
Task Management for Cooperative Mobile Edge Computing

Li-Tse Hsieh, Hang Liu

The Catholic University of

America

Washington, DC, USA

Yang Guo
National Institute of Standards and

Technology

Gaithersburg, MD, USA

Robert Gazda
InterDigital Communications, Inc.

Conshohocken, PA, USA

Abstract—This paper investigates the task management for
cooperative mobile edge computing (MEC), where a set of
geographically distributed heterogeneous edge nodes not only
cooperate with remote cloud data centers but also help each
other to jointly process tasks and support real-time IoT
applications at the edge of the network. Especially, we address
the challenges in optimizing assignment of the tasks to the nodes
under dynamic network environments when the task arrivals,
node computing capabilities, and network states are non-
stationary and unknown a priori. We propose a novel stochastic
framework to model the interactions of the involved entities,
including the edge-to-edge horizontal cooperation and the edge-
to-cloud vertical cooperation. The task assignment problem is
formulated and the algorithm is developed based on online
reinforcement learning to optimize the performance for task
processing while capturing various dynamics and
heterogeneities of node computing capabilities and network
conditions with no requirement for prior knowledge of them.
Further, by leveraging the structure of the underlying problem,
a post-decision state is introduced and a function decomposition
technique is proposed, which are incorporated with
reinforcement learning to reduce the search space and
computation complexity. The evaluation results demonstrate
that the proposed online learning-based scheme outperforms
the state-of-the-art benchmark algorithms.

Keywords-mobile edge computing (MEC); task assignment;
stochastic optimization; reinforcement learning; decomposition

I. INTRODUCTION

The convergence of communication technologies,
information processing, embedded systems, and automation
has enabled rapid growth of the Internet of Things (IoT).
Various things or objects such as sensors, actuators, and smart
devices are connected to the Internet to provide new services
such as smart cities, intelligent transportation, and industrial
control. These emerging applications often involve
performing intensive computations on sensor data, e.g.
image/video in real time, aiming to realize fast interactions
with the surrounding physical world. Mobile edge computing
(MEC) has been advocated to support real-time IoT
applications. Edge nodes with computing, storage and
communication capabilities are co-located or integrated with
base stations (BSs), routers, and gateways in the mobile radio
access network (RAN) to execute sensor data processing
tasks, such as image recognition and object detection, near the
data sources at the edge of the network. Compared to the
traditional cloud-based solutions, MEC can reduce data

transfer time and conserve communication bandwidth by not
shipping large volumes of data collected from many sensors
to a centralized data center over the Internet, while providing
real-time local context-aware services required by emerging
IoT applications.

In contrast to centralized cloud data centers, MEC edge
nodes are deployed at geographically distributed locations in
a RAN, and user requests for computational tasks may arrive
at any MEC edge node, instead of a gateway or master node.
Individually, edge nodes have limited and heterogeneous
computing resources as well as dynamic network conditions.
The tasks may be queued at an edge node due to its limited
processing capability and even dropped due to the node’s
bounded buffer. In addition, the workload received by edge
nodes exhibits temporal and spatial fluctuations due to the
bursty nature of IoT applications and mobility. If edge nodes
can forward the unprocessed tasks to nearby edge nodes
and/or remote cloud data centers for execution, the overall
processing capability will be increased. The horizontal
cooperation among edge nodes as well as the vertical
cooperation between edge nodes and remote cloud for jointly
processing computational tasks can balance the workload and
reduce service latency. However, there are non-trivial
challenges to manage the MEC services and assign the tasks
to be processed at different nodes in a distributed and dynamic
MEC network to achieve the optimal system performance: a)
both computing resource availability at a node and network
communication delay between the nodes should be taken into
consideration to make the best task assignment decision for
forwarding tasks from one node to another. b) The task
arrivals, available computing capabilities at edge nodes, and
network delays are time-varying and unknown a priori in
many MEC scenarios.

Most research efforts have focused on the problem of
offloading tasks from mobile devices to edge nodes [1], [2] or
the vertical cooperation in which MEC edge nodes help cloud
data centers process delay-sensitive tasks for improved quality
of service (QoS) [3], [4]. There are less attentions to
investigate the horizontal cooperation among MEC edge
nodes for joint task processing. Recently, the authors in [5]
proposed an offloading scheme that allows an edge node to
forward its tasks to other edge nodes for processing to balance
the workload. However, they assume that users submit their
tasks to edge nodes at a constant rate and the task arrival rate
at an edge node is known. The queuing delay at an edge node
and the network delay between the edge nodes are also
deterministic and can be known in advance. These

20
20

 I
E

E
E

/A
C

M
 S

ym
po

si
um

 o
n

E
dg

e
C

om
pu

tin
g

(S
E

C
)

| 9
78

-1
-7

28
1-

59
43

-0
/2

0/
$3

1.
00

 ©
20

20
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/S

E
C

50
01

2.
20

20
.0

00
51

assumptions are too idealized for real deployment scenarios.
Furthermore, their task assignment algorithm is based on
classical convex optimization methods given a static MEC
environment, which fails to characterize system dynamics and
impacts the performance.

In this paper, we investigate the task assignment and
management for cooperative mobile edge computing services
under time-varying task arrivals, node computing capabilities,
and network states. We cast the task assignment as a dynamic
and stochastic optimization problem and develop an online
reinforcement learning algorithm to fully explore the synergy
among the MEC entities and achieve optimal QoS
performance with no assumption on prior knowledge of the
underlying network dynamics. Specifically, we propose a
novel stochastic framework to model the horizontal
cooperation of edge nodes as well as the vertical cooperation
between edge nodes and cloud data centers, and capture
various dynamics and heterogeneity of node computation
capabilities and MEC network conditions. The task
assignment problem is formulated as a Markov decision
process (MDP). The optimization algorithm is then developed
based on online reinforcement learning. In order to reduce the
computational complexity and to improve the learning
algorithm efficiency, we propose post-decision state
estimation and function decomposition techniques by
leveraging structure of the underlying problem. Numerical
results show that our proposed approach improves the MEC
network performance, compared to the existing algorithms.
To the best knowledge of the authors, this is the first work to
solve the task assignment optimization problem with edge-to-
edge horizontal cooperation and edge-to-cloud vertical
cooperation under stochastic and dynamic MEC network
environments by employing a machine learning-based
approach.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
In this paper, we consider a software-defined MEC

network with a centralized control plane and a distributed data
plane [6]. Software-defined networks (SDNs) have attracted a
lot of interest from network service providers because they
can be flexibly controlled and programmed. As shown in Fig.
1, a MEC network consists of geographically distributed edge
nodes deployed in a RAN covering a certain area. The edge
nodes are equipped with computing resources and co-located

or integrated with base stations or WiFi access points. They
connect to a cloud data center through the Internet. We
consider the data center as a special node with powerful
resources but far from the RAN. Smart devices/sensors
connect to nearby MEC edge nodes to submit their
computational tasks, e.g. analyzing sensed video data. The
MEC nodes (edge nodes and data center) help each other to
jointly process the computational tasks. When an edge node
receives the tasks from its associated smart devices, it either
process them locally, or forward part or all of its unprocessed
tasks to other edge nodes or to the cloud data center for
processing to optimize the QoS, which is based on the task
assignment decision. In the SDN-based MEC network, a
control plane connects the edge nodes to a software-defined
programmable MEC controller that makes the task
assignment decisions by taking into consideration the network
and workload conditions. The MEC controller resides in the
RAN and could be one of the edge nodes with dedicated
control plane connectivity, thus the control latency is minimal.

Consider a MEC network that consists of N edge nodes,
labeled as � = {1, 2, …, N} and a remote cloud data center
modeled as a special node �� . Note that it can be easily
extended to multiple data centers. We assume that the system
operates over discrete scheduling slots of equal time duration.
The values of a two-dimensional task assignment matrix �� = {��,	� : �,
 ∈ � ∪ ��} are decided at the beginning of

each time slot t, where ��,	� specifies the number of tasks that

edge node n will send to edge node j or cloud data center ��
for processing in slot t, and ��,�� is the number of tasks that

edge node n will buffer for processing by itself. �� ={��,	� , �	,�� ∶
 ∈ � ∪ ��} represents the task assignment

vector regarding edge node n. We assume that the data center �� will process all the received tasks by itself, not forwarding

them to the edge nodes, i.e. ���,	� = 0,
 ∈ �.

B. Problem Formulation
We first formulate the problem of stochastic task

assignment optimization and then discuss the approaches to
solve the optimization problem. Let Α�� be the number of the
new tasks randomly arrived at edge node n, � ∈ � from its
associated devices in time slot t, and ��= {��� ∶ � ∈ �}. The
distribution of Α�� is not known beforehand. ��� represents the
task queue length of node n at the beginning of time slot t. Let ��� be the task processing capability of node n in slot t, which
is defined as the maximal number of tasks that node n can
serve in slot t. We assume that ��� varies in time and is also
unknown a priori. The queue evolution of node n can be
written as,

 ����� =
� 0, �� ��� ≥ ��� + Α�� + Σ�∈ℯ!��,�� − Σ�∈ℯ!��,��

min{��� + Α�� + Σ�∈ℯ!��,�� − Σ�∈ℯ!��,�� − ��,� , ��("#$)}, otherwise

(1)

where ��("#$)
 is the maximum queue buffer size at node n. An

edge node may forward some of its tasks to other nodes for
processing, or offer help to process the tasks from other nodes. Σ�∈ℯ!��,�� where %� = {� ∪ ��}\{�} is the number of tasks

that edge node n offloads to other nodes, and Σ�∈ℯ!��,�� is the

Figure 1. System model.

number of tasks that edge node n receives from other nodes in
slot t.

The local state of a node is characterized by its task queue
size, its task processing capability, and its network delay to
other nodes. For a node n, � ∈ � ∪ ��, at the beginning of
time slot t, we measure its local state as &�� =(��� , ��,� '��) where '�� = {*�,	� , *	,�� ∶
 ∈ � ∪ ��} with *�,	�

being the network delay for shipping a task from node n to

node j, *	,�� being to the network delay for shipping a task from

node j to node n, and *�,�� = 0. As the network delay between

two nodes is related to the transmission distance (the number
of hops along the path between the two nodes), traffic
conditions in the network, and many other unpredicted
factors, it varies in time and its distribution is unknown a priori
as well. At the beginning of each scheduling time slot t, the
global MEC network state is represented &�= {&�� : � ∈ � ∪��} = (-�, .�, /�) ∈ 1, where -�= {��� ∶ � ∈ � ∪ ��}, .� = {��� ∶ � ∈ � ∪ ��} , and /� = {'�� ∶ � ∈ � ∪ ��} . 1
represents the whole MEC system state space.

For a given MEC network state &� at the beginning of a
time slot t, a task assignment �� = �(&�) = [��,	(&�): �,
 ∈ � ∪ ��} is made, and the MEC network

achieves an instantaneous utility that is related to the QoS. We
consider delay-sensitive applications, where the QoS is
measured by the task service delay and the task drop rate. The
task service delay is defined as the period from the time that a
task arrives at an edge node to the time that the task has been
served in the unit of scheduling slot duration. For an edge node
n, � ∈ �, its service delay dn depends on the delay incurred
by the queue Qn if edge node n processes the task by itself, or
consists of the network delay *�,	 and the queueing delay due

to the queue Qj at the service provider j if a task is sent from

node n to node j for processing. The task drop rate on is
defined as the number of tasks dropped per time slot due to
buffer overflow.

The instantaneous MEC network utility under the state &�
and task assignment decision �(&�) at time slot t is defined
as,

23&�, �(&�)4 = ∑ [672�(7)(&��∈� , �(&�)) +
 682�(8)(&�, �(&�))] (2)

where 2�(7)(.) and 2�(8)(.) measure the satisfactions of the
service delay and task drop rate, respectively. 67 and 68 are
the weight factors indicating the importance of delay and task
drop in the utility function of the MEC system, respectively.
For an edge node, we consider there is a maximal tolerance

threshold, ;(<>?) for the service delay, i.e. ;� ≤ ;(<>?) .

Correspondingly, let A(<>?) be the maximal tolerance

threshold for the task drop rate, i.e. A� ≤ A(<>?). In addition,
we choose the utility function to be the exponential functions,

namely 2�(7) = exp (−;�/;(<>?)) and 2�(8) = exp (−A�/A(<>?)) [7].
Stochastic task arrivals and dynamic MEC system states

present challenges and make traditional one-shot
deterministic optimization schemes unstable and unable to
achieve the optimal network performance on a longer
timescale. Therefore, we want to develop a stochastic

optimization framework for the cooperative task assignment,
which maximizes the expected long-term utility of a MEC
system while guaranteeing the service delay and task drop rate
are within their respective acceptable thresholds.

The task assignment matrix �(&�) is determined
according to the control policy � after observing the network
state &� at the beginning of a time slot t. The task assignment
policy � then induces a probability distribution over the set

of possible MEC network states &��C in the following time
slot, and hence a probability distribution over the set of per-
slot utility 23&�, �(&�)4. For simplicity, we assume that the

probability of a state in the subsequent slot depends only on
the state attained in the present slot, i.e. the task processing
capability of a node and the network delay can be modelled as
the finite-state discrete-time Markov chains across the time
slots. Given a control policy �, the random process &� is thus
a controlled Markov chain with the following state transition
probability [8], [9],

Pr{&��C|&�, �(&�) } = Pr{-��C|&�, �(&�)} Pr{.��C| .�} Pr{/��C| /�} (3)

For a controlled Markov chain, the transition probability from
a present state &� to the next state &��C depends only on the
present state &� and the control policy �(&�) acted on the
present state. Taking the discounted expectation with respect
to the per-slot utilities 23&�, �(&�)4 over a sequence of

network states &� , we can obtain the discounted expected
value of the MEC network utility [8],

D(&, �) = E [F ∙ ∑ γ�I�2(&�, �(&�))J�K� | &C], (4)

where F, γ ∈ [0, 1) are the parameters. γ is a discount factor
that discounts the utility rewards received in the future, and
(γ)t−1 denotes the discount to the (t −1)-th power. &C is the
initial network state. D(&, �) is also termed as the state value
function of the MEC network in state & under task assignment
policy �. We let F = 1 − γ, thus, the expected undiscounted

long-term average utility, 2M(&, �) = E N limO→J
�
O ∙

∑ 2(&�, �(&�))O�K� R &C] can be considered as a special case

of (4) when γ approaches 1 and F = (1 − γ) approaches 0
[9]. On the other hand, if γ is set to be 0, then D(&, �) =2(&C, �(&C)), that is, only the immediate utility performance
is considered. We therefore consider the expected discounted
long-term utility performance in (4) as a general QoS indicator
in this paper.

The objective is to design an optimal task assignment
control policy �∗ that maximizes the expected discounted
long-term utility performance, that is,

�∗ = TUV max� 3D(&, �)4 (5)

D∗(&) = D(&, �∗) is the optimal state value function. The
stochastic task assignment optimization in (5) can be
considered as a MDP with the discounted utility criterion
since the network states follow a controlled Markov process.
The optimal task assignment control policy achieving the
maximal state value function can thus be obtained by solving
the following Bellman’s optimality equation [9], [10],

D∗(&) = max� {(1 − γ) 2(&, �(&)) +
 γ ∑ Pr{&W|&, �(&)}D∗(&W)}&X , (6)

where &W = (-W, .W, /W) is the MEC network state in the
subsequent time slot, and Pr{&W|&, �(&)} represents the state
transition probability that making the task assignment �(&)
in state & will produce the next state &W . -W = {�′� : � ∈� ∪ ��} , .W = {�′� : � ∈ � ∪ ��} , and /W = {'′� : � ∈� ∪ ��} are the queue, task processing capability, and
network delay states in the subsequent time slot.

Solving (6) is generally a challenging problem. Traditional
approaches are based on value iteration, policy iteration, and
dynamic programming [11], [12]. However, these methods
require full knowledge of the network state transition
probabilities and task arrival statistics that cannot be known
beforehand for our problem.

III. PROBLEM SIMPLIFICATION AND ONLINE LEARNING

ALGORITHM

In this section, we focus on developing an algorithm to
obtain the optimal task assignment policy with no requirement
for prior knowledge of the statistical information about
network state transitions and task arrivals by employing
online reinforcement learning techniques [13], [14]. However,
the task assignment optimization problem in (6) is very
complex; both the MEC system state space and the control
action space are very large as discussed later. To solve it, first,
we simplify the problem by introducing a post-decision state
and then reduce the number of system states through
decomposition.

Based on the observation that task arrivals are independent
of the task assignment policy, we define an intermediate state
called post-decision state for each scheduling slot, which is
the state after an edge node finishes task offloading to other
nodes and local processing. A time slot can be considered
consisting of three phases, task assignment decision, task
offloading and processing, and new task arrivals as shown in
Fig. 2. In phase I, the MEC controller determines the task
assignment matrix �(&) and informs the edge nodes of the
task assignment decision. In phase II, an edge node offloads
tasks to other nodes or receives tasks from other nodes and
processes their tasks based on the task assignment decision.
The network state then moves into the post-decision state. The
new tasks from the associated devices will arrive at edge
nodes in phase III. Note that the three phases and the post-
decision state are used to derive the optimal task assignment.
In practice, the tasks may arrive at an edge node at any time,
and the edge node can process the tasks in its queue and
forward the tasks to other nodes during the whole slot time.

At the current scheduling slot, we define the post-decision

state as &Z = (-̂, ._, /̂) , where the node processing and
network delay states of the post-decision will remain the same

as those at the beginning of the time slot, that is, ._ ={�̃�: � ∈ � ∪ ��} with �̃� = �� and /̂ = {'b�: � ∈ � ∪ ��}
with 'b� = '�, respectively, because they are independent of
the task assignment decision. The queue state of post-

decision is -̂ = c�_�: � ∈ � ∪ ��d with �_� = max {�� + Σ�∈ℯ!��,� − Σ�∈ℯ!��,� − ��, 0} . The probability of MEC

network state transition from & to &W can then be expressed
as,

Pr{&′|&, �(&) } = Pr {&W|&Z}Pr{&Z|&, �(&)} =∏ Pr{��}�,	∈�∪�� Pr {�W�|��} Pr {*W�|*�} (7)

where Pr{&Z|&, �(&)} = 1 and �� = �W� − �_�. We can

control the task assignment decision to ensure that no task
drop occurs in the transition to the post-decision state, i.e. the
task drop due to buffer overflow may happen only when the
new tasks arrive. By introducing the post-decision state, we
are able to factor the utility function in (2) into two parts,

which correspond to 2�(7)
 and 2�(8)

. Then, the optimal state
value function satisfying (6) can hence be rewritten by,

D∗(&) = max� {(1 − γ) ∑ 672�(7)(�∈� &, �(&)) + D_ ∗(&Z)} (8)

where D_ ∗(&Z) is the optimal post-decision state value function.
that satisfies Bellman’s optimality equation,

D_ ∗(&Z) = (1 − γ) ∑ 6g2�(g)(�∈� &, �∗(&)) +γ ∑ Pr{&X &′|&Z}D∗(&W) (9)

From (8), we find that the optimal state value function can be

obtained from the optimal post-decision state value function

by performing maximization over all feasible task

assignment decisions. The optimal task assignment policy is

thus expressed as follows, which should satisfy the maximal

delay and task drop constraints.

�∗ = argmax� {(1 − γ) ∑ 672�(7)(�∈� &, Φ(&)) + D_ ∗(&Z)}

 s.t. ;� ≤ ;(<>?) and A� ≤ A(<>?) (10)

The task arrival statistics and task processing capability of the

edge nodes are independent each other. We can then

decompose the optimal post-decision state value function

[15]. Mathematically, that is

D_ ∗(&Z) = ∑ D_�∗�∈� (�_�, �̃�, 'b�) (11)

Given the optimal control policy �∗, according to (9) and

(11), the post-decision state value function D_�∗(�_�, �̃�, 'b�)

satisfies,

D_�∗3�_�, �̃�, 'b�4 = (1 − γ)6g2�(g)∗(��, ��, '�) +
 γ ∑ Pr {��}Pr {�W�|��} Pr {'W�|'�}q!,uX!,�X! D�∗(��W , ��W , '�W) (12)

Based on (8) and (11), the optimal state value function of

edge node n in the subsequent time slot, D�∗(��W , ��W , '�W) can

be expressed as,

D�∗(��W , ��W , '�W) = (1 − γ)672�(7)∗(�′�, �′�, '′�) + D_�∗3�_�W , �̃�W , 'b�W 4 (13)

Figure 2. Three phases of a time slot.

where �_�W , �̃�W and 'b�W are the local post-decision queue,

processing, and network delay states for node n in the

subsequent scheduling slot, respectively.
The linear decomposition of the post-decision state value

function proposed above yields two main benefits. First, in
order to derive a task assignment policy based on the global
MEC network state, & = {&�: � ∈ � ∪ ��} with &� =(��, ��, '�) and '� = {*�,	, *	,� ∶
 ∈ � ∪ ��}, at least ∏ ∏ (∈�∪�� |��|�∈�∪�� |��||*�,	||*	,�|) state values should

be kept. Using linear decomposition (11), only (v +1)|��||��| ∏ (y*�,	yy*	,�y)	∈�∪�� values need to be stored,

significantly reducing the search space in the task assignment
decision making. Second, the problem to solve a complex
post-decision Bellman’s optimality equation (9) is broken into
simpler MDPs. By replacing the post-decision state value
function in (10) with (11), we can obtain an optimal task
assignment policy �∗ under a MEC network state &.

As discussed before, the number of new task arrivals at the
end of a scheduling slot as well as the task processing
capability of a node and the states of network delay between
the nodes for the next scheduling slot are unknown
beforehand. In this case, instead of directly computing the
post-decision state value functions in (12), we propose an
online reinforcement learning algorithm to learn D_�∗3�_�, �̃�, 'b�4, ∀� ∈ � on the fly. Based on the observations

of the network state &�� = (��� , ��,� '��), ∀� ∈ �, the number

of task arrivals ��� , ∀� ∈ �, the decision on the number of
tasks locally processed, the number of tasks offloaded to other
nodes or received from other nodes, the achieved utility

2�(8)∗(��, ��, '�) at the current scheduling slot t, and the

resulting network state &���� = (�����, ��,���'����) at the next

slot ~ + 1, the post-decision state value function for node n
can be updated by,

D_����3�_�� , �̃�� , 'b�� 4 = (1 − ��)D_��3�_�� , �̃�� , 'b�� 4 + ��[(1 −
γ)6g2�(g)(��� , ��� , '��) + γD��(�����, �����, '����)] (14)

where �� ∈ [0, 1) is the learning rate. The task assignment

matrix �� = [��,	� : �,
 ∈ � ∪ ��} at scheduling slot t is

determined as,

�� = argmax� { � [(1 − γ)672�(7)(��� , ��� , '���∈�)
+ D_��3�_�� , �̃�� , 'b�� 4]}

 s.t. ;�� ≤ ;(<>?) and A�� ≤ A(<>?) (15)

The state value function of node n at slot ~ + 1 is evaluated
by,

D��(�����, �����, '����) = (1 − γ)672�(7)(�����, �����, '����) +

 D_��(�_����, �̃���� , 'b����) (16)

The online learning algorithm for estimating the optimal
post-decision state value function and determining the optimal
task assignment policy is summarized in Algorithm 1.

Algorithm 1. Online Learning Algorithm for Optimal Post-

Decision State Value Function

1. Initialize the post-decision state value functions D_��(�b��), ∀�b�� and ∀� ∈ � for t = 1.

2. At the beginning of scheduling slot t, the MEC controller

observes the network state, &� = {&�� : � ∈ �} with &�� = (��� , ��� , '��) and determines the task assignment matrix, �� = [�� : � ∈ �] according to (15).

3. After offloading and processing the tasks according to the

above task assignment decision, the controller observes the

post-decision state, &Z� = {&Z�� : � ∈ �} , where &Z�� = (�_�� , �̃�� , 'b��) with �_�� = max {��� + Σ�∈ℯ!��,�� −
Σ�∈ℯ!��,�� − ��� , 0}, �̃�� = ��� , and 'b�� = '�� .

4. With �� = {��� ∶ � ∈ �} new tasks arrived at the end of

slot t, the network state transits to &��� = {&����: � ∈ �}

where &���� = (�_�� + ��� , �����, '����) at the following

scheduling slot ~+1.

5. Calculate D��(�����, �����, '����) , ∀� ∈ � according to

(16) and updates the post-decision state value functions D_����3�_�� , �̃�� , 'b�� 4, ∀� ∈ � according to (14).

6. The scheduling slot index is updated by ~ ← ~ + 1.

7 Repeat from step 2 to 6.

IV. NUMERICAL RESULTS

We provide the evaluation results in this section and
compare the performance of our online reinforcement learning
scheme with several benchmark schemes including i) no
cooperation, i.e. an edge node processes all the tasks it
receives from its associated devices by itself; ii) cloud
execution, i.e. an edge node offloads all its received tasks to
the cloud data center for execution; iii) one-shot deterministic
optimization which is similar to the scheme in [5].

We simulated multiple MEC network scenarios with
different system parameters. Due to the page limit, we present
the results for a typical setting. We assume the slot duration is
30 ms. The task processing capability of an edge node is
considered to be an independent Markov chain model with
three states {4, 2, 1} tasks per slot. The network delay between
two edge nodes is also modeled as a Markov chain with three
states, {1, 0.5, 0.2} slots. The cloud data center has powerful
computation resources, and the queuing and processing delay
in the cloud data center is small enough to be ignored, but
forwarding the tasks to the cloud incurs a large network delay,
10 slots, due to a long distance with many hops over the
Internet.

In Fig. 3, we compare the average task service delay for
different algorithms with three edge nodes and one cloud data
center when the task arrivals follow independent Poisson
arrival process and the average number of task arrivals per slot

Figure 3. The average task service

delay versus the average task

arrivals per slot for different

algorithms.

Figure 4. The average number of

dropped tasks per slot versus the

average task arrivals per slot for

different algorithms.

at an edge node changes. Note that the delay is measured in
the unit of the time slot duration. The curves indicate that our
proposed online reinforcement learning scheme outperforms
all the three benchmark schemes. Compared to the one-shot
optimization algorithm (the second best in terms of the service
delay), the proposed online learning scheme can capture the
dynamic MEC network state transitions and determine the
optimal task assignment matrix by taking into consideration
the impacts of time-varying stochastic network environments
and node computing capabilities to the expected long-term
performance in the future. However, the one-shot
deterministic optimization algorithm makes shortsighted task
assignment decisions and may cause a lot of tasks to be
shipped to the cloud data center for processing, which leads to
a large network delay and thus a large service delay. In Fig. 4,
we present the average number of the tasks dropped per slot
for different algorithms. The task drops for the online learning
and one-shot optimization algorithms are close to zero
because the algorithms minimize the task drops and the edge
nodes will forward the tasks to the cloud data center when
their buffers become full. For the no cooperation scheme,
when the workload is high, an edge node does not have
enough resources to process all the tasks so that the service
delay increases and the tasks are dropped. For the cloud
execution scheme, there is always a large value of network
delay to ship the tasks to the cloud data center for processing
over the Internet.

V. CONCLUSIONS

In many MEC scenarios, the task arrival statistics, task
processing capability at an edge node, and network delay
between two nodes are time-varying and unknown
beforehand. Therefore, casting the task assignment as a
dynamic and stochastic optimization problem is more
reasonable and compelling. In this paper, we have proposed
and investigated a stochastic framework to model the
interactions among various entities of a MEC system,
including the edge-to-edge horizontal cooperation and the
edge-to-cloud vertical cooperation for jointly processing tasks
under dynamic and uncertain network environments. The task
assignment optimization problem is formulated as a Markov
decision process by taking into consideration the non-
stationary computing and network states as well as the
interaction and heterogeneity of the involved entities. To solve
the problem, we derive an algorithm based on online
reinforcement learning, which learns on the fly the optimal
task assignment policy without prior knowledge of task arrival
and network statistics. Further, considering the structure of the
underlying problem, we introduce a post-decision state and a
function decomposition technique to reduce the search space,
which are combined with reinforcement learning. The
evaluation results show that the proposed online learning-
based scheme reduces the service delay, compared to the

existing schemes that do not consider dynamic changes in
traffic and MEC network statistics.

ACKNOWLEDGMENT

Certain commercial equipment, instruments, or materials
are identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identified are
necessarily the best available for the purpose.

REFERENCES

[1] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with

mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16,

no.8, pp. 4924–4938, Aug. 2017.
[2] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading

for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[3] C. Do, N. Tran, C. Pham, M. Alam, J. H. Son, and C. S. Hong, “A

proximal algorithm for joint resource allocation and minimizing carbon

footprint in geo-distributed fog computing,” in Proc. of the IEEE
ICOIN, pp. 324–329, Siem Reap, Cambodia, Jan. 2015.

[4] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing

resource allocation in three-tier IoT fog networks: A joint optimization
approach combining stackelberg game and matching,” IEEE Internet
Things J., vol. 4, no. 5, pp. 1204–1215, 2017.

[5] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in Proc. of IEEE
INFOCOM’17, Atlanta, GA, May 2017.

[6] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, Y. Zhang,

"Mobile Edge Cloud System: Architectures, Challenges, and

Approaches," IEEE Systems Journal, vol. 12, no. 3, pp. 2495-2508,
Sept. 2018.

[7] X. Chen, Z. Han, H. Zhang, G. Xue, Y. Xiao, and M. Bennis, “Wireless

resource scheduling in virtualized radio access networks using
stochastic learning,” IEEE Transactions on Mobile Computing, vol.

17, no. 4, pp. 961-974, 2018.

[8] S. M. Ross, Introduction to stochastic dynamic programming.
Academic press, 2014.

[9] R. Howard, Dynamic Programming and Markov Processes. MIT Press,

1960.
[10] D. P. Bertsekas, Dynamic programming and optimal control. Athena

Scientific, Belmont, MA, 1995.

[11] M. L. Puterman and M. C. Shin, “Modified policy iteration algorithms
for discounted Markov decision problems,” Management Science, vol.

24, no. 11, pp. 1127–1137, 1978.

[12] D. Adelman and A. J. Mersereau, “Relaxations of weakly coupled
stochastic dynamic programs,” Oper. Res., vol. 56, no. 3, pp. 712–727,

Jan. 2008.

[13] X. Chen, P. Liu, H. Liu, C. Wu, Y. Ji, “Multipath Transmission

Scheduling in Millimeter Wave Cloud Radio Access Networks,” in

Proceedings of IEEE ICC’18, Kansas City, MO, May 2018.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA, 1998.

[15] J. N. Tsitsiklis and B. van Roy, “Feature-based methods for large scale

dynamic programming,” Mach. Learn., vol. 22, no. 1-3, pp. 59 - 94,
Jan. 1996.

