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Abstract
Time division multiplexing (TDM) uses a digital flux-locked loop (DFLL) to lin-
earize each first-stage SQUID amplifier. Presently, the dynamic range of our TDM 
systems is limited by the use of a proportional-integral controller to maintain the 
DFLL. In this paper, we use simulations to assess the improvements possible with 
a predictive control algorithm that anticipates rapid changes in transition-edge sen-
sor current during the rising edge of an X-ray pulse. We calculate that the predic-
tive control algorithm can improve our TDM architecture’s dynamic range by 35%. 
This significant increase in multiplexing capabilities could be used to read out 
higher-energy X-rays, reduce readout noise, increase multiplexing factors, or reduce 
SQUID power output.
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1  Introduction

Time division multiplexing (TDM) is the most mature readout technology for 
transition-edge sensor (TES) X-ray microcalorimeters. TDM systems of the scale 
of 250 pixels have been deployed in a broad range of terrestrial X-ray applications 
[1], including recently at an electron-beam ion-trap (EBIT) facility [2] and in exotic-
atom experiments [3, 4]. TDM is being developed as the backup readout technology 
for the Athena X-ray satellite mission [5]. A recent demonstration [6] has shown that 
TDM can meet the requirements of the Athena X-ray Integral Field Unit (X-IFU) 
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instrument [7], but spacecraft resources like power and weight are so precious that 
further improvements to the multiplexing factor, noise, and SQUID power consump-
tion are highly desirable. In this paper, we investigate the increase in superconduct-
ing quantum interference device (SQUID) dynamic range offered by an improved 
digital flux-locked loop (DFLL) control algorithm.

TDM involves the sequential readout of TESs. In our architecture [8], each TES’s 
current (ITES) is read out as the flux input (Φin) to a first-stage SQUID amplifier 
(SQ1). The SQ1s are operated in rows and columns, where rows of SQ1s are read 
out in sequence and columns of SQ1s are read out in parallel. The SQ1s in a col-
umn share a flux-feedback line (FB1), and their current signals feed into a common 
SQUID series array amplifier (SSAA). Rows of SQ1s are activated one at a time, 
resulting in one TES being read out at a time per column. A readout cycle in which 
all rows are accessed is called a frame. We routinely use 8-column × 32-row TDM 
readout in fielded X-ray spectrometers. A recent set of experiments [6] showed 
the viability of 40-row TDM for the detector speed, energy resolution, and X-ray 
energies required by X-IFU. With presently implemented feedback algorithms 
and SQUID designs, X-IFU’s stringent readout requirements would be difficult to 
achieve for TDM factors much beyond 40 rows.

TDM readout uses a digital flux-locked loop (DFLL), applying a different feed-
back current (IFB1) during each row activation to attempt to keep the total flux (Φ) 
in each active SQ1 constant. In our existing system, the DFLL is maintained using 
a proportional-integral (PI) controller [9]. Each row has its own value of applied 
feedback flux (ΦFB1), which is updated once per frame using the SSAA voltage for 
that row as an error signal (Verr) for the PI controller. TDM conditions do not favor 
the use of the proportional term, which is ineffective as the primary corrective term 
because Verr has nonmonotonic flux dependence, and we will omit it from further 
discussion. Thus, our control algorithm can be written as a recurrence relation

where n is the frame index and KI is the integral coefficient of the controller. The 
sign of KI determines whether the algorithm is locked on the positive or negative 
slope of the SQUID curve, and Verr0 determines the Verr value that the SQ1 is locked 
to. (We express Verr0 as the percentage of the Verr amplitude from the bottom of the 
SQ1 curve.) A significant flux offset from the lock point occurs when Φin is chang-
ing rapidly. To account for this flux error, the measured Φin is a linear combination 
of ΦFB1 and Verr given by

where Kmix is the negative reciprocal of the slope of the Verr versus ΦFB1 curve at 
the lock point and is used to estimate the flux offset based on measured Verr.

Most estimates of the maximum flux-slew rate allowed by TDM and related archi-
tectures assume there will be an unacceptable error in readout if the control algorithm 
cannot remain on a linear slope of the Verr versus ΦFB1 curve [5, 6, 10], because our 
Φmeasured extraction algorithm assumes linearity. To test this assumption, we performed 
1-column × 32-row TDM readout of NASA-Goddard TES microcalorimeters [11, 12] 

(1)ΦFB1,n+1 = ΦFB1,n + KI(Verr,n − Verr0)

(2)Φmeasured,n = ΦFB1,n + Kmix (Verr,n − Verr0)
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receiving X-rays from a fluoresced Mn target. To reduce measurement time, the array 
was illuminated at a rate of 9.5 counts per second (cps) per pixel. We used 224 ns row 
times and 7.168 ms (1000 frame) record lengths. Holding the other parameters con-
stant, Verr0 was adjusted so the SQUID amplifiers would be in varying degrees of non-
linearity during the highest-slew rate segments of the pulse, with Verr for typical pulses 
shown in Fig. 1 (Left). Each lock point’s data set was then analyzed separately using 
typical pulse processing techniques [13], including arrival time correction, with the 
best-fit energy resolutions shown in Fig. 1 (Right). Large degradation in energy resolu-
tion occurs when the controller becomes trapped on the opposite slope of the SQUID 
curve, which occurs at Verr0 = 41% in our measurement. A faster converging controller 
would avoid this failure mode.

2 � Predictive Control Algorithms

We explore the utility of a predictive control algorithm that uses a first-order extrap-
olation of the control signal [14] to anticipate changes in ITES that will occur by the 
next frame. This first-order time delay correction is advantageous because it results in 
(Verr − Verr0) proportional to d2ITES/dt2, as opposed to dITES/dt as in the PI controller, 
meaning that the algorithm will typically have a lower error than the PI controller and 
that its error will converge to zero for a fixed slope. The predictive controller is imple-
mented as follows:

(3)ΦFB1,n+1 = ΦFB1,n + KI (Verr,n − Verr0) + dΦFB1,n

Fig. 1   (Left) The error signal for the rising edge of a typical Mn Kα pulse at various values of Verr0. As 
Verr0 is increased, the Verr is increasingly distorted as it is moved farther into the nonlinear regime. For 
Verr > 41%, SQ1s begin to unlock. (Right) The best fit resolution of the Mn Kα lines taken at 9.5 cps per 
pixel as Verr0 is increased. Resolution degradation is initially gradual, but rapidly deteriorates at 41%. 
This failure corresponds to the controller being trapped in a region of nonlinearity for much of a pulse’s 
rising edge (Color figure online)
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where dΦFB1 is the time delay correction term and is used to make a first-order 
correction to ΦFB1 based on its previous values. dΦFB1 is not equivalent to a deriva-
tive term in a PID controller and is given by

A numerical derivative of ΦFB1 with a lowpass first-order Butterworth filter is 
applied to improve stability.

A key failing of this predictive controller is that it is not well optimized to handle 
rapid changes in dITES/dt, such as those at the start of a pulse. This can be remedied 
by adding a rapid change to dΦFB1 when the error exceeds a certain threshold. This 
time delay correction term is given by

where Kboost tunes the adjustment. (Kmix is included so that Kboost = 1 for a per-
fectly linear Verr function but should be set to greater values to account for nonlin-
earity.) To avoid instability, Eq. (5) is only applied once per rising edge of a pulse, 
accomplished by requiring 30 frames to pass before it can be applied again.

3 � Simulations

We perform simulations to compare the performance of predictive controllers with 
(PC2) and without (PC1) using Eq.  (5) to that of a PI controller. The input signal 
is given by a parabolic approximation of the rising edge of an X-ray pulse, shown 
in Fig.  2 (Left); this is sent into an asymmetric SQUID readout curve, shown in 
Fig. 2 (Center) with the result used as the error signal of the control function. Signal 
readout is performed by locking the controller at Verr0 = 50% on the steep slope and 

(4)dΦFB1,n = (4 dΦFB1,n−1 + ΦFB1,n − ΦFB1,n−1)∕5

(5)dΦ�
FB1,n

= dΦ�
FB1,n

+ Kboost Kmix (Verr,n − Verr0)

Fig. 2   (Left) Two examples of the TES pulse rising edge used in our simulations plotted as flux input 
to SQ1 versus time after X-ray arrival. Each pulse’s flux-slew rate is at maximum value (dΦin,0/dt) at 
the start of the pulse and linearly decreases in time to zero at 35 frames. (Center) The SQUID trans-
fer function used in the simulations. The shape assumes a small amount of self-feedback to SQ1 and a 
perfectly linear SSAA. (Right) The error signal of the three algorithms tested using a pulse with dΦin,0/
dt = 0.24 Φ0/frame (Color figure online)
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entering feedback and error signals into Eq. (2) to obtain measured flux. The con-
troller parameter KI is set to be as large as possible without the controller becoming 
unstable.

We initially study the algorithms in the most difficult pulse arrival scenario, when 
the pulse arrives at the same time as a data sampling (a pulse-sampling phase off-
set of zero) and (Φ − Φlock) during the first measurement of the pulse rising edge 
is maximized. For a direct comparison with experimental data taken (Fig. 1 Left), 
Verr is shown in Fig. 2 (Right) for the three algorithms using a slew rate very close 
to the unlock point of the PI controller. While the PI controller becomes trapped 
in the nonlinear regime as in the experimental measurement, PC1 and PC2 both 
recover from the nonlinear regime within three or four frames. The readout error 
of the flux measurement (Φin − Φmeasured) for the PI controller and PC2 are shown 
in Fig. 3. The PI controller unlocks at dΦin,0/dt = 0.243 Φ0/frame, PC1 unlocks at 
dΦin,0/dt = 0.270  Φ0/frame, and PC2 unlocks at dΦin,0/dt = 0.328  Φ0/frame. Since 
pulse arrival time is random, these unlock points indicate the maximum slew rate 
for which the controllers can track all non-pileup events. Thus, while retaining all 
events, PC2 has a 35% advantage in maximum slew rate over the PI controller.

The predictive controllers have an even larger advantage over the PI controller 
if the measurement application allows imperfect retention of high-slew rate events. 
As shown in Fig. 4, the unlocking behaviors of PC1 and PC2 are strongly depend-
ent on pulse arrival time. PC2 can track a pulse with dΦin,0/dt = 0.480 Φ0/frame if 
the pulse has optimal arrival time, an 81% advantage in optimal pulse arrival time 
dΦin,0/dt|max over the PI controller.

4 � Conclusion

Our simulations find that a predictive control algorithm could increase TDM’s maxi-
mum TES current slew rate by 35% without reducing event retention rates. Using 
commonly employed TDM scaling techniques, this algorithm would scale maximum 

Fig. 3   Simulated SQ1 flux measurement error with zero phase offset pulses for the PI controller (Left) 
and PC2 (Right). dΦin,0/dt for each pulse is listed in the legend (Color figure online)
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row count by a factor of (1.35)2/3 [15] while keeping readout noise constant. Thus, 
40-row TDM [6] would scale to 48-row TDM for X-IFU, lowering the 50 mK mul-
tiplexer power output by a factor of 0.83 per TES. Additionally, the predictive con-
troller would allow the measurement of X-ray events with far greater energies than 
the 12  keV specified for X-IFU with imperfect event retention. Future work will 
include implementing the predictive controller in firmware so that this concept can 
be tested with real devices.
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