such as the source register or the 
destination register) in a timely sequence. It can be used for verifcation of programs running on 
the device. In this paper, we refer to this as a side-channel disassembler (SCD). Using a SCD, the 
control fow of the target device can be tracked in the coarse- or fne-grained granularity, both 
in software and hardware domains, without any performance degradation of the target device. A 
SCD is multipurpose as it allows to enforce decoupled monitoring of targeted devices. For example, 
it can analyze the runtime status of the device and can detect potential malware and security 
breaches which is of concern to many. A Defense Advance Research Program Administration 
(DARPA) program called Leveraging the Analog Domain for Security (LADS) [16] that is similar 
to this concept attempts to achieve security and protection using diferent side channels that 
are analog in nature. Additionally, a SCD can potentially perform hardware-frmware attestation 
and frmware reverse engineering, even against frmware that is protected by encryption and 
anti-tamper technologies. Such a SCD-based reverse engineering may be considered as a potential 
threat for Intellectual Property (IP) theft, whereas the same technique can be used for protection 
through frmware/software verifcation and authentication. One way to maintain the integrity 
of the underlying frmware is to verify whether the frmware is modifed while running on the 
device by monitoring the side-channel information. Since disassembly techniques do not require 
additional hardware to be embedded in the original processor architecture, legacy devices without 
internal hardware monitors, such as performance counters or JTAG, can be greatly benefted. Such 
devices, therefore, can be protected by attaching an external side-channel monitor capable to collect 
necessary power or EM signature [50]. 
To date, existing SCD techniques have mostly been implemented on low-performance micro-

controllers due to obvious technical limitations, such as noise-free data acquisition, additional 
hardware (e.g, oscilloscope with high sampling rates and high bandwidths, high-gain amplifers, or 
flters) cost, complex data processing, etc., that get even more pronounced for high performance 
processors used in personal computers and smartphones. For example, noise free data collection 
from high-performance multi-core processors is still a challenge and existing SCD techniques are 
not always readily scalable for complex systems. One may also argue that it is not economically 
feasible to employ expensive and bulk instruments for collecting side-channel leakages for low-cost 
IoT and embedded devices using simpler microcontrollers or processing units. As one can see, re-
solving the prevailing challenges requires a unifed and holistic efort from the research community. 
We frmly believe that by overcoming the challenges, this technique can ofer a comprehensive 
solution to present day cyber-threats in all domains of electronic devices. 
In this work, we focus on analyzing hardware-based monitoring techniques leveraging power 

side-channels for IoT and embedded devices and highlight potential applications and prevailing 
challenges for supporting high-performance computing devices as well. We frst present a taxonomy 
of hardware-based monitoring methods to summarize and compare existing techniques based 
on diferent threat models. Next, we introduce the assembly-level instruction monitoring and 
disassembly technique for embedded devices using power side-channel leakage. We also provide 
potential applications such as malware detection and frmware reverse engineering using the 
disassembly technique. Finally, we outline the unique challenges in this feld and propose high-level 
approaches for future research directions. 
The rest of the paper is organized as follows. Section 2 discusses the adversarial threat mod-

els focusing on diferent attacks and attackers’ capabilities. Section 3 presents the taxonomy of 
hardware-based monitors and discusses existing side-channel monitors. Section 4 discusses poten-
tial applications leveraging the proposed technique. Section 5 provides challenging problems in 
this feld and the future research directions. Finally, we conclude in Section 6. 
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Fig. 1. Controllability and concealment of adversary models. 

2 ADVERSARIAL CAPABILITIES AND DEFENSE STRENGTH 

Before analyzing diferent side-channel information based monitoring and security schemes in 
detail, it is imperative that we understand the underlying threats from the adversary, as well as 
diferent levels of defense that may be supported by various techniques against such threats. We 
note that the associated threats may have similar components across diferent types of devices 
such as IoT and embedded modules as well as high-performance computing platforms. 
We defne two diferent adversarial models − Type-I and Type-II − based on the attackers’ 

capabilities. We assume that Type-I attackers only have access to the device under attack for 
information gathering. They cannot manipulate the operation of the given device, i.e., they cannot 
control or modify any of the data memory and code memory by adversarial code injection or 
malware. We assume that the attackers can access only the data input/output ports and power pins of 
the device under attack, and the target device can be modeled as a black box if necessary. Traditional 
non-invasive side-channel attacks, such as Diferential Power Analysis (DPA), Correlation Power 
Analysis (CPA), and profling attacks, are likely to be performed by Type-I attackers. 

On the other hand, Type-II attackers can launch active runtime attacks as they have the ability 
to control or modify data memory or code memory depending on the capabilities (controllability) 
available to manipulate the original control fow [18]. However, as one can understand, not all 
Type-II attackers have the same amount of capabilities and control over the device under attack. For 
example, we assume that Type-II level-1 attackers can control only data memory which includes the 
stack and the heap, but they cannot modify the code memory. This means that the attackers cannot 
perform code injection or code tampering attacks. By modifying data memory and executing an 
indirect branch, attackers can redirect control fow of existing code with a malicious result in the 
code memory. Code-reuse attack (CRA), such as the return-to-libc or return-oriented programming, 
is among such Type-II level-1 attacks [8]. Further, we assume that Type-II level-2 attackers have 
control over both the data memory and the code memory. Such attackers can, therefore, inject 
malicious code or data structure, referred to as code injection attack [21]. fnally, we assume that 
the Type-II level-3 attackers can control all memory elements including registers and fip-fops. 
They can perform non-invasive fault injection attacks such as glitching attack [6], temperature 
fault attack [32], and CLKSCREW attack [67] as well as other lower level attacks. Additionally, the 
attackers can perform semi-invasive attacks on the device. 

We note that as the attackers’ control and capability over the device under attack increases, the 
concealment of the attack decreases since higher level attacks become more prominent and tend 
to show activities and properties that diverge enough for a legit user to identify easily (e.g., the 
device under attack may become unresponsive, malfunction, or show unusual network activity). 
Therefore, the quality and accuracy of the defense mechanism employed is highly related to the 
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Fig. 2. Taxonomy of hardware-based monitors. 

threat under consideration. A security monitoring and defense scheme based on side-channel 
information may ofer a generic coarse-grain monitoring for defending against attacks that utilize 
non-/semi-invasive techniques such as fault injections (i.e., Type-II level-3 attacks); however, it 
may not be suitable for detecting more subtle attacks that modify the original data/control fow to 
make divergent operations from the legit one (e.g. Type-II level-1,2 attacks). Henceforth, a more 
powerful monitoring mechanism is required to detect more concealable threats. Fig. 1 shows 
the controllability and concealment of the adversary model. We note that the prevailing defense 
mechanisms, as mentioned in Section 3, are often geared towards selective threat models and fail 
to ofer comprehensive protections against cross-layer threats from all levels and types. 

3 TAXONOMY AND EXISTING HARDWARE-BASED MONITORS 

Side-channel information, i.e., information that do not directly refer to the functional outcome of 
the device but may potentially exhibit the activity of the device, can be obtained from diferent 
sources such as supply power, EM radiation, temperature, or by utilizing diferent sensors, registers, 
and communication channels. Such information capturing monitors can be generally categorized 
into internal monitors, e.g., performance monitoring units (PMUs) with hardware performance 
counters (HPCs), and external monitors, e.g., EM probe and monitors, depending on whether they 
are integrated into, or external to, the original hardware design. Internal monitors are classifed by 
used resources to estimate the activity of the device and external monitors are classifed by the 
objective such as extracting data and tracking control fow. As shown in Fig. 2, each monitor has a 
range of attack or defense levels. For the sake of simplicity, we mostly focus on the external side 
channel information such as power. Details of such monitors are as follows. 

ACM Journal on Emerging Technologies in Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2019. 



0:6 Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, and Mark Tehranipoor 

3.1 Internal Monitors 
The internal hardware-based monitoring method exploits various embedded hardware resources 
including CFI architecture, debug interface (e.g., scan chain, JTAG, performance monitoring units, 
etc.) that is common in many modern SoCs or memory access monitors. 

3.1.1 CFI Architecture. A CFI architecture such as shadow call stack (SCS) with a bufer can be 
used to detect tampering with the return address during a function call by comparing it from two 
diferent and independent stacks where the address copies are stored [13]. Such a technique can 
prevent Type-II level-1 attacks such as code-reuse attacks (e.g., return-oriented programming (ROP) 
and jump-oriented programming (JOP)) as well as Type-II level-2 and 3 attacks. Additionally, legit 
program return addresses can be labeled ‘valid’ and stored in an isolated memory for future runtime 
comparison [2]. However, such techniques are potentially vulnerable to control-fow bending (CFB) 
attacks [17, 18]. Another major drawback is that the secure on-chip memory, i.e. the shadow stack 
or label state memory where the addresses are stored for integrity comparison, may not be readily 
available for lightweight IoT devices. 

3.1.2 Debug Interface. Hardware debug interfaces can monitor and detect several Type-II level-2 
and 3 attacks. For example, an interface following IEEE-ISTO NEXUS 5001 standards [20] can be 
used to observe branch target address at runtime to monitor any mismatch from the targets stored in 
the branch destination table caused by potential malware [27]. However, such a technique usually 
requires an additional unit to collect and process data from the debug interface. Additionally, 
performance monitoring units (PMUs) using HPCs can be used for micro-architectural event 
monitoring for potential anomaly detection [66, 70]. Alam et al. [3] proposed machine learning 
based real-time detection mechanism to deal with security against micro-architectural side-channel 
attacks including cache-based attacks and branch-prediction-based attacks, which can identify 
abnormalities in the number of micro-architectural events while those side-channel attacks are 
being executed. PMUs ofer a fne-grain fltering for individual executions and provide a faster 
response than the software-only counterparts. Also, being an integrated part of the hardware, 
such monitors operate transparently to any program running on the processor. Being oblivious 
of the program that is running, HPCs capture true activity information, and, therefore, it is very 
hard for the adversary to control HPCs for evading the malicious footprint generated due to any 
external malicious software. However, additional hardware supports as well as extensive training 
for machine learning classifcation are required. 

3.1.3 Memory Access Monitors. Analyzing memory access patterns using hardware monitors 
can ofer defense against Type-II level-2 and 3 attacks. In such attacks, an infected program can 
request suspicious memory access for undercover attacks such as rowhammer attack on DRAM 
[37]. Yoon et al. [75] utilized profled memory behavior via Memory Heat Map (MHM) collected 
by an on-chip hardware module called Memometer for malware detection. Xu et al. [73] utilized 
virtual memory access patterns for identifying potential anomalies. In both cases, ML techniques 
were used to diferentiate between malicious and benign programs. 

These internal monitoring methods often require additional resources such as a control mecha-
nism to collect and process data from internal monitors as well as heavily rely on machine learning 
techniques due to limited available information distinguishable features. In addition, real-time 
detecting algorithms using internal resources may degrade the performance of the target device. 
Further, legacy devices do not usually contain such internal hardware monitors. Therefore, CFI 
assessment and monitoring techniques using internal embedded hardware is not readily attainable 
for legacy and resource constrained devices. 
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3.1.4 Control-Flow Protection. Werner et al. [71] proposed a sponge-based control-fow protec-
tion technique which supports the confdentiality of software IP and its authentic execution on 
IoT devices. Firmware is stored in a sponge function based authenticated encryption scheme [7] 
in the memory and each instruction is decrypted after the fetch pipeline stage such that correct 
instructions can be decoded and executed. Since the encryption depends on the previous instruc-
tion states and the current instruction, (i.e., control fow), control fow deviation by code-reuse, 
code-injection and fault-injection results in randomized instructions by incorrect decryption. The 
randomized instructions can thwart attacker’s control. Also, this method prevenst from frmware 
IP theft due to frmware encryption. However, since side-channel leakage is not considered in such 
cases, it does not have robustness against side-channel attacks. 

3.2 External Side-channel Monitors 
The external monitoring methods generally use side-channel leakages such as power consumption, 
EM radiation, temperature [33], or timing [53] with the measurement and monitoring units being 
independent from the target device. The objective of the side-channel monitor is to extract private 
data or estimate control fow (e.g., instruction sequences) at runtime. Side-channel analysis tech-
niques to extract secret data usually involve adversarial intentions, e.g. stealing private encryption 
keys, etc., to control and exploit the devices and network. Such data extraction attacks can further 
be classifed into non-profling and profling attacks depending on whether a signature profling is 
required. Common non-profling attacks are diferential power analysis (DPA) [40], and correlation 
power analysis (CPA) [9] attacks. On the other hand, template attacks [11], mutual information 
analysis (MIA) [23], and various machine-learning based attacks [31, 57] correspond to profling 
attacks that analyze and classify the side-channel signature into certain domains for confdent 
extraction of underlying information. Side-channel monitoring methods for data extraction have 
been used by Type-I adversaries and well-studied for the last few decades [60, 62, 77]. From a 
defense point of view, this monitor can be used to evaluate side-channel leakage of embedded 
devices by performing side-channel attacks as well as leakage assessment test such as test vector 
leakage assessment (TVLA) t-test [24]. 
Another objective of side-channel monitoring can be to validate the control fow integrity (CFI). 

This defensive technique against various attacks can further be classifed into coarse-grained and 
fne-grained CFI methods based on the granularity of monitored activities. If the CFI design is based 
on a periodic activity (e.g., loop) in the program [61], a coarse-grained estimation of per-iteration 
execution time using side-channel leakage can be statistically compared to a benign program to 
ensure the legitimacy of the runtime control fow. In [61], repetitive program activity such as 
loops is analyzed by the spectrum of EM side-channel signals with spikes at specifc frequencies 
corresponding to the iteration time of the loop. Based on the spectral profling of a benign program, 
it is possible to recognize the spectrum of malicious programs. This method, therefore, can be 
applied for malware detection with repetitive features [51]. A more precise CFI policy is based on 
instruction-level granularity, which is referred to as a fne-grained CFI method. The fne-grained CFI 
monitor can be utilized for reverse engineering of instruction code, also known as an instruction-
level disassembler, as well as malware and anomaly detection. As one can see, diferent hardware 
monitors (e.g., power-based monitors vs. EM monitors) may lead to diferent implementations and 
analysis techniques, nonetheless the basic target applications (attack or defense) remain the same 
irrespective of the monitor itself. 

3.2.1 Side-channel-based Coarse-grained CFI Methods. Clark et al. [14] proposed a malware 
detection technique, called WattsUpDoc, on an embedded medical device and a supervisory control 
and data acquisition (SCADA) device via power side-channel. WattsUpDoc collects system-wide 
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power consumption data at runtime and identifes anomalous activity using supervised ML algo-
rithms using traces of both the normal and abnormal activities. Since the medical and SCADA 
devices have a small number of functional states (e.g., idle, booting, shutdown and compound 
tasks in case of a pharmaceutical compounder), the normal behavior can be characterized at the 
functional-level granularity and WattsUpDoc can detect abnormal behavior caused by known mal-
ware with at least 94 % accuracy and by unknown malware with at least 85 % accuracy. Although 
this technique does not necessarily perform standard CFI assessment, it is able to distinguish 
intrusive behaviors caused by potential malware. 
Nazari et al. [51] proposed a technique called EDDIE that can detect anomalies caused by 

code-injection attacks in program execution using EM side-channel. In this approach, the authors 
implement a loop-oriented execution where the control fow graph (CFG) of the program represents 
the fow from a loop-level state to other loop-level states. The loop-level states at runtime can be 
estimated by EM spectrum resulting from short-time Fourier transform (STFT) of collected EM 
signals [61]. By comparing monitored control fow to the reference (malware-free) control fow 
using thestatistical Kolmogorov-Smirnov (K-S) test, EDDIE can detect malware injected into 10 
benchmarks from MiBench [28] with at least 92 % accuracy. 

While these coarse-grained monitoring techniques can detect malware from Type-II level-2 and 
Type-II level-3 adversary models, they cannot detect the lower-level malware such as sophisticated 
code-reuse attacks. Therefore, fne-grained CFI monitoring methods are required to identify more 
subtle changes in the control fow caused by potential malware. 

3.2.2 Side-channel-based Fine-grained CFI Methods. In order to identify malicious instruction 
code that can extract a secret key or redirect the control fow to existing code with a malicious 
result (e.g., code-reuse attack), an instruction-level side channel monitor, also called a side-channel 
disassembler (SCD), can be used for fne-grained monitoring and analysis. A SCD can be designed 
in such a way that the instructions (code) tracked using side-channel, such as power consumption 
or EM radiation, can be statistically compared to the reference control fow with instruction-level 
granularity to detect any anomaly if it exists. In addition, a SCD can be used for reverse engineering 
of software or frmware running in embedded devices since its granularity can be tuned to individual 
instructions. Reverse engineering protected frmware or software is very difcult since the software 
is stored in the secure memory [29, 65]. In order to prevent software IP piracy, code and data are 
encrypted and then stored in the tamper-resistant memory. Despite of the difculty of reverse 
engineering, a SCD can recognize the behavior of decrypted code and potentially detect software IP 
piracy. For example, a company may want to know whether its software IP is cloned by competitors 
or not. Since the side-channel dissembler can recognize the behavior of decrypted code, it can be 
utilized to detect software IP piracy. In some cases, one may need to get access to frmware in 
a legacy system. Although frmware is encrypted, side-channel analysis would be a useful tool 
to reverse-engineer the frmware and understand the functionality of the system. The only other 
alternative is to invasively extract the frmware (e.g., probing), which is risky and could destroy the 
legacy device (very few may be available). 

Researchers have demonstrated various side-channel leakage-based disassembly techniques each 
slightly diferent from one another due to the target devices and applications. Vermoen et al. [68] 
introduced Java Card reverse engineering methodology that can recognize 10 diferent bytecodes 
with at least 90 % accuracy. It correlates a measured power trace during operation of the smart 
card at 4 MHz with an averaged power template of each bytecode and then classifes the measured 
power into the bytecode with the maximum correlation. 
Eisenbarth et al. [19] proposed reverse engineering of the program executed on a PIC16F687 

microcontroller at 1 MHz clock frequency. Statistical techniques such as Bayesian classifers are 
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used to construct classifcation templates from the known power consumption traces. It achieves 
a recognition rate of 70.1 % on 35 test instructions and 50.8 % on real code by applying a priori 
statistical model such as a hidden Markov model (HMM). 
Msgna et al. [50] accomplished 100 % recognition rate on a chosen set of 39 instructions in an 

ATMega163-based smart card running at a clock frequency of 4 MHz. They classify the power 
traces by applying k(= 1)-nearest neighbors (kNN) algorithm in combination with principal 
component analysis (PCA). The 100 % recognition rate, however, has not been reproduced by 
Strobel’s experiments when the Msgna’s approach was applied to diferent a microcontroller, 
PIC16F687 (less than 43 % for k=10) [63]. 

The SCD proposed by Strobel at el. [63] has a recognition rate of 96.24 % on test code and 87.69 % 
on real code on a PIC16F687 using localized multiple EM channels (antennas) with a decapsulated 
package without the priori statistical model (e.g. Markov chain). Polychotomous linear discriminant 
analysis (LDA) is used for the dimensionality reduction and the kNN machine learning algorithm 
classifes collected EM leakages with the reduced dimensionality into 33 instruction classes. 

Liu et al. [46] proposed code execution tracking on a STC89C52 microcontroller, an implementa-
tion of Intel’s 8051 architecture, at 11 MHz clock frequency using power side-channel. An HMM is 
applied, and in order to model good observation symbols, signal extraction with a flter to remove 
low SNR frequency components and PCA dimensional reduction is performed. The emission proba-
bility in the HMM is estimated by multivariate Gaussian distribution. Instructions of 9 benchmark 
programs are recognized with 99.94 % accuracy and less modifcation of original code (e.g., NOP 
instruction is replaced with an ADD A,0x00) can be detected. 

McCann et al. [48] proposed an instruction-level power estimator (IPE) on ARM Cortex-M0 using 
linear regression to spot even subtle leakage in implementations. It is an inverse function of the 
SCD, i.e., if a SCD is defned as a function, y = f (x), a IPE is represented as x = f −1(y), where x 
is a power trace and y is an instruction. It allows a programmer to estimate power side-channel 
leakage during execution of a program without real measurement. The IPE can be used in order to 
detect vulnerable instructions which can reveal secret information via power side-channel leakage. 
In addition, for malware detection, the IPE can build a fne-grained power signature of a benign 
application for a malware-free signature reference. 

Fig. 3. Process flow for our disassembler [54] 

Most of the power side-channel based fne-grained CFI assessment techniques follow the similar 
basic steps of data collection, preprocessing for noise reduction, and using various machine-learning 
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techniques to identify the underlying control fow or dissimilarities if any. Existing solutions sufer 
from the following shortcomings: (1) the small number of instruction classes to recognize makes 
applicability of existing disassemblers limited. The existing methods are not able to recognize 
operands such as address of registers, making the reverse-engineering incomplete. (2) Most of the 
target devices are running at low clock frequency. Disassembling these devices are easier than 
those with the higher clock-frequency since the higher the frequency, the more difcult signal 
acquisition would be and consequently more noise to handle during analysis [22]. In a similar 
efort, below we present an instruction-level power-based SCD [54]. Our technique can dissect a 
runtime program to extract individual instructions, i.e. both the opcode and operands, efciently 
with an accuracy of 99.03 %. We assume that there is no dependency between instructions. Under 
this assumption, some SCDs, e.g., presented by Eignebarth et al. and Liu et al., are unable to utilize 
the control fow information of a given program to be disassembled for a higher accuracy, and it is 
impossible to reverse-engineer unknown frmware in IoT devices. However, our SCD can track 
code execution of both known and unknown programs since we assume that every instruction can 
be executed independently. 

Our SCD obtains all instruction templates from an original device (e.g., IoT home security system, 
smart thermostat, etc.) and utilizes machine learning algorithms to uniquely identify instructions 
executed on the device. The feature selection using Kullback-Leibler (KL) divergence and the 
dimensional reduction using PCA in the time-frequency domain are proposed to increase the 
identifcation accuracy. Moreover, a hierarchical classifcation framework is proposed to reduce 
the computational complexity associated with large instruction sets. In addition, covariate shifts 
caused by diferent environmental measurements and device-to-device variations are minimized 
by our covariate shift adaptation technique. This technique is demonstrated on an ATMega328P 
[35] keeping low-cost and lightweight IoT applications in mind. We would like to emphasize that 
this approach can be generalized to devices of similar or higher complexity. Experimental results2 

demonstrate that our disassembler can recognize test instructions including register names with a 
success rate no lower than 99.03 % with quadratic discriminant analysis (QDA). Fig. 3 shows the 
overall workfow for our SCD. We follow the below basic steps to disassemble runtime instructions: 

Step 1. Power traces for instructions are collected from a training device. 
Step 2. Time-varying power traces are mapped into the time-frequency domain by continuous 
wavelet transform. 
Step 3. Feature selection and normalization are performed using Kullback-Leibler (KL) 
divergence with covariate shift adaptation of which details are presented in Section 5.2. 
Step 4. Feature dimensionality reduction (for efcient data analysis) is performed using 
principal component analysis (PCA). 
Step 5. Traces with reduced features are trained by ML classifers to generate reference 
templates (i.e., creates decision boundaries). 
Step 6. Power traces collected from a target device (i.e., device under assessment) are classifed 
based on the templates, and then the disassembler generates the reverse-engineered assembly 
code running on the target device. 

Our SCD has advantages as follows: It can identify operands such as the address of source 
registers or destination registers as well as opcode via a three-phase hierarchical process – 

2In this experiments, 2500 power traces per class are used for the training and 500 power traces per class are collected for 
the testing. The accuracy is the ratio of the number of correctly classifed traces to the total number of test traces. 
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Table 1. Comparison of existing side-channel hardware monitors. 

Hardware 

monitor 
Target 
devices 

Clock # of classes Accuracy Control fow 
Dimensionality 

reduction 
Classifer Side-Channel Application 

WattsUpDoc [14] 
x86 CPU 

AMD Athlon 64 

664 MHz 
– 

2 

(norm. and abnorm.) 
94 %/ 88.5 % 

99 % / 84.9 % 

coarse-grained 

(functional) 
Mutual 

information 

3-NN, Perceptron 

Random forest 
Power 

Malware 

detection 

EDDIE [51] ARM Cortex A8 – 
2 

(norm. and abnorm.) 
92 % 

coarse-grained 

(loop) 
Spectral 
profling 

K-S test EM 
Malware 

detection 

Vermoen et al. [68] Smart Card 4 MHz 
10 

Instructions 
92 % fne-grained – 

Correlation 

Coefcient 
Power 

Reverse-
engineering 

Eisenbarth et al. [19] PIC16F687 1 MHz 
33 

Instructions 
70.1 % 

fne-grained 

(HMM) 
PCA, LDA 

Multivariate 

Gaussian 
Power 

Reverse-
engineering 

Msgna et al. [50] ATMega163 4 MHz 
39 

Instructions 
100 % fne-grained PCA kNN Power 

Reverse-
engineering 

Strobel at el. [63] PIC16F687 4 MHz 
33 

Instructions 
96.24 % fne-grained 

Polychotomous 
LDA 

kNN Multiple EM 
Reverse-

engineering 

Liu et al. [46] STC89C52 4 MHz – 99.94 % 
fne-grained 

(HMM) 
PCA 

Multivariate 

Gaussian 
Power 

Reverse. 
Malware. 

McCann et al. [48] ARM Cortex-M0 8 MHz 
Emulating 

leakage 
– fne-grained – 

Linear 
regression 

Power 
Leakage 

evaluation 

Our method [54] ATMega328 16 MHz 
112 Insts. 
64 Regs. 

99.03 % fne-grained PCA 
LDA, QDA 

SVM, Naive 
Power 

Reverse. 
Malware. 

i) identifying the instruction group3 that a collected power trace l belongs to, 
ii) identifying a particular instruction (opcode) within the identifed group from the previous 

step, and 
iii) identifying the associated operands, i.e., source and destination registers (Rs and Rd, respec-

tively) if any. 
Hence, this classifcation capability has potential to detect sophisticated malware and various types 
of other attacks (see Section 4). 
Table 1 shows a comparison of existing side-channel hardware monitors in terms of the tar-

get device, the clock frequency, the number of classes, the accuracy, the granularity of control 
fow, the dimensionality reduction, the classifer, type of the side-channel leakage used and the 
target application. We see that coarse-grained techniques can sustain a relatively good amount 
of hardware complexity and can be implemented on low-level commodity processors. However, 
the fne-grained techniques that target instruction-level disassembly are mostly implemented 
on lightweight microcontrollers. An obvious reason behind it is that the granularity needed for 
instruction-level disassembly is extremely fner and the noise sensitivity afected by the complex 
pipeline and instruction set architecture (ISA) plays a big role in properly identifying the instruc-
tions from leakage information (Details on these challenges are presented in Section 5). However, 
for lightweight IoT devices, the complexity of the processing unit, i.e. microcontroller unit (MCU), 
is much less than that of the high-end commodity processors making the former a suitable choice 
for low-cost and resource-constrained applications. 

4 POTENTIAL APPLICATIONS 

As shown in Fig. 2, a fne-grain CFI assessment technique can be used for defense against several 
possible threats, as well as for adversarial attacks. In this section, we discuss some potential 
application cases where the user can leverage our proposed power side-channel-based instruction-
level disassembler – for malware detection, frmware reverse engineering, hardware-frmware 
co-attestation, and detecting Meltdown and Spectre attacks, as shown in Table 2. 

3A total of 112 instructions out of 131 instructions except for residual control, multiplication, and residual branch instructions 
can be recognized by the proposed disassembler. For ease of disassembly, these 112 instructions are classifed into 8 groups 
based on corresponding operands. 
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4.1 Malware Detection 

Due to various reasons, such as lightweight architecture, resource-constrained design, and inade-
quate security, IoT and embedded devices are prone to various malware infections [4, 14, 45, 73]. 
Here, an adversary can insert malicious code that can leak secret information, provide unauthorized 
control, and/or infect other IoT devices connected to the network. The inserted malware may yet 
be undetectable as it may remain in a stealthy mode and not hamper the original functionality of 
the device unless triggered. However, the activated malware changes the activity of the infected 
device, with respect to the legitimate behavior, via interrupts and unauthorized routine calls, and 
forces the embedded device to perform malicious activities. For example, to prevent the frst-order 
side-channel attack, the original key of the Advanced Encryption Standard (AES) encryption is 
masked with a random number [59]. However, if the random number is maliciously turned into 
a fxed value, such as all binary zeros or ones, the masking method is useless and the frst-order 
side-channel attack is, therefore, possible. The adversary can perform this attack via malware. For 
example, we consider the malware that infects the original AES encryption code in the device to 
modify the instruction xor r16, r17 into xor r16, r0, where an original 8-bit subkey, a 8-bit 
random number, and a zero number are stored in r16, r17, and r0, respectively. That is, the original 
key is still stored in r16 after executing the instruction and a following non-linear operation (Sbox) 
with the unmasking key generates signifcant side-channel leakage. 

Note that the control fow by the example malware is the same as the reference one. Hence, 
it is extremely difcult to identify the modifcation via coarse-grained monitors. However, such 
sophisticated malware can be confdently detected by an accurate disassembler (e.g., like the one 
we discussed in Section 3) due to its capability to detect the change of the source register via the 
instruction disassembly. To employ this disassembly technique to detect potential malware, one 
needs to collect the runtime power signature from the device and check the integrity of the program 
running on the board. If it shows any discrepancy, in terms of opcodes or operands in the monitored 
assembly code, a fag is raised for potential malware infection. Therefore, the disassembly technique 
can detect malicious activities from the hardware at runtime, even though malware control fow has 
similarity with that of goodware. The summarized action steps for malware detection are shown in 
Table 2. 

4.2 Firmware Reverse Engineering 

An adversary can choose to perform frmware piracy by reverse engineering the code for poten-
tial fnancial benefts, unauthorized controls, and creating backdoors, as it allows him to deploy 
unauthentic or counterfeit devices with cloned (pirated) frmware in addition to counterfeit and 
malicious software and updates. In addition, an adversary can introduce subtle modifcations to 
the original functionality by exploiting the frmware code vulnerabilities that may lead to severe 
damage to the system [42]. 
As one can see, an instruction-level SCD (like one we summarized in Section 3) can leverage 

power signature to reverse-engineer the frmware residing on an authentic lightweight device 
given that the SCD technique can potentially identify both the opcode and operands for a given 
device and ISA. To perform the attack, as shown in Table 2, the adversary needs to collect the power 
signature during runtime. If the device is designed to run some add-on software, the signature can 
be collected during the boot process to separate the frmware signature from the noise generated by 
other programs. Given the frmware complexity and a satisfactory amount of power side-channel 
data from the target device, the extracted instructions can be sequentially placed to generate the 
cloned control fow and frmware image. For reverse engineering accuracy, we assume that the 
target device model and instruction set architecture are known to the attacker and the adversarial 
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model for instruction profling from the power leakage information is sufciently equivalent to 
that of the target device. Also, by employing the covariate shift adaptation technique discussed in 
Section 5.2, the adversary can extract distinct and non-varying features from the adversarial power 
signature model and focus only on selective features making the reverse engineering attack more 
efcient. 

Further, reverse engineering of frmware or software for piracy or copyright analysis is common 
in industry. For example, a company may want to know whether its software IP is cloned by 
competitors. Even though the frmware in a competitor’s devices is encrypted in the tamper-
resistant memory, an instruction-level SCD can recognize the behavior of decrypted code. That is, 
a security engineer can use the instruction-level SCD to perform reverse engineering of software 
running on the competitor’s device for verifcation of software piracy. 

4.3 Hardware-Firmware Co-atestation 

To ensure the integrity of an IoT network, all associated devices and frmware residing in them need 
to be authentic (not counterfeit), and malware-free. Further, to avoid any adversarial impersonation 
[15], e.g., as in the case of relay attacks, a device and its frmware can be bound together to be 
considered as a unifed identity. The proposed fne-grained SCD method can ofer a hardware-
frmware co-attestation technique for ensuring the authenticity of both the device and frmware or 
detecting counterfeit devices and frmware. The idea behind it is that every hardware device running 
the same authentic frmware generates a similar but unique power signature due to manufacturing 
process variation, runtime conditions, and process data and workload. It should be noted that the 
generated in-feld power signature is often too noisy to be uniquely identifed by the attester using 
only regular template matching techniques. A well-designed SCD (similar to the one described in 
Section 3) can be potentially implemented to extract distinct and non-varying features. For this, one 
needs to identify the features that are much less susceptible to noise and possible covariate shift. If 
noise reduction and covariate shift adaption (discussed in Section 5.1 and 5.2) are well applied, the 
detection error due to environmental noise can be reduced. 
To perform a hardware-frmware co-attestation, the original equipment manufacturer (OEM) 

is required to collect and store the power signature of the authentic device with the legitimate 
frmware at the beginning of the operational lifetime. During in-feld operation, test signatures can 
be collected and verifed against the initially obtained data. If any of the elements of the system (i.e. 
either the hardware device or the frmware) is compromised, the power signature will not remain 
the same and the unifed attestation will no longer be valid. A further analysis of the signature to 
dissect the program into sequential instructions can lead to identifying whether the frmware is 
compromised (through unrecognized instruction/control fow) or the hardware is under attack, as 
summarized in Table 2. This approach can be further extended for developing a system-level mutual 
authentication technique [26] utilizing additional hardware-based IDs and obfuscated frmware. 

4.4 Detecting Meltdown and Spectre Atacks 
Two major hardware faws in modern CPUs, called Meltdown and Spectre, were revealed in January 
2018 [43]. These two bugs allow an attacker to access sensitive data stored in the memory without 
any log records. It impacts almost every CPU such as Intel, AMD, and ARM processors built in the 
past 10 years meaning that a huge number of computers, smartphones, and cloud servers currently 
in use are signifcantly vulnerable to these two security concerns. Although the software patch for 
Meltdown, called KAISER [25], is currently available, it still has limitations: The software patch 
leaves a small amount of privileged memory exposed in the user space. If the hardware exploits, 
namely out-of-order executions and speculative branch predictions, used by the two attacks need to 
be addressed, the performance may fall down by 30 %. Since these faws are rooted in the hardware 
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Table 2. Potential Applications for fine-grained Instruction-level Disassembly 

Application Type Assumption Action summary 

Malware 

Detection 

Defense 

Mechanism 

Malware violates legitimate 

CFI by adding/modifying 

instructions/registers 
(source, destination). 

1. Collect power signatures for runtime instruction disassembly. 
2. Do in-feld CFI assessment by performing instruction-level 
disassembly. 
3. Compare against the golden program control fow. 
4. Flag suspicious instructions due to malware. 

Firmware 

Reverse 

Engineering 

Adversarial 
Threat / 
Defense 

Mechanism 

Power signature 

model is comparable to 

that of the target devices 
and instruction sets. 

1. Collect power signatures from boot process. 
2. Match power templates for known hardware models and 

instruction sets. 
3. Perform instruction-level disassembly. 
4. Do consecutive instruction placement to obtain reverse 

engineered frmware. 

Hardware-
Firmware 

Co-attestation 

Defense 

Mechanism 

Certain non-varying features 
are extractable even with 

the presence of noise. 

1. Collect power signatures from multiple target devices at 
time zero (golden data). 
2. Extract and store distinct and non-varying features (solving 

covariate shift problem). 
3. Collect in-feld runtime signatures at time t. 
4. Extract runtime features and compare with that from step 2. 
5. Verify hardware-software authenticity. 

Meltdown/ 
Spectre 

Detection 

Defense 

Mechanism 

Meltdown and Spectre attacks 
execute iterative memory 

access instructions which 

violate legitimate CFI. 

1. Collect power signatures from the monitored CPU. 
2. Do in-feld CFI assessment by identifying iterative loop modules. 
3. Determine if the identifed loop is normal operations 
compared to the benign control fow. 
4. Flag attack instructions and then terminate the application. 

itself, the fundamental solution is to replace the vulnerable modules with updated (redesigned) 
hardware. However, it is extremely expensive, time-consuming, and practically infeasible to upgrade 
all vulnerable hardware. Thus, detecting and preventing Meltdown and Spectre attacks is necessary 
for keeping lowest possible cost and performance degradation in mind. 
The fne-grained SCD framework has potential to detect both Meltdown and Spectre attacks, 

before the completion of attacks, given that it is adapted and optimized for commodity processors. 
If the attacks are detected, termination of the infected application and refreshing memory prevents 
an attacker from obtaining confdential information. Spectre attack [39] exploits speculatively 
executed indirect branch instructions which should not have been executed during a correct program 
execution, with following transient instructions which transmit secret data via microarchitectural 
covert channels (e.g., cache timing side-channel). The branch predictor directs the control fow to 
the transient instructions which request an access to the private data that is temporarily stored 
in the cache until the process redirects to normal control fow reverting the previous state before 
execution of the indirect branch instruction. Using cache timing attack (e.g., Flush+Reload attack 
[74]), the dump of data can be extracted. In order to detect the Spectre attack, two loops for the setup 
and cache timing attack should be identifed by a SCD. The setup loop consists of iterative indirect 
branch instructions that mistrain the branch predictor so that it will later make an erroneous 
speculative prediction. The loop for the cache timing attack also consists the same instructions to 
request access to the secret data. Since these two loops are a deviation from the normal control 
fow, they can be detected easily by a fne-grained CFI technique such as our proposed SCD as well 
as by a course-grained CFI such as EDDIE [51]. 
The Meltdown attack [44] exploits the out-of-order execution of transient instructions stored 

in the reorder bufer for raising an exception caused by illegal memory access. The transient 
instructions to access inaccessible pages such as kernel pages are still executed in the small window 
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time between the illegal memory access and the raising of the exception. An attack can extract 
the dump of inaccessible memory using cache timing attack such as Flush+Reload attack. Since 
our SCD, as well as course-grained CFIs, can identify the cache timing attack, Meltdown can be 
detected as well. 

4.5 Miscellaneous Applications 
A side-channel based instruction disassembler and its variants can ofer several additional ap-
plications for IoT as well as a traditional computing domain. A key application resides in IP/IC 
fngerprinting and watermarking. Similar to hardware-frmware co-attestation technique, a SCD 
can utilize the power traces to extract distinct features that essentially could be used as an active 
fngerprint or passive watermark to the hardware device or the frmware IP under considera-
tion [47]. A similar approach can also be explored for digital rights management (DRM) for the 
software/application running on an embedded device. 

5 LIMITATIONS AND FUTURE RESEARCH 

In this section, we discuss the open issues and challenging problems of existing side-channel 
monitors and address high-level approaches for future research directions. 

5.1 Increased Complexity 

Following the advancement trend, it is expected that the hardware used for IoT and an embedded 
applications will get more powerful and complex over the time, making it possible to run more 
sophisticated programs and with higher data collection and processing capabilities. For instance, 
embedded system in a smart-home collects data from many sensors and processes it continuously 
to make a critical decision, such as applying emergency alarms and activating water sprinkler in 
case of a fre, based on gathered information. However, the collected data can contain an error due 
to failing sensors or injected malicious code leading to a potential inaccurate decision. It requires 
that the system should have verifcation methods to decide whether the data is correct or not. If the 
data validation is achieved by only software, the control fow of the software generally becomes so 
signifcantly complicated that fne-grained CFI methods become infeasible. Furthermore, since an 
advanced electrical device requires a high performance computing unit to support the complex 
processing, it may contain deep pipelining, multiple cores, and a large ISA. For such cases, the 
side-channel templates corresponding to the control fow states at the granularity of instruction 
level would grow to tremendous complexity. Therefore, a fne-grained CFI method using only 
side-channel leakage may become infeasible to detect malicious codes. 
The fne-grained CFI method with internal hardware monitors and sensors such as hardware 

performance counters or debug interfaces may become benefcial in such cases. For example, the 
fne-grained control fow graph with the granularity of instruction level can be replaced with 
hierarchical control fow graphs that have module-level states consisting of additional substates 
corresponding to instructions. As a hybrid approach, the higher-level control fow integrity can 
be validated using built-in hardware monitors such as performance counters and the lower-level 
control fow integrity in each module-level state can be validated by the fne-grained CFI monitor 
simultaneously to provide the accuracy in the face of increasing complexity. 

5.2 Addressing Covariate Shif Problem 

In real life, an embedded device undergoes diferent operating conditions (e.g., power supply and 
temperature variation) as well as runs diferent programs with numerous instruction combinations. 
The collected power traces for disassembly from a real device in the feld, therefore, may be 
signifcantly diferent than that of an experimental device where the data is collected in a controlled 
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environment with known programs and instructions. This can lead to a poor recognition of 
instructions from an in-feld device using an experimentally trained classifer due to the covariate 
shift problem. This problem arises due to the diference in the probability distribution of training 
data (from experimental device) and testing data (from in-feld device) such that Prte (x) , Prtr (x)
even if the conditional probability of classes given training data is the same as the conditional 
probability of classes given testing data (Pr[C |x tr ] = Pr[C |x te ]) [64]. This problem also occurs in 
power measurement at diferent times or across devices and may come in a form of simple DC 
ofset, signifcant magnitude and phase changes, or random noise [12]. 

5.2.1 Covariate Shif Adaptation. Keeping the covariate shift problem in mind, a more rigorous 
sample acquisition can be done to highlight distinct features. For example, in case of our SCD in 
Section 3.2.2, the collected dataset is extended from 2500 traces to 5700 traces to estimate non-
varying feature points against the training programs with the following covariate shift adaptation; 
the KL threshold for within-class divergence calculation can be adjusted to a lower limit for a 
fner characterization. Additionally, distinct and not-varying feature points between two diferent 
classes are normalized in order to reduce the range of shifted space. Park et al. [54] showed that 
the successful recognition rate of classifcation between ADC and AND instructions when the 
covariate shift adaptation method is applied can be increased by 73.5 %. 

5.2.2 Covariate Shif Caused by Diferent Devices. The covariate shift problem also occurs in 
measured powers from diferent devices that are the same model as the trained device. It exhibits 
similar challenges to that caused by diferent programs. Based on the template from a trained 
device, the measurements from other devices can be adjusted upon testing and validation. In short, 
covariate shift problems caused by both diferent programs and devices can be minimized by 
expanding sample space and searching not-varying feature points with normalization. 

However, the requirement of increased sample space to adapt the covariate shift creates additional 
complexity in terms of sample acquisition, data processing, and obtaining fne-tuned signatures. 
Further, it requires an extensive amount of validation and adjustment from a large number of devices 
which subsequently makes the process costly and time-consuming. Additionally, the extraction of 
fner features requires high-end acquisition hardware for collecting noise-less fne-grained data. It 
eventually makes the current adaptation scheme somewhat infeasible for low-cost applications. 

5.2.3 Aging-induced Shif. Similar to the covariate shift and noise, aging-induced shifting and 
SNR variation introduces additional challenges for data acquisition, model building, and verifcation. 
In addition, gate/circuit-level countermeasures against traditional power side-channel attacks [76] 
also sufer from aging. The predictive aging models [52, 69] can potentially be utilized to fnd 
statistical correlation, if any, for the complete system and reduce the shift in the side channel profle 
during post-processing. 

5.3 Noise Reduction 

Signal-to-noise (SNR) of side-channel leakage afects the accuracy of fne-grained CFI monitors 
signifcantly. Collected power or EM signals include noise from measurement instruments, envi-
ronmental components, temperature variation, and so on. In order for the fne-grained CFI monitor 
to estimate op-codes and operands in an assembly code on a complex Systems on Chip (SoC) pro-
cessor, each power consumption trace/profle corresponding to the op-code and operands should 
be extracted from a raw (original) power trace that is measured using an oscilloscope. That is, pure 
side-channel signals without noise should be preprocessed for high accuracy before classifcation 
or estimation. 
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Table 3. Challenging problems and future research directions. 

Challenging Problem Description Research Direction 

Increased 

Complexity 

Sophisticated software has 
complicated CFG. 

Hierarchical or Hybrid 

Fine-grained CFI 

Covariate Shift 
In-feld devices produce diferent side-channel 

signatures than training devices. 
Distinct and Not-varying 

Feature Selection 

Noise Reduction 
Most side-channel leakage is afected by noise. 

Low SNR results in low accuracy. 
BSS 

Signal Processing 

Data Acquisition 
A high volume of training data is required 

for high accuracy or complicated processors. 
High-performance 

Acquisition Platform 

Physical Access 
Physical one-spot access has limitation to 

simultaneously monitor multiple IoT devices. 
RF Side-channel 

Generator 

Blind source separation (BSS) such as independent component analysis [41] or singular spectrum 
analysis [58], i.e., the decoupling of unknown signals that have been mixed in an unknown way, can 
be exploited to simultaneously extract independent signals with reduced noise from the leakage. 
Each independent signal is used to estimate the opcode or operands. In addition, since such a 
signal does not depend on devices and temperature, the covariate shift problem in a non-stationary 
environment can be solved. 

5.4 Data Acquisition and Measurement 
A higher volume of data for training (or profling) is required for high accuracy. In addition, the 
number of classes depending on instruction set architecture, the depth of the pipelining, and the 
number of CPU cores (e.g., # of classes = # of instruction × # of depth × # of cores) afects the 
volume of the training data. This results in an increased cost and delay as collecting side-channel 
leakage from state-of-art microcontrollers with measurement instruments (e.g., oscilloscope) is 
quite time-consuming. For a fast acquisition of side-channel leakage, the bandwidth speed between 
the target device and the control PC and between the measurement instrument and the control PC 
needs to be improved. For example, PCI-express based measurement instruments such as NI PXI 
platform [36] support automatic and high-performance measurement setup. 

5.5 Limitation of Physical Access 
To measure power or EM radiation, the target device has to be physically accessed or at least 
accessed within its near feld. This physical one-spot access has limitation to simultaneously 
monitor multiple IoT devices connected to a network such as a smart home. Remote and parallel 
measurement methods are required in order to observe multiple IoT devices simultaneously and 
reduce economical cost (e.g., it is expensive for a high-performance instrument measures a side-
channel leakage of a low-cost device). 
For this open issue, a dedicated analog device [45] to generate an radio frequency (RF) signal 

including the side-channel signal as well as sending data may be a good candidate. The side-channel 
signal from the collectively accumulated signal/data is extracted at the monitor and based on the 
side-channel, the state of IoT devices can be estimated. Since the monitor can receive RF signals 
from multiple IoT devices remotely, it can monitor multiple IoT devices simultaneously. Table 3 
shows the summary of challenging problems and future research directions. 
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6 CONCLUSION 

With extensive concerns about the security of modern computing devices, it is imperative that 
hardware-based monitors be developed and deployed to thwart various cyber attacks. Our analysis 
shows that the existing hardware-based monitors, especially focusing on side-channel leakage-
based control fow and instruction checking, require further improvement. In this regard, we 
illustrate a power-based side-channel instruction-level disassembler. A few simple case studies 
show the potential applications of the proposed disassembler. Finally, the challenging problems of 
existing side-channel CFI methods and high-level solutions are highlighted. 
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