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Abstract—Wearable medical sensors are one of the key compo-
nents of remote health monitoring systems which allow patients
to stay under continuous medical supervision away from the hos-
pital environment. These sensors are typically powered by small
batteries which allow the device to operate for a limited time. Any
disruption in the battery power could lead to temporary loss of
vital data. Kinetic-based micro-energy-harvesting is a technology
that could prolong the battery lifetime or, equivalently, reduce
the frequency of recharge or battery replacement. Focusing on a
Coulomb-Force Parametric Generator (CFPG) micro harvesting
architecture, several machine learning approaches are presented
in this paper to optimally tune the electrostatic force parameter,
and therefore, maximize the harvested power.

Index Terms—energy harvesting, wearable sensors, microgen-
erator, CFPG

I. INTRODUCTION
Wearable and implantable medical sensors are considered

a key component of future telemedicine systems, allowing
clinicians to have remote access to real-time patient’s data [1],
[2]. These devices typically operate by using small batteries;
therefore, frequent recharge or battery replacement might be
necessary to keep the device functioning properly. Prolonging
the lifetime of these batteries and reducing their frequency of
recharge could have a paramount impact on their everyday
use. This is especially important for implanted devices, where
battery replacement is not easily possible.

Energy harvesting refers to the process of scavenging energy
from external sources (ambient environment such as solar
power, wind and kinetic energy) [3]. For wearable devices,
kinetic energy can be a reliable solution for power generation
in medical sensors. For cases of nonstationary vibrations (for
example, as a result of the human body motion), Coulomb-
force parametric generator (CFPG) architecture has been pro-
posed as a promising solution to extract power form human
movements. [4], [5]. In this type of system, a proof mass
can move between upper and lower bounds ±Zl as shown
in Fig. 1. The summation of the device motion to the inertial
frame ξ(t) and the relative motion of the proof mass with
respect to the device z(t) make the absolute motion of the
proof mass equal to y(t) = ξ(t) + z(t).

To model the dynamics of the proof mass motion in CPFG,
the following nonlinear differential equation was proposed in
[6]:

mÿ(t) = −mz̈(t)− F × Relay(z(t)) (1)

where m is the proof mass, ÿ(t) is the acceleration of the
frame of CPFG with respect to the inertial frame, z is the

Fig. 1. Generic Model of a CPFG: (a) proof mass attached to one end, and
(b) proof mass in flight

relative acceleration of the proof mass with respect to the
frame of CFPG, and F is the electrostatic holding force which
acts against the motion of the proof mass. The generated
mechanical power of the system is equal to the product of
the electrostatic holding force and the relative velocity of the
proof mass with respect to frame and is calculated as:

P (t) = F × ż(t) (2)

Fig. 1 displays the process of energy generation in CPFG.
The proof mass is initially located at either upper or lower
plates. The mass does not move until the external acceleration
exceeds a certain limit. To harvest power, the external accel-
eration must be strong enough to create a full displacement
of the mass from one plate to the other. If the mass cannot
complete a full flight to the other plate, all generated power is
consumed in the electrical field of CFPG by the electrostatic
force F .

A further investigation of the power equation of CFPG
coupled with its dynamics reveals how adaptation of F affects
the output power of the generator [7]. The power is a function
of both relative velocity ż(t) and force F . Meanwhile, ż(t),
as evident from equation (1), is a function of both external
acceleration ÿ(t) and force F . Therefore, an optimal strategy
that ensures proper adaptation of the electrostatic force F leads
to the maximization of the average output power exists. As
such, the following optimization problem is considered:

argmax
Fi

[
1

∆
×

∆+ti∑
t=ti

P (t)

]
, (3)

with the constraints given by equations (1) and (2). In other
words, it is desired to maximize the average harvested power



during the time interval [t0 + (i− 1)∆, t0 + i∆] by selecting
the optimal value of the electrostatic force Fi.

The authors in [6] demonstrate that the output power of
a CFPG micro-harvester can be maximized by proper adjust-
ment or adaptation of the electrostatic force F . A methodology
for optimizing F by observing the input acceleration in the
previous time interval is also proposed in [6]. The average
output power for different values of the holding force F and
various locations of the wearable sensor is evaluated in [7].

In this paper, we propose a novel method for the estimation
of the suboptimal value of the electorstatic force in a micro
energy-harvester, according to the current absolute acceler-
ation of the CFPG frame. We use the frequency spectrum
of the human body acceleration data in our analysis. Eight
different machine learning classification schemes are then used
and their performances are compared in terms of accuracy in
estimating the suboptimal value of the holding force in the next
time step for power maximization. To the best of the authors’
knowledge, this is the first time the frequency spectrum of the
human body acceleration is used for power maximization in
CFPG microgenerators.

The rest of the paper is organized as follows. In Section
II, we illustrate our proposed method, and the procedure for
generating artificial data is explained. Then in Section III, we
discuss various methods of classification of labeled data. In
Section IV, results for eight classification structures is obtained
and their accuracy is discussed. Finally, conclusions are drawn
in Section V.

II. PROBLEM DEFINITION

A. Acceleration in Human Body

The authors in [8] demonstrate that during normal daily
activities, bulk of the frequency content of the human motion
acceleration in the upper extremity is within the range 0.8-
5Hz. Also, it is shown in [9] that 99% of the acceleration
power spectral density, when walking barefoot, is concentrated
below 15Hz. Based on these findings, we make the following
assumption.

Assumption 1 The acceleration signal for time intervals of
length ∆ can be approximated by the following cosine series:

ÿ(t) ≈
20∑

n=0

An(i) cos(2πfnt) =

20∑
n=0

An(i) cos(2πnt),

t ∈ [t0 + (i− 1)∆, t0 + i∆],

(4)

where An(i) is the amplitude of the frequency component
corresponding to fn in the ith time interval. Having the
amplitudes of the frequency components in every time interval,
the problem reduces to identifying the mapping φ such that:

φ : [A0(i), ..., A20(i)]→ F̃∆(i), (5)

The ultimate goal is to maximize the harvested mechanical
power in equation (2) for time interval i by finding a pseudo-
optimal holding force F̃∆(i). Given the time dependency of

Fig. 2. A 1000-min acceleration sample of human arm motion

the parameters involved, we have divided this problem into
two steps:

1) Estimation of the pseudo-optimal holding force dur-
ing time interval i:
Assuming that we know the An(i) coefficients for the
acceleration signal in the time interval [t0+(i−1)∆, t0+
i∆], what is the pseudo-optimal holding force F̃∆(i) that
maximizes average harvested power for the same time
interval i.e. [t0 + (i− 1)∆, t0 + i∆]?

2) Estimation of the optimal interval size to maximize
the average harvested power for the next time inter-
val i.e. [t0 + i∆, t0 + (i+ 1)∆]:
In practice, the information about F̃∆(i) can not be
available for the current time interval [t0 +(i−1)∆, t0 +
i∆]; and, at best, F̃∆(i) can be applied to the next time
interval i.e. [t0+i∆, t0+(i+1)∆]. Therefore, depending
on the temporal correlation of the estimated pseudo-
optimal holding force, the achieved harvested power will
be less than the value obtained in step 1. This step
requires further study on optimizing the interval size ∆.

The focus of this paper is on solving the first step through
machine learning algorithms. In the next subsection, we will
present several methodologies for data classification in order
to find a suitable mapping from the frequency spectrum of the
acceleration to the electrostatic force F .

B. Acceleration Data Processing
The acceleration data of the human arm motion, as obtained

in [10], is used in our analysis. Fig. 2 demonstrates a 1000-min
data obtained by attaching an accelerometer to a male subject
arm. The data is interpolated with 1ms sampling steps. Then,
it is divided into intervals of length equal to one second for
approximation with the cosine functions as stated in equation
(4). To reduce the size of the action space, the values of the
holding force F are divided into 1mN steps. Then, similar
to the process outlined in [6] and [7], we choose a value for
F̃∆(i) from the set {2, 3, ..., 10}.

To label each of the 1-sec intervals with their corresponding
holding force which maximizes the harvested power in that



Fig. 3. Comparison of the harvested power for a 4000-sec data for the adaptive
holding force with KNN algorithm and a constant holding force

time interval, an algorithm based on the work in [6] is
implemented for each of the holding forces and the pseudo-
optimal force is obtained accordingly. A set of 1950 labeled
data for each of the nine classes (making a total of 17550
vectors) is obtained subsequently.

III. DATA CLASSIFICATION

As discussed earlier, the estimation of the electrostatic
holding force which maximizes the output power based on
the spectral content of the acceleration signal as described in
equation (4) can be studied in the context of a classification
problem. In what follows, eight different classification
schemes are briefly described.

• Decision Tree Classifier [11]
A decision tree is a flowchart-like tree structure. An
internal node represents a feature (or attribute), each
branch represents a decision rule, and each leaf node
represents an outcome. The best attribute is selected
using an appropriate attribute selection measure (ASM)
such as information gain or Gini index. Then, the
selected attribute is used as a decision node, the dataset
is broken into smaller subsets, and these steps are
repeated recursively until a matching condition is
satisfied.

• Random Forest Classifier [12]
Random forest consists of a large number of individual
decision trees that operate as an ensemble. A set of
decision trees are created from a randomly selected subset
of the training set. Then, the classifier aggregates the
votes from different decision trees to decide the final
class of the test object. Therefore, a classification is made
based on the majority of votes received from each of the
decision trees. It is to be noted that a single decision tree

may be prone to noise, but aggregating many decision
trees reduces the effect of noise, leading to more accurate
results.

• K-Neighbors Classifier [11]
In this method, an object is classified by a majority vote
of its neighbors, with the object being assigned to the
most common class among its k nearest neighbors.

• Support Vector Machine (SVM) [13]
This is a discriminative classifier which is formally de-
fined by a separating hyperplane. Given labeled training
data, the algorithm outputs an optimal hyperplane which
categorizes new entries. The hyperplane can be a linear,
polynomial or exponential function of the weighted sum
of inputs, where the weighting coefficients are optimized
in the training process.

• Multi Layer Perceptron (MLP) [14]
In this approach, each computational block consists of
a weighting matrix that is multiplied by the inputs. The
outputs are then passed to a function called activation
function. These blocks are often repeated several times,
and the output of each block is used as the input of the
next one. Finally, the output, which is in the form of a
vector, classifies the input in the form of an output vector.
The elements of the weighting matrices are updated to
minimize the error between the estimated vector and a
label vector which is associated with the correct class.

• Stochastic Gradient Descent (SGD) [15]
This is a linear classifier just like a linear hyperplane
in SVM. The only difference is that the optimization
technique applied to find the weighting parameters of the
hyperplane is stochastic gradient descent. To update the
weights, the gradient of loss function is needed. For the
computation of the gradient of the cost function, the sum
of the cost of each sample is needed, which could be
inefficient for large training datasets. On the other hand,
when applying SGD, the cost gradient of only one sample
is used at each iteration (instead of the sum of the cost
gradients of all training datasets) which can significantly
reduce the computational complexity of the algorithm.

• Passive Aggressive Classifier [16]
In this method, a linear function of the input multiplied
by weighting elements is passed to an activation function
(often a sign function for binary classifications). Then, a
Hinge loss function is used to measure the error between
the estimated and true values of labels. The update
rule for weighting elements works in such a way that
the algorithm is passive when a correct classification
occurs (no weight change). For false classification cases,
on the other hand, the algorithm becomes aggressive
and updates the weights so as to minimize the loss for
similar inputs that may occur in other instances.

• Ridge Classifier [17]
This method often uses a linear function of the input
vector and weighting parameters. The function used for
updating the weights is the squared error of the estimated



Fig. 4. Comparison of the harvested energy for a 4000-sec time sample for
the ideal case with optimal value of F , adaptive holding force with KNN
algorithm, and a constant holding force

outputs plus a regularization term which is a function of
the weights. The regularization technique tends to reduce
overfit in estimation.

IV. SIMULATION RESULTS

The vectors containing the amplitudes of the cosine approx-
imation for the nine classes of pseudo-optimal force F̃∆(i)
are first divided by their maximum magnitude to normalize
the vector elements between -1 and 1. Then, 90% of these
17550 vectors are randomly selected from each class in order
to be used as the training data set, and the remaining 10% are
used as the test data. All of the eight classification techniques
described in Section III are compared by simulations, which
are performed on a computer with an Intel R processor (Core
i5) running at 2.5GHz using 16GB of RAM with Windows
101.

For training the classification algorithms and
deploying machine learning models, we use the Google
TensorFlow1platform. The results are given in Table I,
indicating the running times for each input vector and
accuracy of the learning methods in estimating the pseudo-
optimal F . Fig. 3 shows the improvement in the generated
power when the electrostatic force is changed using our
approach, compared to the case of applying a constant force
F=2mN. The amount of gain depends on many factors such
as the dimension of the mass-spring-damper inside the CFPG
micro-harvester. For these results, the size of the MSD and
the distance between the two plates (2Zl) were chosen as
15×15×1.5mm3 and 0.5mm, respectively.

1Intel R Processor, Windows 10 and Tensorflow are products of Intel Corp.,
Microsoft and Google, respectively. These products have been used in this
research to foster research and understanding. Such identification does not
imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that this product is necessarily the best
available for the purpose.

TABLE I
RUNNING TIME AND ACCURACY OF EIGHT CLASSIFICATION TECHNIQUES

FOR TEST DATA OF THE ACCELERATION OF HUMAN ARM

Running Accuracy (%)
Time (s)

Decision Tree 0.0009 45
Random Forest 0.3198 86
KNN 0.032 94
SVM 0.0866 73
MLP 0.0009 86
SGD 0.0010 43
Passive Aggressive 0.1149 50
Ridge 0.0001 43

Fig. 4 displays the gain in the harvested energy for a 4000-
sec time interval. The harvested energy for different constant
holding forces is also plotted. In addition, for this example,
we have included the amount of harvested energy using the
optimal value of the holding force as a reference. The curve
corresponding to the optimal F serves as an upper bound
for the amount of energy that can be generated. Although
it is desirable for the adaptive holding force methodology
to be as close as possible to the optimal curve, one should
also take into consideration the computational complexity of
the algorithms used. The higher this complexity is, the more
energy it requires to perform, leading to less (or even no)
gain in the harvested power. Therefore, a thorough analysis
of the implementation complexity and the resulting power
consumption of the added hardware is required to justify
the addition of the optimization methodology to the micro-
harvester circuitry. Our initial investigation shows that algo-
rithms such as MLP can be implemented with reasonable
runtime power consumption. Further details of our analysis
will be provided in future publications.

V. CONCLUSION

Efficiency of eight machine learning classification tech-
niques for adaptive estimation of the electrostatic force in
a CFPG architecture according to the frequency spectrum of
acceleration in human arm was investigated. It was observed
that the net energy harvested using a suitable machine learning
technique could lead to significant gain in the harvested power.
The exact amount of the gain depends on many parameters
such as the dimension of the MSD inside the harvester,
adaptation time interval ∆, and the classification algorithm.
The impact of these parameters will be studied in more details
in future research.
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