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Abstract—This paper investigates the task management for 
cooperative mobile edge computing (MEC), where a set of 
geographically distributed heterogeneous edge nodes not only 
cooperate with remote cloud data centers but also help each 
other to jointly process tasks and support real-time IoT 
applications at the edge of the network. Especially, we address 
the challenges in optimizing assignment of the tasks to the nodes 
under dynamic network environments when the task arrivals, 
node computing capabilities, and network states are non-
stationary and unknown a priori. We propose a novel stochastic 
framework to model the interactions of the involved entities, 
including the edge-to-edge horizontal cooperation and the edge-
to-cloud vertical cooperation. The task assignment problem is 
formulated and the algorithm is developed based on online 
reinforcement learning to optimize the performance for task 
processing while capturing various dynamics and 
heterogeneities of node computing capabilities and network 
conditions with no requirement for prior knowledge of them. 
Further, by leveraging the structure of the underlying problem, 
a post-decision state is introduced and a function decomposition 
technique is proposed, which are incorporated with 
reinforcement learning to reduce the search space and 
computation complexity. The evaluation results demonstrate 
that the proposed online learning-based scheme outperforms 
the state-of-the-art benchmark algorithms.    

Keywords-mobile edge computing (MEC); task assignment; 
stochastic optimization; reinforcement learning; decomposition 

I.  INTRODUCTION 

The convergence of communication technologies, 
information processing, embedded systems, and automation 
has enabled rapid growth of the Internet of Things (IoT). 
Various things or objects such as sensors, actuators, and smart 
devices are connected to the Internet to provide new services 
such as smart cities, intelligent transportation, and industrial 
control. These emerging applications often involve 
performing intensive computations on sensor data, e.g. 
image/video in real time, aiming to realize fast interactions 
with the surrounding physical world. Mobile edge computing 
(MEC) has been advocated to support real-time IoT 
applications. Edge nodes with computing, storage and 
communication capabilities are co-located or integrated with 
base stations (BSs), routers, and gateways in the mobile radio 
access network (RAN) to execute sensor data processing 
tasks, such as image recognition and object detection, near the 
data sources at the edge of the network. Compared to the 
traditional cloud-based solutions, MEC can reduce data 

transfer time and conserve communication bandwidth by not 
shipping large volumes of data collected from many sensors 
to a centralized data center over the Internet, while providing 
real-time local context-aware services required by emerging 
IoT applications.  

In contrast to centralized cloud data centers, MEC edge 
nodes are deployed at geographically distributed locations in 
a RAN, and user requests for computational tasks may arrive 
at any MEC edge node, instead of a gateway or master node. 
Individually, edge nodes have limited and heterogeneous 
computing resources as well as dynamic network conditions. 
The tasks may be queued at an edge node due to its limited 
processing capability and even dropped due to the node’s 
bounded buffer. In addition, the workload received by edge 
nodes exhibits temporal and spatial fluctuations due to the 
bursty nature of IoT applications and mobility. If edge nodes 
can forward the unprocessed tasks to nearby edge nodes 
and/or remote cloud data centers for execution, the overall 
processing capability will be increased. The horizontal 
cooperation among edge nodes as well as the vertical 
cooperation between edge nodes and remote cloud for jointly 
processing computational tasks can balance the workload and 
reduce service latency. However, there are non-trivial 
challenges to manage the MEC services and assign the tasks 
to be processed at different nodes in a distributed and dynamic 
MEC network to achieve the optimal system performance: a) 
both computing resource availability at a node and network 
communication delay between the nodes should be taken into 
consideration to make the best task assignment decision for 
forwarding tasks from one node to another. b) The task 
arrivals, available computing capabilities at edge nodes, and 
network delays are time-varying and unknown a priori in 
many MEC scenarios.  

Most research efforts have focused on the problem of 
offloading tasks from mobile devices to edge nodes [1], [2] or 
the vertical cooperation in which MEC edge nodes help cloud 
data centers process delay-sensitive tasks for improved quality 
of service (QoS) [3], [4]. There are less attentions to 
investigate the horizontal cooperation among MEC edge 
nodes for joint task processing. Recently, the authors in [5] 
proposed an offloading scheme that allows an edge node to 
forward its tasks to other edge nodes for processing to balance 
the workload. However, they assume that users submit their 
tasks to edge nodes at a constant rate and the task arrival rate 
at an edge node is known. The queuing delay at an edge node 
and the network delay between the edge nodes are also 
deterministic and can be known in advance. These 
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assumptions are too idealized for real deployment scenarios. 
Furthermore, their task assignment algorithm is based on 
classical convex optimization methods given a static MEC 
environment, which fails to characterize system dynamics and 
impacts the performance.  

In this paper, we investigate the task assignment and 
management for cooperative mobile edge computing services 
under time-varying task arrivals, node computing capabilities, 
and network states. We cast the task assignment as a dynamic 
and stochastic optimization problem and develop an online 
reinforcement learning algorithm to fully explore the synergy 
among the MEC entities and achieve optimal QoS 
performance with no assumption on prior knowledge of the 
underlying network dynamics. Specifically, we propose a 
novel stochastic framework to model the horizontal 
cooperation of edge nodes as well as the vertical cooperation 
between edge nodes and cloud data centers, and capture 
various dynamics and heterogeneity of node computation 
capabilities and MEC network conditions. The task 
assignment problem is formulated as a Markov decision 
process (MDP). The optimization algorithm is then developed 
based on online reinforcement learning. In order to reduce the 
computational complexity and to improve the learning 
algorithm efficiency, we propose post-decision state 
estimation and function decomposition techniques by 
leveraging structure of the underlying problem. Numerical 
results show that our proposed approach improves the MEC 
network performance, compared to the existing algorithms. 
To the best knowledge of the authors, this is the first work to 
solve the task assignment optimization problem with edge-to-
edge horizontal cooperation and edge-to-cloud vertical 
cooperation under stochastic and dynamic MEC network 
environments by employing a machine learning-based 
approach.    

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. System Model 
In this paper, we consider a software-defined MEC 

network with a centralized control plane and a distributed data 
plane [6]. Software-defined networks (SDNs) have attracted a 
lot of interest from network service providers because they 
can be flexibly controlled and programmed. As shown in Fig. 
1, a MEC network consists of geographically distributed edge 
nodes deployed in a RAN covering a certain area. The edge 
nodes are equipped with computing resources and co-located 

or integrated with base stations or WiFi access points. They 
connect to a cloud data center through the Internet. We 
consider the data center as a special node with powerful 
resources but far from the RAN. Smart devices/sensors 
connect to nearby MEC edge nodes to submit their 
computational tasks, e.g. analyzing sensed video data. The 
MEC nodes (edge nodes and data center) help each other to 
jointly process the computational tasks. When an edge node 
receives the tasks from its associated smart devices, it either 
process them locally, or forward part or all of its unprocessed 
tasks to other edge nodes or to the cloud data center for 
processing to optimize the QoS, which is based on the task 
assignment decision. In the SDN-based MEC network, a 
control plane connects the edge nodes to a software-defined 
programmable MEC controller that makes the task 
assignment decisions by taking into consideration the network 
and workload conditions. The MEC controller resides in the 
RAN and could be one of the edge nodes with dedicated 
control plane connectivity, thus the control latency is minimal.  

Consider a MEC network that consists of N edge nodes, 
labeled as � = {1, 2, …, N} and a remote cloud data center 
modeled as a special node �� . Note that it can be easily 
extended to multiple data centers. We assume that the system 
operates over discrete scheduling slots of equal time duration. 
The values of a two-dimensional task assignment matrix �� =  {��,	� : �, 
 ∈ � ∪ ��} are decided at the beginning of 

each time slot t, where ��,	�  specifies the number of tasks that 

edge node n will send to edge node j or cloud data center �� 
for processing in slot t, and ��,��  is the number of tasks that 

edge node n will buffer for processing by itself. �� ={��,	� , �	,�� ∶  
 ∈ � ∪ ��}  represents the task assignment 

vector regarding edge node n. We assume that the data center �� will process all the received tasks by itself, not forwarding 

them to the edge nodes, i.e. ���,	� = 0, 
 ∈ �.  

B. Problem Formulation 
We first formulate the problem of stochastic task 

assignment optimization and then discuss the approaches to 
solve the optimization problem. Let Α��  be the number of the 
new tasks randomly arrived at edge node n, � ∈ � from its 
associated devices in time slot t, and ��= {��� ∶ � ∈ �}. The 
distribution of Α��  is not known beforehand. ���  represents the 
task queue length of node n at the beginning of time slot t. Let ���  be the task processing capability of node n  in slot t, which 
is defined as the maximal number of tasks that node n can 
serve in slot t. We assume that ���  varies in time and is also 
unknown a priori. The queue evolution of node n can be 
written as, 

  ����� =
� 0,                       �� ���  ≥  ���  +  Α��  + Σ�∈ℯ!��,�� − Σ�∈ℯ!��,��

min{��� + Α�� + Σ�∈ℯ!��,�� − Σ�∈ℯ!��,�� − ��,� , ��("#$)},  otherwise 

(1) 

where ��("#$)
 is the maximum queue buffer size at node n. An 

edge node may forward some of its tasks to other nodes for 
processing, or offer help to process the tasks from other nodes. Σ�∈ℯ!��,��  where %� = {� ∪ ��}\{�} is the number of tasks 

that edge node n offloads to other nodes, and Σ�∈ℯ!��,��  is the 

Figure 1. System model. 



number of tasks that edge node n receives from other nodes in 
slot t. 

The local state of a node is characterized by its task queue 
size, its task processing capability, and its network delay to 
other nodes. For a node n, � ∈ � ∪ ��, at the beginning of 
time slot t, we measure its local state as &�� =(��� , ��,� '�� ) where '�� = {*�,	� , *	,�� ∶  
 ∈ � ∪ ��}  with *�,	�  

being the network delay for shipping a task from node n to 

node j, *	,��  being to the network delay for shipping a task from 

node j to node n, and *�,�� = 0. As the network delay between 

two nodes is related to the transmission distance (the number 
of hops along the path between the two nodes), traffic 
conditions in the network, and many other unpredicted 
factors, it varies in time and its distribution is unknown a priori 
as well. At the beginning of each scheduling time slot t, the 
global MEC network state is represented &�= {&�� : � ∈ � ∪��} = (-�, .�, /�) ∈ 1, where -�= {��� ∶ � ∈ � ∪ ��}, .� = {��� ∶ � ∈ � ∪ ��} , and /� =  {'�� ∶ � ∈ � ∪ ��} . 1 
represents the whole MEC system state space.  

For a given MEC network state &� at the beginning of a 
time slot t, a task assignment �� = �(&�) = [��,	(&�): �, 
 ∈ � ∪ ��}  is made, and the MEC network 

achieves an instantaneous utility that is related to the QoS. We 
consider delay-sensitive applications, where the QoS is 
measured by the task service delay and the task drop rate. The 
task service delay is defined as the period from the time that a 
task arrives at an edge node to the time that the task has been 
served in the unit of scheduling slot duration. For an edge node 
n,  � ∈ �, its service delay dn depends on the delay incurred 
by the queue Qn if edge node n processes the task by itself, or 
consists of the network delay *�,	 and the queueing delay due 

to the queue Qj at the service provider j if a task is sent from 

node n  to node j for processing. The task drop rate on is 
defined as the number of tasks dropped per time slot due to 
buffer overflow. 

The instantaneous MEC network utility under the state &� 
and task assignment decision �(&�) at time slot t is defined 
as, 

23&�, �(&�)4 =  ∑ [672�(7)(&��∈� , �(&�)) +
                       682�(8)(&�, �(&�))]                              (2) 

where 2�(7)(. )  and 2�(8)(. )  measure the satisfactions of the 
service delay and task drop rate, respectively. 67 and 68 are 
the weight factors indicating the importance of delay and task 
drop in the utility function of the MEC system, respectively. 
For an edge node, we consider there is a maximal tolerance 

threshold, ;(<>?)  for the service delay, i.e. ;� ≤ ;(<>?) . 

Correspondingly, let A(<>?)  be the maximal tolerance 

threshold for the task drop rate, i.e. A� ≤ A(<>?). In addition, 
we choose the utility function to be the exponential functions, 

namely 2�(7) = exp (−;�/;(<>?))  and 2�(8) = exp (−A�/A(<>?)) [7]. 
Stochastic task arrivals and dynamic MEC system states 

present challenges and make traditional one-shot 
deterministic optimization schemes unstable and unable to 
achieve the optimal network performance on a longer 
timescale. Therefore, we want to develop a stochastic 

optimization framework for the cooperative task assignment, 
which maximizes the expected long-term utility of a MEC 
system while guaranteeing the service delay and task drop rate 
are within their respective acceptable thresholds.   

The task assignment matrix �(&�)  is determined 
according to the control policy � after observing the network 
state &� at the beginning of a time slot t. The task assignment 
policy � then induces a probability distribution over the set 

of possible MEC network states &��C  in the following time 
slot, and hence a probability distribution over the set of per-
slot utility 23&�, �(&�)4. For simplicity, we assume that the 

probability of a state in the subsequent slot depends only on 
the state attained in the present slot, i.e. the task processing 
capability of a node and the network delay can be modelled as 
the finite-state discrete-time Markov chains across the time 
slots. Given a control policy �, the random process &� is thus 
a controlled Markov chain with the following state transition 
probability [8], [9], 

Pr{&��C|&�, �(&�) } = Pr{-��C|&�, �(&�)} Pr{.��C| .�} Pr{/��C| /�}        (3) 

For a controlled Markov chain, the transition probability from 
a present state &� to the next state &��C depends only on the 
present state &�  and the control policy �(&�)  acted on the 
present state. Taking the discounted expectation with respect 
to the per-slot utilities 23&�, �(&�)4  over a sequence of 

network states &� , we can obtain the discounted expected 
value of the MEC network utility [8], 

D(&, �) =  E [F ∙ ∑ γ�I�2(&�, �(&�))J�K� | &C],        (4) 

where F, γ ∈  [0, 1) are the parameters. γ is a discount factor 
that discounts the utility rewards received in the future, and 
(γ)t−1 denotes the discount to the (t −1)-th power.  &C is the 
initial network state. D(&, �) is also termed as the state value 
function of the MEC network in state & under task assignment 
policy �. We let F = 1 − γ, thus, the expected undiscounted 

long-term average utility, 2M(&, �) = E N limO→J
�
O ∙

∑ 2(&�, �(&�))O�K� R  &C] can be considered as a special case 

of (4) when γ  approaches 1 and F = (1 − γ) approaches 0 
[9]. On the other hand, if γ is set to be 0, then D(&, �) =2(&C, �(&C)), that is, only the immediate utility performance 
is considered. We therefore consider the expected discounted 
long-term utility performance in (4) as a general QoS indicator 
in this paper. 

The objective is to design an optimal task assignment 
control policy �∗  that maximizes the expected discounted 
long-term utility performance, that is,  

�∗ = TUV max� 3D(&, �)4  (5) 

D∗(&) = D(&, �∗) is the optimal state value function. The 
stochastic task assignment optimization in (5) can be 
considered as a MDP with the discounted utility criterion 
since the network states follow a controlled Markov process. 
The optimal task assignment control policy achieving the 
maximal state value function can thus be obtained by solving 
the following Bellman’s optimality equation [9], [10], 



D∗(&) = max� {(1 − γ) 2(&, �(&)) +
 γ ∑ Pr{&W|&, �(&)}D∗(&W)}&X ,                  (6) 

where &W = (-W, .W, /W)  is the MEC network state in the 
subsequent time slot, and Pr{&W|&, �(&)} represents the state 
transition probability that making the task assignment �(&) 
in state &  will produce the next state &W . -W = {�′� : � ∈� ∪ ��} , .W = {�′� : � ∈ � ∪ ��} , and /W = {'′� : � ∈� ∪ ��}  are the queue, task processing capability, and 
network delay states in the subsequent time slot. 

Solving (6) is generally a challenging problem. Traditional 
approaches are based on value iteration, policy iteration, and 
dynamic programming [11], [12]. However, these methods 
require full knowledge of the network state transition 
probabilities and task arrival statistics that cannot be known 
beforehand for our problem. 

III. PROBLEM SIMPLIFICATION AND ONLINE LEARNING 

ALGORITHM  

In this section, we focus on developing an algorithm to 
obtain the optimal task assignment policy with no requirement 
for prior knowledge of the statistical information about 
network state transitions and task arrivals by employing 
online reinforcement learning techniques [13], [14]. However, 
the task assignment optimization problem in (6) is very 
complex; both the MEC system state space and the control 
action space are very large as discussed later. To solve it, first, 
we simplify the problem by introducing a post-decision state 
and then reduce the number of system states through 
decomposition.     

Based on the observation that task arrivals are independent 
of the task assignment policy, we define an intermediate state 
called post-decision state for each scheduling slot, which is 
the state after an edge node finishes task offloading to other 
nodes and local processing. A time slot can be considered 
consisting of three phases, task assignment decision, task 
offloading and processing, and new task arrivals as shown in 
Fig. 2. In phase I, the MEC controller determines the task 
assignment matrix �(&) and informs the edge nodes of the 
task assignment decision. In phase II, an edge node offloads 
tasks to other nodes or receives tasks from other nodes and 
processes their tasks based on the task assignment decision. 
The network state then moves into the post-decision state. The 
new tasks from the associated devices will arrive at edge 
nodes in phase III. Note that the three phases and the post-
decision state are used to derive the optimal task assignment. 
In practice, the tasks may arrive at an edge node at any time, 
and the edge node can process the tasks in its queue and 
forward the tasks to other nodes during the whole slot time. 

At the current scheduling slot, we define the post-decision 

state as &Z =  (-̂, ._, /̂) , where the node processing and 
network delay states of the post-decision will remain the same 

as those at the beginning of the time slot, that is, ._ ={�̃�: � ∈ � ∪ ��}  with �̃� = ��  and /̂ = {'b�: � ∈ � ∪ ��} 
with 'b� = '�, respectively, because they are independent of 
the task assignment decision. The queue state of post-

decision is  -̂ = c�_�: � ∈ � ∪ ��d  with �_� = max {�� + Σ�∈ℯ!��,� − Σ�∈ℯ!��,� − ��, 0} . The probability of MEC 

network state transition from & to &W can then be expressed 
as, 

Pr{&′|&, �(&) } =  Pr {&W|&Z}Pr{&Z|&, �(&)} =∏ Pr{��}�,	∈�∪�� Pr {�W�|��} Pr {*W�|*�}           (7) 

where Pr{&Z|&, �(&)} = 1  and �� = �W� − �_�.  We can 

control the task assignment decision to ensure that no task 
drop occurs in the transition to the post-decision state, i.e. the 
task drop due to buffer overflow may happen only when the 
new tasks arrive. By introducing the post-decision state, we 
are able to factor the utility function in (2) into two parts, 

which correspond to 2�(7)
 and 2�(8)

. Then, the optimal state 
value function satisfying (6) can hence be rewritten by, 

D∗(&) = max� {(1 − γ) ∑ 672�(7)(�∈� &, �(&)) +  D_ ∗(&Z)}        (8) 

where D_ ∗(&Z) is the optimal post-decision state value function. 
that satisfies Bellman’s optimality equation, 

D_ ∗(&Z) = (1 − γ) ∑ 6g2�(g)(�∈� &,  �∗(&)) +γ ∑ Pr{&X &′|&Z}D∗(&W)                              (9) 

From (8), we find that the optimal state value function can be 

obtained from the optimal post-decision state value function 

by performing maximization over all feasible task 

assignment decisions. The optimal task assignment policy is 

thus expressed as follows, which should satisfy the maximal 

delay and task drop constraints. 

�∗ = argmax� {(1 − γ) ∑ 672�(7)(�∈� &, Φ(&)) +  D_ ∗(&Z)}  

            s.t. ;� ≤ ;(<>?) and  A� ≤ A(<>?)  (10) 

The task arrival statistics and task processing capability of the 

edge nodes are independent each other. We can then 

decompose the optimal post-decision state value function 

[15]. Mathematically, that is 

D_ ∗(&Z) = ∑ D_�∗�∈� (�_�, �̃�, 'b�)    (11) 

Given the optimal control policy �∗, according to (9) and 

(11), the post-decision state value function D_�∗(�_�, �̃�, 'b�) 

satisfies, 

D_�∗3�_�, �̃�, 'b�4 = (1 − γ)6g2�(g)∗(��, ��, '�) +
 γ ∑ Pr {��}Pr {�W�|��} Pr {'W�|'�}q!,uX!,�X! D�∗(��W , ��W , '�W )   (12) 

Based on (8) and (11), the optimal state value function of 

edge node n in the subsequent time slot, D�∗(��W , ��W , '�W ) can 

be expressed as, 

D�∗(��W , ��W , '�W ) = (1 − γ)672�(7)∗(�′�, �′�, '′�) +  D_�∗3�_�W , �̃�W , 'b�W 4  (13) 

Figure 2. Three phases of a time slot.  



where �_�W , �̃�W  and 'b�W  are the local post-decision queue, 

processing, and network delay states for node n in the 

subsequent scheduling slot, respectively. 
The linear decomposition of the post-decision state value 

function proposed above yields two main benefits. First, in 
order to derive a task assignment policy based on the global 
MEC network state, & = {&�: � ∈ � ∪ ��}  with &� =(��, ��, '�)  and '� = {*�,	, *	,� ∶  
 ∈ � ∪ ��},  at least ∏ ∏ (	∈�∪�� |��|�∈�∪�� |��||*�,	||*	,�|)  state values should 

be kept. Using linear decomposition (11), only (v +1)|��||��| ∏ (y*�,	yy*	,�y)	∈�∪��  values need to be stored, 

significantly reducing the search space in the task assignment 
decision making. Second, the problem to solve a complex 
post-decision Bellman’s optimality equation (9) is broken into 
simpler MDPs. By replacing the post-decision state value 
function in (10) with (11), we can obtain an optimal task 
assignment policy �∗ under a MEC network state &. 

As discussed before, the number of new task arrivals at the 
end of a scheduling slot as well as the task processing 
capability of a node and the states of network delay between 
the nodes for the next scheduling slot are unknown 
beforehand. In this case, instead of directly computing the 
post-decision state value functions in (12), we propose an 
online reinforcement learning algorithm to learn D_�∗3�_�, �̃�, 'b�4, ∀� ∈ � on the fly. Based on the observations 

of the network state &�� = (��� , ��,� '�� ), ∀� ∈ �, the number 

of task arrivals ��� , ∀� ∈ �, the decision on the number of 
tasks locally processed, the number of tasks offloaded to other 
nodes or received from other nodes, the achieved utility 

2�(8)∗(��, ��, '�)  at the current scheduling slot t, and the 

resulting network state &���� = (�����, ��,���'����) at the next 

slot ~ + 1, the post-decision state value function for node n 
can be updated by,   

D_����3�_�� , �̃��  , 'b�� 4 = (1 − ��)D_��3�_�� , �̃��  , 'b��  4 + ��[(1 −
γ)6g2�(g)(��� , ��� , '�� ) + γD��(�����, �����, '����)]                   (14) 

where �� ∈ [0, 1) is the learning rate. The task assignment 

matrix �� =  [��,	� : �, 
 ∈ � ∪ ��} at scheduling slot t is 

determined as,  

�� = argmax� { � [(1 − γ)672�(7)(��� , ��� , '���∈� )
+  D_��3�_�� , �̃��  , 'b��  4]} 

      s.t. ;�� ≤ ;(<>?) and  A�� ≤ A(<>?)             (15) 

The state value function of node n at slot ~ + 1 is evaluated 
by, 

D��(�����, �����, '����) = (1 − γ)672�(7)(�����, �����, '����) + 

 D_��(�_����, �̃���� , 'b���� )                         (16) 

The online learning algorithm for estimating the optimal 
post-decision state value function and determining the optimal 
task assignment policy is summarized in Algorithm 1. 

Algorithm 1.  Online Learning Algorithm for Optimal Post-

Decision State Value Function 

1. Initialize the post-decision state value functions D_��(�b�� ), ∀�b��  and ∀� ∈ � for t = 1.  

2. At the beginning of scheduling slot t, the MEC controller 

observes the network state, &� = {&�� : � ∈ �} with &�� = (��� , ��� , '�� )  and determines the task assignment matrix, �� =  [�� : � ∈ �] according to (15). 

3. After offloading and processing the tasks according to the 

above task assignment decision, the controller observes the 

post-decision state, &Z� = {&Z�� : � ∈ �} , where &Z��  = (�_�� , �̃�� , 'b�� )  with �_�� = max {��� + Σ�∈ℯ!��,�� −
Σ�∈ℯ!��,�� − ��� , 0}, �̃�� = ��� , and 'b�� = '�� . 

4. With �� = {��� ∶ � ∈ �} new tasks arrived at the end of 

slot t, the network state transits to &��� = {&����: � ∈ �} 

where &���� =  (�_�� + ��� , �����,  '����)  at the following 

scheduling slot ~+1. 

5. Calculate D��(�����, �����, '����) ,  ∀� ∈ �  according to 

(16) and updates the post-decision state value functions D_����3�_�� , �̃��  , 'b��  4, ∀� ∈ � according to (14). 

6. The scheduling slot index is updated by ~ ← ~ + 1. 

7 Repeat from step 2 to 6. 

 

IV. NUMERICAL RESULTS     

We provide the evaluation results in this section and 
compare the performance of our online reinforcement learning 
scheme with several benchmark schemes including i) no 
cooperation, i.e. an edge node processes all the tasks it 
receives from its associated devices by itself; ii) cloud 
execution, i.e. an edge node offloads all its received tasks to 
the cloud data center for execution; iii) one-shot deterministic 
optimization which is similar to the scheme in [5].  

We simulated multiple MEC network scenarios with 
different system parameters. Due to the page limit, we present 
the results for a typical setting. We assume the slot duration is 
30 ms. The task processing capability of an edge node is 
considered to be an independent Markov chain model with 
three states {4, 2, 1} tasks per slot. The network delay between 
two edge nodes is also modeled as a Markov chain with three 
states, {1, 0.5, 0.2} slots. The cloud data center has powerful 
computation resources, and the queuing and processing delay 
in the cloud data center is small enough to be ignored, but 
forwarding the tasks to the cloud incurs a large network delay, 
10 slots, due to a long distance with many hops over the 
Internet.      

In Fig. 3, we compare the average task service delay for 
different algorithms with three edge nodes and one cloud data 
center when the task arrivals follow independent Poisson 
arrival process and the average number of task arrivals per slot 

Figure 3. The average task service 

delay versus the average task 

arrivals per slot for different 

algorithms. 

Figure 4. The average number of 

dropped tasks per slot versus the

average task arrivals per slot for 

different algorithms. 



at an edge node changes. Note that the delay is measured in 
the unit of the time slot duration. The curves indicate that our 
proposed online reinforcement learning scheme outperforms 
all the three benchmark schemes. Compared to the one-shot 
optimization algorithm (the second best in terms of the service 
delay), the proposed online learning scheme can capture the 
dynamic MEC network state transitions and determine the 
optimal task assignment matrix by taking into consideration 
the impacts of time-varying stochastic network environments 
and node computing capabilities to the expected long-term 
performance in the future. However, the one-shot 
deterministic optimization algorithm makes shortsighted task 
assignment decisions and may cause a lot of tasks to be 
shipped to the cloud data center for processing, which leads to 
a large network delay and thus a large service delay. In Fig. 4, 
we present the average number of the tasks dropped per slot 
for different algorithms. The task drops for the online learning 
and one-shot optimization algorithms are close to zero 
because the algorithms minimize the task drops and the edge 
nodes will forward the tasks to the cloud data center when 
their buffers become full. For the no cooperation scheme, 
when the workload is high, an edge node does not have 
enough resources to process all the tasks so that the service 
delay increases and the tasks are dropped. For the cloud 
execution scheme, there is always a large value of network 
delay to ship the tasks to the cloud data center for processing 
over the Internet.  

V. CONCLUSIONS 

In many MEC scenarios, the task arrival statistics, task 
processing capability at an edge node, and network delay 
between two nodes are time-varying and unknown 
beforehand. Therefore, casting the task assignment as a 
dynamic and stochastic optimization problem is more 
reasonable and compelling. In this paper, we have proposed 
and investigated a stochastic framework to model the 
interactions among various entities of a MEC system, 
including the edge-to-edge horizontal cooperation and the 
edge-to-cloud vertical cooperation for jointly processing tasks 
under dynamic and uncertain network environments. The task 
assignment optimization problem is formulated as a Markov 
decision process by taking into consideration the non-
stationary computing and network states as well as the 
interaction and heterogeneity of the involved entities. To solve 
the problem, we derive an algorithm based on online 
reinforcement learning, which learns on the fly the optimal 
task assignment policy without prior knowledge of task arrival 
and network statistics. Further, considering the structure of the 
underlying problem, we introduce a post-decision state and a 
function decomposition technique to reduce the search space, 
which are combined with reinforcement learning. The 
evaluation  results show that the proposed online learning-
based scheme reduces the service delay, compared to the 

existing schemes that do not consider dynamic changes in 
traffic and MEC network statistics. 
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