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Abstract — With the increasing interest in studying 

Automated Driving System (ADS)-equipped vehicles through 

simulation, there is a growing need for comprehensive and 

agile middleware to provide novel Virtual Analysis (VA) 

functions of ADS-equipped vehicles towards enabling a reliable 

representation for pre-deployment test. The National Institute 

of Standards and Technology (NIST) Universal Cyber-physical 

systems Environment for Federation (UCEF) is such a VA 

environment. It provides Application Programming Interfaces 

(APIs) capable of ensuring synchronized interactions across 

multiple simulation platforms such as LabVIEW, OMNeT++, 

Ricardo IGNITE, and Internet of Things (IoT) platforms. 

UCEF can aid engineers and researchers in understanding the 

impact of different constraints associated with complex cyber-

physical systems (CPS). In this work UCEF is used to produce 

a simulated Operational Domain Design (ODD) for ADS-

equipped vehicles where control (drive cycle/speed pattern), 

sensing (obstacle detection, traffic signs and lights), and threats 

(unusual signals, hacked sources) are represented as UCEF 

federates to simulate a drive cycle and to feed it to vehicle 

dynamics simulators (e.g. OpenModelica or Ricardo IGNITE) 

through the Functional Mock-up Interface (FMI). In this way 

we can subject the vehicle to a wide range of scenarios, collect 

data on the resulting interactions, and analyze those 

interactions using metrics to understand trustworthiness 

impact. Trustworthiness is defined here as in the NIST 

Framework for Cyber-Physical Systems, and is comprised of 

system reliability, resiliency, safety, security, and privacy. The 

goal of this work is to provide an example of an experimental 

design strategy using Fractional Factorial Design for 

statistically assessing the most important safety metrics in 

ADS-equipped vehicles.  
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I. INTRODUCTION AND RELATED WORK 

The current state of modeling and simulation for 

vehicles includes proprietary tools, such as IGNITE [1], 

CANOE [2], and CANALYZER [3], and open-source tools 

such as OpenModelica [4]. 1 

These tools include libraries to simulate vehicle 

dynamics such as steering, braking, energy conversion and 

transmission, and power management. Some of these tools 

allow for communication with external simulators through 

the FMI [5]. 

The ability to interface with external simulators widens 

the range of simulation scenarios that may include 

interactions with other components through control and 

sensing functions [6], [7]. 

In this work we use UCEF [8] to demonstrate that co-

simulation can enable innovation in Automated Driving 

System (ADS)-equipped vehicle research while allowing 

specialized simulation platforms to independently develop 

and improve traditional vehicle dynamics simulation. 

In Section II we review the testbed functional 

components, their roles in our co-simulation, and their 

implementation. In Section III we demonstrate the potential 

of UCEF to implement the functional components in a co-

simulation. In Section IV we propose a strategy for 

assessing safety metrics by defining an ODD and defining 

input and output parameters of interest using the Fractional 

Factorial Experiment Design [9]. The conclusion 

summarizes our effort and highlights future work. 

 
1  CERTAIN COMMERCIAL PRODUCTS ARE IDENTIFIED IN THIS PAPER TO FOSTER 

UNDERSTANDING. SUCH IDENTIFICATION DOES NOT IMPLY RECOMMENDATION OR ENDORSEMENT 

BY THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, NOR DOES IT IMPLY THAT THE 

MATERIALS OR EQUIPMENT IDENTIFIED ARE NECESSARILY THE BEST AVAILABLE FOR THE PURPOSE. 

 



EV2019                                                                                                                                                                 www.evshow.ro 

 

Fig. 1. ADS-Equipped Vehicles Testbed Functional Components 

II. ADS-EQUIPPED VEHICLES TESTBED FUNCTIONAL 

COMPONENTS AND IMPLEMENTATION 

In this section we describe the functional components of 

our ADS-equipped vehicle testbed and its implementation. 

A. Functional Components 

The ADS-equipped vehicle testbed is composed of the 

functional components described in Figure 1: 

a) the Sensing and Control component responsible for 
receiving input data from the environment such as 
weather, road condition, traffic infrastructure, and 
events such as obstacle detection data. The control 
feature of this component reacts to the data received 
by the sensing feature and generates a corresponding 
drive cycle, i.e., an acceleration, and braking pattern. 
Decision support algorithms determine this behavior 
based on the given ODD;  

b) the FMI Communication component plays a bridge 
role by transmitting the drive cycle produced from the 
sensing and control component to the actuation 
component;  

c) the Actuation component receives the drive cycle 
produced by the sensing and control component then 
performs either acceleration or deceleration functions;  

d) the Data Collection component collects data about the 
interactions between the sensing and control 
component and the actuation component for further 
processing and trustworthiness metrics assessment; 

e) the Analytics component analyzes the data collected 
by the data collection component and runs statistical 
techniques and machine learning algorithms to assess 
trustworthiness metrics of the ADS-equipped vehicles 
testbed experiments. 

B. Implementation 

Now we describe the implemented features of the 

functional components. The implementation uses a National  

Institute of Standards and Technology (NIST) co-simulation 

platform called UCEF that is built using an Ubuntu virtual 

machine. UCEF relies on the concept of multiple federates 

that interact using a publish-subscribe message pattern to 

simulate different functions of a CPS. In the present work, 

UCEF is used to simulate ADS-equipped vehicle autonomy 

or decision-making functions focused on acceleration and 

deceleration. 

a) the sensing and control functional component is 
implemented as two federates: i) a Sensing Federate 
that simulates a binary obstacle detection notification 
(vehicle or other obstacle) at a specific simulation 
time and sends that notification over the HLA bus to 

the Control Federate.            
ii) a Control Federate that processes the notification 
provided by the Sensing Federate and generates 
corresponding acceleration, and deceleration requests. 
The Control Federate also implements a User 
Datagram Protocol (UDP) server that sends drive 
cycle data to the actuation module over the 
communication component. Code for the Sensing and 
Control Federates is available in GitHub [10]; 

b) the communication component is responsible for 
communication between the UCEF federates and the 
Actuation component, built as Functional Mock-Up 
Unit (FMU). The FMU implements a UDP client that 
listens on the incoming drive cycle data from the 
UCEF UDP server implemented in the Control 
Federate and feeds that information to the Actuation 
ccomponent. We have built this FMU based on the 
Q.Tronic FMU Software Development Kit (SDK) 
and shared its source code in GitHub [11]; 

c) the Actuation component implementation can be 
realized using different simulators, including 
IGNITE, Modelica, and MATLAB that provide both 
libraries for running traditional vehicle functions and 
an FMI master algorithm that enables them to interact 
with other simulators. In this work we use Ricardo 
IGNITE, a vehicle simulation platform that can be 
installed on any Microsoft Windows computer, for 
modeling and simulation of electric and fuel-based 
vehicle models. IGNITE provides a built-in FMI 
Master algorithm, and models legacy vehicle 
functions based on the UCEF generated drive cycle; 

d) the Data Collection component is implemented using a 
MySQL database UCEF federate. Each interaction, or 
message exchange, is time-stamped and represented 
in this database as a record that comprises data 
encoding, the sender, the receiver, the time of 
transmission, the time of reception, a description of 
the carried signal, and the payload of the message; 

e) the Analytics component will be implemented in a 
future work as a federate to perform two functions: i) 
an assessment function using machine learning 
algorithms and Fractional Factorial Experiment 
Design scripts. In this work the Fractional Factorial 
statistical analysis is done using formulas 
implemented in a standalone excel data form; ii) a 
Vert.X-backend [12] / Vue.js-frontend [13] 
microservice for data visualization was implemented 
and tested for visualizing post-experiment data 
collected by the Data Collection component.  

III. CO-SIMULATION OF THE FUNCTIONAL COMPONENTS 

UCEF enables the co-simulation of a wide variety of 

CPS using the IEEE High Level Architecture (HLA), 

including systems at scale such as power grids [14]. Figure 

2 shows a federation that will simulate message exchange 

for the sensing, control, communication, and analytics 

components using simulated J1939 CAN frames.  

These federates were modeled in UCEF using the Web-

based Generic Modeling Environment (WebGME), which 

includes JavaScript extensions to convert the models into 

Java code. 



EV2019                                                                                                                                                                 www.evshow.ro 

 

Fig. 2. ADS-equipped vehicles federation where the functional 
components exchange simulated CAN messages that are logged in a 

database 

 

Fig. 3. UCEF implementation of ADS specific functions for an ADS-

equipped vehicle testbed 

WebGME was used to generate Java code for the model, 

and that code was implemented with the desired behavior 

for each federate. Java federates were modeled to represent 

the features of the functional components. The sensing 

federate sends obstacle detection data to the control federate 

over the HLA bus. The control federate adjusts the drive 

cycle based on the sensing federate input and generates a 

new drive cycle that will be fed to the actuation module 

through the FMU. The database federate collects and stores 

the simulated message exchange between the different 

federates. 

 
Fig. 4. Custom UCEF drive cycle loaded into IGNITE as an FMU that 

provides acceleration and braking signals to a simulated Electric SUV 

 
Fig. 5. ODD Overview with the simulated 200s of the FTP 75 drive cycle 

portion [150-350] fed to the Actuation Module. Stopping Time ∆T is 

also illustrated 

Other legacy vehicle simulators, such as IGNITE, have a 

mature implementation of traditional vehicle functions. As 

such it makes more sense for an ADS-equipped vehicle 

testbed to focus on extending the capabilities of these 

simulators by enabling interactions between them and 

environments like UCEF designed to simulate ADS or non-

traditional vehicle functions. Figure 3 shows the integration 

of IGNITE with the sensing and control federation to 

produce a co-simulation of the of ADS-equipped vehicle 

testbed. 

We have simulated an exchange of drive cycle data 

between UCEF and IGNITE. UCEF generates a portion of 

FTP75 [15] drive cycle data stream. The FMU implements a 

UDP listener. Figure 4 shows the integration of this external 

drive cycle data into the IGNITE simulation environment. 

IV. SAFETY STUDY 

In this section we present a scenario that demonstrates 

the potential of our ADS-equipped vehicles testbed in 

assessing trustworthiness of ADS-equipped vehicles. 

According to the National Highway Transportation Safety 

Administration (NHTSA) [16] and Waymo’s Safety Report 

[17], an ODD refers to the conditions under which a self-

driving system can safely operate. The domain includes 

geographies, roadway types, speed range, weather, time of 

day, and state and local traffic laws and regulations. We 

describe the scenario and the ODD in which our simulated 

ADS-equipped vehicles safety will be assessed. 

A. ODD Description 

The vehicle in this ODD is moving along a single lane 

road and performing a subset of the Federal Test Procedure 

75 (FTP75) drive cycle generated by UCEF as shown in 

Figure 5. 

We focus on a subset of the FTP75 drive cycle [150 s – 

350 s] where vehicle speed falls from 90 km/h to 0 km/h 

when an obstacle is detected.  

We represent this subset on a [0s- 200s] time scale.  

At t = T_control, the sensing component in UCEF 

triggers an alert that indicates an obstacle detection. The 

vehicle completely stops at t = T_actuation. For a given 

ODD there is an interval of time ∆T in which the vehicle 

performs full braking and completely stops when an 

obstacle is detected. ∆T can be expressed as follows: 

∆𝑇 = 𝑇𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 − 𝑇_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 () 
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Fig. 6. IGNITE RPOST : Vehicle response to the input drive cycle: the 
vehicle completely stops 5.342s after the intended theoretical drive 

cycle control input. T_control and T_actuation are illustrated 

The control component in UCEF generates a drive cycle 

based on the obstacle detection information it receives.  

The Actuation Component (IGNITE-based) receives this 

drive cycle and simulates the vehicle response. We can 

compare both input drive cycle and output vehicle response 

in order to judge whether the vehicle has successfully 

performed the desired braking time. We assess ∆T once an 

obstacle is detected. Figure 6 shows vehicle velocity in 

response to input drive cycle generated by UCEF. 

We have calculated for the default IGNITE parameters a 

Stopping Time equals to ∆T=5.342 s between the drive 

cycle braking control message (T_control) and vehicle 

response (T_actuation). ∆T is assessed within the described 

ODD to determine whether it falls within safe boundaries, 

i.e., stopping before hitting the detected obstacle. A safe 

scenario verifies the following property: 

0 <  ∆𝑇 <  ∆𝑇_𝐿𝑖𝑚𝑖𝑡  () 

∆T_Limit is the time the vehicle is predicted to collide, 

and the Stopping Time will be beyond safe boundaries. ∆T 

depends not only on the drive cycle, which is the result of 

decision support algorithms implemented in UCEF’s control 

component, but it is also influenced by information 

collected by UCEF’s sensing component and IGNITE’s 

vehicle model parameters (vehicle mass for example); 

changing a single parameter may have a significant impact. 

Figure 7 is a list of vehicle parameters that could influence 

∆T. 

 

Fig. 7. A subset of IGNITE’s vehicle model parameters. Different ODDs 

can be defined to assess a trustworthiness metric such as safety. We 

can define multiple cases each representing a run sequence, where a 

single or multiple parameters are altered. This figure shows two cases 

where vehicle mass was the altered parameter 

B. Trustworthiness metric assessment using Fractional 

Factorial Experiement Design 

One of the goals of the UCEF-based ADS-equipped 

vehicle testbed is to study ADS-equipped vehicles 

trustworthiness metrics. As in the NIST CPS Framework 

[18], trustworthiness comprises safety, security, privacy, 

resilience and reliability. This work has focused on 

illustrating the potential of co-simulation for assessing 

ADS-equipped vehicle safety measurement strategies. We 

have used the Fractional Factorial Experiment Design 

methodology to run multiple experiments while varying 

parameters of interests. 

Many factors can impact the results of the experiments. 

Going forward we aim to determine the relative importance 

of these factors. The sheer number of these factors can 
present challenges. In this section we use the characteristics 

of the UCEF-based ADS-equipped vehicle testbed to study 

these parameters and to design our experiments, using the 

statistical Design of Experiments (DEX) methodology. Four 

factors were identified for assessing their influence on the 

output parameter ∆T (the time required for vehicle speed to 

go from 90 km/h to 0 km/h). The identified parameters are 

vehicle mass, tire rolling resistance coefficient, vehicle 

aerodynamics resistance surface, and wind speed. 

The experiment design we adopt is a 2k design that takes 

into consideration 2 levels per factor. This approach is best 

suited for exploratory experimentation purposes. The 

outcome of the 2k factorial experiment helps in identifying 

the relative importance of factors and offers rapid insight 

into the interaction effects (Table I). The Fractional design 

is expressed as follows: 

Design expression: L(K-P), L: number of levels of each 

factor investigated, K: number of factors investigated, P: 

size of the fraction of the full factorial to be eliminated, LP: 

fraction of the full design LK, M: number of experiments 

TABLE I.  LIST OF INPUT PARAMETERS CONSIDERED IN THE TWO-LEVEL 

FRACTIONAL FACTORIAL DESIGN, AND THE VALUES CHOSEN FOR THE TWO 

LEVELS FOR EACH VARIABLE. 

Variable Description Low (-1) High (+1) 

X1 Vehicle Mass (Mass) 2000 kg 5000 kg 

X2 
Tire Rolling Resistance 

Coefficient 
0.01 0.08 

X3 
Vehicle Aerodynamics 

Resistance Surface (Area) 
2 m2 5 m2 

X4 Wind Speed 0 m/s 20 m/s 

TABLE II.  ∆T IS THE OUTPUT PARAMETER (RESPONSE) MEASURED BASED 

ON VARIATIONS OF VEHICLE PROPERTIES AND WEATHER CONDITIONS. 

Output parameter Y1 = ∆T = F (X1, X2, X3, X4) 

Y1: Stopping Time 

For a system with K=4 factors, L=2 levels of each factor, 

and P=1, the number of experiments in a fractional 2K-P will 

be M = 24-1 = 8 experiments. The half factorial design would 

reduce M, the number of experiments by half. Table III 

describes the different sets of experiments with the 

fractional 2K-P experiment design without replication. We 

have explained in this section how the experiment design 

using statistical fractional factorial techniques can be used to 

discern which factors yields the most significant response on 

the output parameters of interest and as a result assess safety 

related to the specified ODD parameters.  
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By assessing which vehicle characteristics and road 

conditions have the most influence on ∆T outcomes, we can 

understand which factors have the most significant impact 

on the stopping time. 

TABLE III.  FRACTIONAL FACTORIAL 2K-P (K=4, P=1, M= 8) 

X1 X2 X3 X4 RunSeq 

-1 -1 -1 -1 1 

1 -1 -1 1 2 

-1 1 -1 1 3 

1 1 -1 -1 4 

-1 -1 1 1 5 

1 -1 1 -1 6 

-1 1 1 -1 7 

1 1 1 1 8 

The DEX mean plot [19] is appropriate for analyzing 

data from a designated experiment, with respect to 

important factors, where the factors are at two or more 

levels. The plot shows mean values for two or more levels 

of each factor plotted by factor. The mean values of a single 

factor are connected by a straight line. For the given factor 

levels results shows that “Vehicle Mass” is by far the most 

important factor in influencing ∆T. "Tire Rolling 

Resistance" plays the next most critical role. The 

experimental parameters tested for “Wind speed” and 

“Vehicle Aerodynamics Resistance Surface” did not 

indicate a statistically significant effect on stopping time. 

The average Stopping Time ∆Tavg across all experiments is 

equal to 5.44s. If ∆T_Limit = ∆Tavg, we can evaluate safe 

braking boundaries just by reviewing the DEX mean plot 

(Figure 8). Raw results can be found in [20]. 

 

Fig. 8. The DEX mean plot: ∆T respose to 4 factors of interest 

V. CONCLUSIONS 

In this work we have described the NIST UCEF-based-

ADS-equipped vehicles testbed and its potential for co-

simulation of ADS-equipped vehicle applications. We have 

described implementation elements of the testbed and 

considered an ODD and a metric strategy for assessing 

safety, one component of trustworthiness. Finally, we have 

described an experiment design methodology that can be 

used to assess trustworthiness metrics. 

Going forward, we intend to perform additional 

experiments to further study the safety and other 

trustworthiness metrics for ADS-equipped vehicles. 

We will also design deep learning architectures to 

explore trustworthiness assessment techniques. For instance, 

we plan to leverage UCEF to study the safety of ADS 

functions and synthesize ground truths for training deep 

learning models. These deep learning models will be used 

for two purposes: to approximate the safety metric and 

forecast safety violations. Since many ADS functions are 

safety critical, we will design learning architectures that are 

interpretable and explainable. 
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