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Abstract

In this work, we continue our development of phase field model benchmark problems with
the addition of a third set, complimenting our previously developed problems for diffusion,
precipitation, dendritic growth and linear elasticity. These benchmark problems are being
jointly developed by the Center for Hierarchical Materials Design (CHiMaD) and the Na-
tional Institute of Standards and Technology (NIST) along with input from the phase field
community. The first problem in this third set targets Stokes flow, with a particular empha-
sis on flow around an obstruction placed asymmetrically in the domain. While Stokes flow
is not traditionally in the canon of phase field problems, it is a class of problems gaining
importance in areas such as filtration and water purification. The second problem deals
with coupled Cahn-Hilliard diffusion and electrostatic forces, which is an important area in
energy storage and battery sciences. We present our own solutions and discuss sources of
numerical errors for the Stokes problem as well as simple checks to avoid fundamental issues
in the coupled diffusion-electrostatics problem. The latter problem contains some subtleties
that we expand on in an Appendix.
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1. Introduction

For the past few years, the Center for Hierarchical Materials Design (CHiMaD) and
the National Institute for Standards and Technology (NIST) have led an effort to develop
benchmark problems for phase field modeling. The published problems have been developed
with considerable community involvement and feedback, and we envisage that they will be
useful and instructive as phase field modeling gains ground as an important component of
Integrated Computational Materials Engineering (ICME). The problems are carefully con-
structed to stress aspects of numerical solutions of commonly-encountered coupled physics
in phase field simulations. The benchmark problems are designed with two goals in par-
ticular: to test new algorithms or codes against results to ensure computational accuracy
and to be used as a tool to train new researchers. The purpose of the benchmark problems
publication series is to explain the rationale for choosing the problems and the aspects of
numerical implementations that may be stressed in trying to solve the problems. We also
include solutions that we have generated as examples, but the emphasis of the publications
is on the construction of the problems and on useful metrics for comparison by practition-
ers. We deliberately choose to construct the benchmark problems from the canon of typical
problems encountered in phase field modeling, and in particular with physics couplings that
may be encountered frequently and which may pose challenges to computational modelers.
Previous problem sets focused on the diffusion of solute and second phase coarsening [1],
solidification of an undercooled liquid (dendritic growth) [2], and linear elasticity [2]. All
of these problems are cast in terms of Cahn-Hilliard or Allen-Cahn equations with different
free energy functionals, and they are true phase field problems in the sense that they contain
phase field variables that vary smoothly across interfaces or phase boundaries.

In the third set of benchmark problems presented here, we explore two additional topics.
The first problem in this set is of a Stokes fluid, which is not a true phase field problem but
which is important in the description of fluids, solutions, and colloidal suspensions at the
nano- or micrometer scale. Because fluid flow is included within the collections of models
for mesoscale phenomena (see for example Refs. [3, 4]), we decided to include it in the
set of benchmark problems. It also became evident during community discussions that the
Stokes fluid problem is challenging for several traditional phase field computational modeling
frameworks.

The second problem in this new set couples the Cahn-Hilliard equation with Poisson’s
equation for electrostatics. This coupling underlies basically all mesoscale modeling of elec-
trochemical phenomena [5, 6], because they include diffusion of charged species (two examples
of this are seen in Refs. [7, 8]). Thus, this benchmark problem can be thought of as a very
simplified version of a fundamental problem in electrochemistry targeting a key coupling,
even though for simplicity many aspects of a real electrochemistry problem have been re-
moved. The problem also includes a curved surface, because curved geometries are likely to
appear in electrochemical problems.

In this work, we will provide background and justification for the mathematical formula-
tion of these problems. We will also present suggested metrics for how to evaluate solutions
for the Stokes problem, and we will present and discuss example solutions that we have gener-
ated. The benchmark problems are also posted on our website (https://pages.nist.gov/pfhub/)
and we encourage all readers to explore the additional resources there. This website serves
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as a community resource with a repository for the problem statements and results posted by
different groups, discussions around the benchmark problems, and other related information.

2. Model formulations

2.1. Stokes flow benchmark problem

The most general continuum formulation for fluid flow is the Navier-Stokes equation,
which describes the conservation of momentum of a viscous, compressible fluid subject to
external forces. The Navier-Stokes momentum equation is

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇ · (pI) +∇ · τ + ρg, (1)

where ρ is the local fluid density, u the local fluid velocity field, ⊗ indicates the outer
(tensor) product, p is the local pressure, I is the identity tensor, τ is the deviatoric stress
tensor arising from viscosity, and g is a field of external acceleration, arising from, e.g.,
gravity or electrostatic forces. The full Navier-Stokes equation is very difficult to solve. In
particular, the term ∇ · (ρu⊗ u) describes inertial forces that give rise to turbulence.

The Stokes flow equations are special case of the full Navier-Stokes equations that are
derived by applying several assumptions. Stokes flow equations apply to the steady flow
of incompressible fluids at low Reynolds number. The Reynolds number is a measure of
inertial forces relative to viscous forces in fluid flow; thus, low Reynolds numbers indicate
that inertial forces can be ignored. Inertial forces are responsible for turbulence in flow.
Physically, Stokes flow, also called creeping flow, occurs when fluid viscosity is high and
fluid velocity is low, such that the fluid flow is laminar. As a result, the Stokes equation is
well-suited to describe laminar flow in fluids.

A first simplification is to assume that the fluid is incompressible, which is a very reason-
able approximation for studies that are concerned only with flow and not phenomena such
as sound waves or shock waves in fluids. For incompressible fluids, the fluid is assumed to
be isotropic, such that the deviatoric stress tensor can be expressed in terms of the dynamic
viscosity µ,

τ = 2µε, (2)

where ε = 1
2

(
∇u + (∇u)T

)
is the rate-of-strain tensor. In general, µ depends on local

pressure and velocity. Therefore,

τ = µ
(
∇u + (∇u)T

)
, (3)

so
∇ · τ = µ∇2u (4)

because ∇·u = 0 for an incompressible fluid. Furthermore, by linearizing Eq. 1, the term in
u ⊗ u is removed. Physically, this eliminates convective terms. Upon linearizing and using
the assumption of incompressibility so that the density ρ = ρ0 is constant, the equation

ρ0
∂u

∂t
− µ∇2u +∇p− ρ0g = 0 (5)
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results. Finally, steady flow is assumed, so that ∂u/∂t = 0, and the momentum equation for
incompressible flow is given as

−µ∇2u +∇p− ρ0g = 0. (6)

In combination with Eq. 1, a fluid must obey a mass continuity equation, which in
differential form is given as

∂ρ

∂t
= ∇ · (ρu) . (7)

The continuity equation states that any increase or decrease in fluid mass in a volume
element occurs because of the flow of mass into or out of the volume element. If the fluid is
incompressible, the mass density ρ is constant in space and time, and the continuity equation
becomes

∇ · u = 0. (8)

The combination of Eq. 6 and Eq. 8 give the Stokes equation. To solve for Stokes flow,
suitable boundary conditions have to be supplied. These are usually related to how the fluid
“sticks” to or “slips” at bounding surfaces, expressed as Dirichlet boundary conditions on
the fluid velocity components.

When deriving the equations to be implemented for the numerical solution, care must be
taken to specify the outlet boundary condition correctly. In general, Navier-Stokes problems
may be solved in a pressure-based formulation if the formulation is for an incompressible
fluid, or in a density-based formulation if the formulation is for a compressible fluid. In this
work, the Stokes problem specified by Eqs. 6 and 8 assumes an incompressible fluid, and
thus we solve the problem in a pressure-based formulation. Pressure enters the equations
only via the gradient, and the weak forms of the equations (necessary, e.g., for finite element
solution implementations) do not contain a boundary term for the pressure. Thus, we must
specify the value of the pressure at one point to provide an actual value from which the rest
of the pressure field may be calculated.

The Stokes benchmark problem has two parts, (a) and (b). Both parts consider flow in
a two-dimensional (2D) channel and both parts are defined by the combination of Eq. 6 and
Eq. 8. In part (a), the flow is unobstructed, while in part (b), the flow is obstructed with an
elliptical obstruction. First, we fully specify part (a), which is also common to part (b).

The 2D channel computational domain for part (a) and part (b) consists of a rectangle
30 units long and 6 units wide (Fig. 1). Both part (a) and part (b) apply no-slip boundary
conditions ux = uy = 0 on the upper (y = 6) and lower (y = 0) channel surfaces. At the left
inlet (x = 0), the flow velocity is given by a parabolic profile

ux(0, y) = −0.001(y − 3)2 + 0.009, uy(0, y) = 0. (9)

Because the pressure only enters through its gradient, it is fixed by setting the pressure
p(30, 6) = 0. In addition, the parameters ρ0 = 100, µ = 1, and g = (0,−0.001) are defined.

Part (b) is an extension of part (a). In part (b), the 2D channel computational domain
also contains an elliptical obstruction within the channel. The obstruction is centered at
(7, 2.5) with a semi-major axis (along the y-direction) of a = 1.5, and a semi-minor axis
(along the x-direction) of b = 1. No-slip boundary conditions (ux = uy = 0) are also applied
on the surface of the obstruction.
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Figure 1: Schematic illustration of the 2D computational domain and inlet boundary condition (indicated
by arrows) for the Stokes flow benchmark problem. In part (a) the domain is just the rectangle; in part (b)
the domain has an additional elliptical obstruction in the channel.

Benchmark problems specify simple outputs as metrics for direct comparison of results.
This problem is a steady-state problem and thus the outputs are fairly simple. In this
problem, we will plot pressure and all components of the velocity field along the lines y = 5
and x = 7.

2.2. Coupled Cahn-Hilliard-Poisson benchmark problem

Charging or discharging batteries, electrodeposition, and electromigration are all exam-
ples of electrochemical problems. These problems typically involve the diffusion of charged
species, such as ions or molecules, under the influence of forces, including long-range electro-
static forces arising from the charge distributions. The distribution of the charged species
can be described with a concentration fields. A phase field formulation of an electrochemical
problem requires a free energy, which includes chemical, electrostatic, and mechanical com-
ponents (e.g., due to work done by applied pressure) as well as interfacial energies in terms
of one or more phase fields [5]. The spatiotemporal evolution of the concentration fields
typically includes sources and sinks arising from chemical reactions in addition to conserved
currents; chemical reactions may also release or absorb energy. Models capturing all of these
phenomena become complex.

Following the benchmark formulation ethos, we eschew the development of a realistic
electrochemical problem capturing all of these phenomena and instead formulate a very
simplified problem that only describes diffusion of a conserved species under the influence of
concentration gradients and electrostatic forces. To maintain charge neutrality in the system,
which is a reasonable physical constraint, a constant background charge density is added with
a total charge equal in magnitude but opposite in sign to the total charge of the diffusing
species described by the concentration field. In addition, we assume that the mobility of
the concentration field, M , is concentration-dependent. This is not unreasonable because
in many systems, such as colloidal or polymeric systems, increased species concentration
“crowds” the system, making diffusion more difficult. A concentration-dependent mobility
also distinguishes our model system from a well-known model of block-copolymer systems
[9].

The benchmark problem involves a concentration field, c, of a charged species and the
electrostatic potential field, Φ, that arises from the charged species as well as from an ex-
ternally applied potential. We assume that the charge density, ρ, due to the diffusing con-
centration field is directly proportional to the concentration field. In addition to the mobile
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concentration field c, we add a static background concentration field, c0, such that the total
charge in the system due to c and c0 is zero. Thus, ρ = q(c− c0), where q is a constant unit
of charge. For simplicity, the free energy of the concentration field is described using the
same form as that in the spinodal decomposition benchmark problem [1] with the addition
of the electrostatic free energy. The total free energy of the system is given as

F =

∫
V

[κ
2
|∇c|2 + fchem(c) + felec(c,Φ)

]
dV, (10)

where κ is the gradient energy coefficient, fchem is the chemical free energy density, and felec
is the electrostatic free energy density. The felec term couples the charged concentration field
c with the electrostatic potential Φ, where

felec =
1

2
ρΦ =

q

2
(c− c0) Φ. (11)

The potential Φ must satisfy Poisson’s equation,

∇ · [ε∇Φ] + ρ = 0, (12)

where ε is the dielectric constant. We assume that c evolves much more slowly in time than
Φ, that is, that the electrostatic potential adjusts instantaneously to the concentration field
c. This a very reasonable assumption for the slow diffusive motion of the concentration field.
Because of Eq. 12, ρ and Φ are not independent. To enforce the constraint of Eq. 12, we
introduce a Lagrangian multiplier function λ(r) and define a generalized free energy L:

L = F −
∫
V

λ(r) [∇ · (ε∇Φ) + ρ] dV. (13)

This allows us to consider c, Φ, and λ to be independent. From this point forward, the
problem works with the generalized free energy L. We require that L be stationary with
respect to first variations of λ and Φ for a given charge distribution ρ. Physically, this will
minimize the free energy F while at the same time ensure that Φ satisfies Poisson’s equation.
Taking the first variation of Eq. 13 with respect to λ, we obtain

δL
δλ

= 0 = ∇ · (ε∇Φ) + ρ, (14)

which simply (by construction) returns Poisson’s equation. In addition, the first variation
of Eq. 13 with respect to Φ gives

δL
δΦ

= 0 =
ρ

2
−∇ · (ε∇λ) . (15)

Comparing Eq. 15 with Eq. 12, we see that λ = −Φ/2.
The time evolution equation of c is developed by considering the flow of particle currents,

jc, and charge currents, jq, in the system. In general, when there are driving forces such as
gradients in particle density and in electrostatic potentials, particles and charges will flow.
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Because the particles carry charges these currents are related through the relation between
c and ρ. The particle current jc is defined by

jc = −M(c)∇µ, (16)

where M(c) is the mobility (which can depend on the local concentration), µ is the chemical
potential,

µ =
δL
δc

= −κ∇2c+
∂f

∂c
+ Φ

∂ρ

∂c
= −κ∇2c+

∂f

∂c
+ qΦ, (17)

and jc obeys a continuity equation for mass conservation,

∂c

∂t
= −∇ · jc = ∇ · (M∇µ). (18)

Equation 18 is the Cahn-Hilliard equation including electrostatics. Because the chemical
potential µ in Eq. 17 now contains contributions from the electrostatic potential as well as
from the chemical free energy density and the gradient energy density, it is usually referred
to as the electrochemical potential. In addition, the charge density obeys the continuity
equation,

∂ρ

∂t
= −∇ · jq. (19)

Combining the continuity equation for ρ and the Cahn-Hillard equation,

jq = −q(M∇µ) = qjc (20)

results. In addition, jq = −σ∇µ for a normal linear medium, where σ is the conductivity.
This relationship indicates that the conductivity and the mobility are related through σ =
qM . The above indicates that the charge current arises both from a gradient in the charge
density as well as from electric fields, i.e., jq and jc are directly related: for particles entering
or leaving the system, a corresponding amount of charge also enters or leaves the system.

As stated previously, fchem is taken as the same in the spinodal decomposition benchmark
problem [1], i.e., a symmetric double-well function with minima between 0 < c < 1,

fchem = w (c− cα)2 (cβ − c)2 , (21)

where w controls the height of the double-well and cα and cβ are the concentrations at which
fchem has minima. We choose a very simple concentration-dependent description,

M(c) =
M0

1 + c2
, (22)

for the concentration-dependent mobility.
The complete set of governing equations is given by Eqs. 23, 24, and 25, together with

boundary conditions on c, µ, and Φ. Oftentimes, a split-operator formulation for the Cahn-
Hilliard equation is more numerically tractable, thus Eqs. 23 and 24 are written separately,

∂c

∂t
= ∇ · {M(c)∇µ} = −2M0

c

(1 + c2)2
∇c · ∇µ+

M0

(1 + c2)
∇2µ (23)

µ = 2w (c− cα) (cβ − c) (cα + cβ − 2c)− κ∇2c+ qΦ (24)

∇2Φ = −q(c− c0)
ε

. (25)
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The coupled Cahn-Hilliard-Poisson benchmark problem consists of solving two types of
coupled Cahn-Hilliard-Poisson problems, parts (a) and (b), on two different computational
domains, referred to as D1 and D2. Part (a) assumes that there is no external electric field
and that the total mass (the integral of c over the domain) and total charge are conserved.
Part (b) assumes that there is an external electric field Eext applied and that mass may move
in or out of the computational domain. The external field arises from different potentials
applied to the left and right boundaries of the domains. Below, the common features to part
(a) and part (b) are first described, then separate features for each problem are detailed.

Both part (a) and part (b) are defined by Eqs. 23, 24, and 25. The two different
computational domains for both parts and are given to provide different levels of numerical
complexity. The first domain, labeled D1, is a square 100× 100 units in the xy-plane, with
the bottom left corner at (0,0) and the top right corner at (100,100) (Fig. 2a). This domain
geometry should be tractable for all numerical solution methods. The second domain, labeled
D2, is a half-circle with a radius of 50 units attached to a rectangle that is 50 units wide in
the x−direction and 100 units tall in the y−direction (Fig. 2b). This domain geometry is
somewhat more challenging for numerical solvers. For all problems combinations, the initial
condition for c is given by

c(x, y) = c0 + c1
{

cos(0.2x) cos(0.11y) + [cos(0.13x) cos(0.087y)]2

+ cos(0.025x− 0.015y) cos(0.07x− 0.02y)} , (26)

where c0 = 0.5 and c1 = 0.04. Note that this is the initial condition for the spinodal
decomposition benchmark problem [1] with a slightly different parametrization. For all
problem combinations, the other parameter values are cα = 0.3, cβ = 0.7, κ = 2, w = 5,
M0 = 5, q = 0.3, and ε = 10.

As mentioned previously, part (a) does not include an external electric field and conserves
the total mass and total charge within the domain. Natural boundary conditions jc ∝
∇µ · n̂ = 0 ensure that there is no particle flux across the boundaries. Natural boundary
conditions are also used for c and Φ. Because all of the boundary conditions are Neumann
and there is no initial condition on Φ, the solution for Φ is not uniquely defined, i.e., the
differential equations and the boundary conditions will be obeyed for any constant added to
the solution. We uniquely specify the solution for Φ by setting Φ = 0 at one point.

For part (a), the system of equations that has to be solved is defined by Eqs. 23, 24,
and 25 together with the boundary conditions

∇µ · n̂ = 0

∇c · n̂ = 0

∇Φ · n̂ = 0,

Φ(50, 50) = 0 on D1,

Φ(0, 0) = 0 on D2, (27)

where n̂ is an outward-pointing surface normal.
Unlike part (a), there is an external electric field Eext applied for part (b). This field

arises from different potentials applied to the left and right boundaries of the domains,
i.e., Dirichlet boundary conditions are applied on Φ in this part. For simplicity, the left
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and right boundaries are taken to be equipotential surfaces. In addition, the left and right
boundaries are open for particle flux and the particle flux entering on one side is the same
as the particle flux flowing out on the other side, so that total mass and charge inside the
system are conserved, ∫

left

M(c)∇µ · n̂ dS = −
∫
right

M(c)∇µ · n̂ dS, (28)

where the surface integrals are over the left and right boundaries, respectively.
For computational domain D1, n̂ = −x̂ and n̂ = x̂ on the boundaries y = 0 and y = 100,

respectively. The boundary conditions for D1 are

M(c)∇µ · n̂ = +0.01, y = 0

M(c)∇µ · n̂ = −0.01, y = 100. (29)

This will ensure that the integrated incoming flux on the boundary y = 0 equals the outgoing
flux on the boundary y = 100.

For computational domain D2, the surface normal on the left boundary y = 0 is n̂ = −x̂.
On the curved right boundary of D2, the surface normal can be taken as

n̂ = cosϕx̂+ sinϕŷ, (30)

where cosϕ = (x−50)/
√

(x− 50)2 + (y − 50)2 and sinϕ = (y−50)/
√

(x− 50)2 + (y − 50)2.
On this domain, we take the boundary conditions to be

M(c)∇µ · n̂ = +0.01, y = 0

M(c)∇µ · n̂ = −0.01 cosϕ, right boundary. (31)

The boundary conditions for Φ are Dirichlet boundary conditions Φ = 0 on the left and
Φ = −Φ0 on the right boundaries and Neumann boundary conditions on the top and bottom
boundaries. Natural boundary conditions are applied for c, ∇c · n̂ = 0, on the top and
bottom boundaries and the Dirichlet boundary condition c = 0.5 is applied on the left and
right boundaries (see the Appendix for remarks on the boundary conditions).

In summary, part (b) is defined by Eqs. 23, 24, and 25 together with the boundary
conditions on D1

M(c)∇µ · n̂ = +0.01, left side

M(c)∇µ · n̂ = −0.01, right side

∇c · n̂ = 0, top and bottom

c = 0.5, left and right sides

∇Φ · n̂ = 0, top and bottom

Φ = 0, left side

Φ = −Φ0, right side, (32)
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(a) (b)

Figure 2: Schematic illustration of the 2D computational domains (a) D1 and (b) D2 for the coupled
Cahn-Hilliard-Poisson benchmark problem.

and on D2

M(c)∇µ · n̂ = +0.01, left side

M(c)∇µ · n̂ = −0.01 cosϕ, right side

∇c · n̂ = 0, top and bottom

c = 0.5, left and right sides

∇Φ · n̂ = 0, top and bottom

Φ = 0, left side

Φ = −Φ0, right side. (33)

For both domains, Φ0 = 0.5. We note that in our implementation of these problems in
MOOSE, the values of c0 are 0.509685652 for the square domain D1 and 0.510215727 for
the curved domain D2.

All combinations of the coupled Cahn-Hilliard-Poisson benchmark problem involve find-
ing the distributions of c and Φ as the system evolves to t = 400. In addition, the concentra-
tion field c and the potential field Φ are visualized and line cuts of c and Φ along the vertical
line y = 50 are plotted at times t = 5, 10, 20, 50, 100, 200, and 400. The last metric is the
plot the generalized free energy L of the system as a function of time.

3. Numerical methods

Example solutions to this set of benchmark problems are provided via an application
based on the MOOSE computational framework [10, 11], as has been done in our previous
two sets of benchmark problems [1, 2]. MOOSE is a flexible open-source finite element solver
framework and includes phase field and fluid dynamics modules. We use MOOSE in this work
to provide one set of solution data on the benchmark website as a basis for comparison with
the results of other numerical solution methods and implementations.
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3.1. Numerical methods applied to the Stokes problem

The details for the Stokes simulations are given below. Four sets of simulations are
performed to illustrate errors that arise from poor mesh resolution. One set of simulations
uses a high mesh resolution, which serves as the reference solutions. Three other sets of
simulations are run with decreasing mesh resolution, denoted as “fine,” “mid,” and “coarse”.
Simulations are performed for both Stokes problems (with and without the obstruction).
Second-order Lagrange shape functions are employed for ux and uy, and first-order Lagrange
shape functions are employed for p. The finite element mesh for the first problem is created
with the internal MOOSE mesh generator and second order quadrilateral elements are used.
The coarse, mid, fine, and reference meshes contain one, 60 × 12, 120 × 24, and 300 × 60
elements, respectively. This translates to an element size of 30 × 6 units for the coarsest
mesh, and elements of sizes 0.5, 0.25, and 0.1 units, respectively, for the mid, fine, and
reference meshes. The finite element mesh for the second Stokes problem is created with
gmsh [12], and the second-order triangles element are used because of the presence of the
obstruction to allow for better meshing of the curved interface. Due to the non-uniform
tiling of the elements, a characteristic length controlling the element size is defined, with the
characteristic lengths being 1.0, 0.5, 0.25, and 0.1 units for the coarse, mid, fine, and reference
meshes, respectively. For all of the Stokes simulations, single-matrix preconditioning with
the block Jacobi preconditioner and incomplete LU factorization for sub-preconditioning is
used, and a full Newton solve is performed. A nonlinear relative tolerance of 1 × 10−9, a
linear relative tolerance of 1× 10−6, a maximum of six nonlinear iterations per solve, and a
maximum of 300 linear iterations, are specified.

3.2. Numerical methods for the coupled Cahn-Hilliard-Poisson problem

Below, details are given of the numerical parameters used to generate example solutions
for the coupled Cahn-Hilliard-Poisson problem. As in the previous two benchmark papers,
[1, 2], the Cahn-Hilliard equation is split into two second-order equations [13, 14] to avoid
computationally expensive fourth-order derivative operators. The finite element mesh for the
square computational domain is created with the internal MOOSE mesh generator, while the
mesh for the half-curved domain is created with gmsh [12]. For the square domain, square
first order quadrilateral elements with a side length of 0.5 units are used. For the half-curved
domain, elements are first-order triangles with a characteristic length of 0.5 units.

Time integration is performed with the second-order backward differentiation (BDF2)
time integrator in MOOSE and the “IterationAdaptiveDT” time stepper, which attempts to
maintain a constant number of nonlinear iterations. The initial dt = 0.1 and the time step is
allowed to grow by 5%, with the algorithm targeting five nonlinear iterations per time step
with an iteration window of ±1. For all these simulations, single-matrix preconditioning
with the additive Schwarz preconditioner is applied with ILU sub-preconditioning for the
full Newton solve. A nonlinear absolute tolerance of 10−11 and a maximum of 100 linear
iterations are selected; MOOSE defaults are otherwise used. We set tolerances to be 10−11

for the relative tolerance, and 10−12 for the absolute tolerance.
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4. Results and discussion

In this section, we discuss the example solutions and metrics obtained from them. For
the Stokes problem, we also study error and convergence behavior based on the L2 norm and
local errors. Furthermore, we discuss some peculiar issues that may arise in solving these
benchmark problems, especially the Stokes problem. We also describe certain subtleties in
the coupled Cahn-Hilliard-Poisson problem and simple checks on the electrostatic potential
and the total mass, as mass may be non-conserved when the system is over-determined with
Neumann boundary conditions on c. Our input files, data and code are available in the
Materials Data Facility [15] (https://materialsdatafacility.org) through DOI [to be supplied
at time of publication].

4.1. Stokes problem

The Stokes problem, especially part (a) without the obstruction, is a simple problem in
the area of fluid systems. Nevertheless, it was found during the course of the benchmark prob-
lem development that many of the public-domain codes for phase field simulations needed
some significant modifications to handle the mathematical formulation, as it is a steady-
state problem rather than a transient problem. While the actual solution is rather trivial,
the difficulty lies in finding or implementing a Stokes solver, and the simplicity of part (a)
aids in establishing a working, accurate solver. In addition, while not specifically related to
the Stokes mathematics, we found that the presence of the internal obstruction uncovered
an area to improve adaptive meshing in the MOOSE framework.

We first discuss the general nature of the solutions without and with the obstruction.
The pressure and velocity components (vx, vy) for the Stokes problem with and without
an obstruction are shown in Fig. 3 for the “reference” solution in each case, that is, the
highest resolution for which the problems are solved. The pressure field in the unobstructed
channel (Fig. 3a) changes smoothly over the entire domain with a relatively large change in
the y-direction due to gravity and very slight changes in the x-direction. (Without the effect
of gravity, the pressure will decrease from left to right with a uniform vertical profile.) In
contrast, the obstruction disrupts the flow and leads to more complicated pressure (Fig. 3b)
and velocity (Fig. 3d and 3f) profiles. The pressure is generally higher in the channel with
the obstruction than without it, due to the need for more forcing (pressure) to satisfy the
imposed boundary conditions when a flow obstruction is present. The pressure is higher to
the left of the obstruction and drops rapidly as the fluid flows through the narrow portions
between the obstruction and the walls. To the right of the obstruction, the pressure drops
smoothly as it did in the simulation without the obstruction.

Similar comparisons are made with the velocity components. Without the obstruction,
the velocity field is simple and keeps the profile set at the inlet boundary (Figs. 3c and
3e). However, the velocity is much different with the obstruction. In the vicinity of the
obstruction, vy is non-zero as the fluid has to flow in the±y-direction to avoid the obstruction,
and vx is highest directly above the obstruction (the wider channel around the obstruction).
To the right of the obstruction, after a distance of about twice the width of the obstruction,
the velocity retains the same profile as the simulation without the obstruction. Line cuts of
the p, vx, and vy profiles for the simulations with and without the obstruction are shown in
Fig. 4 for the lines y = 5 and x = 7. The pressure drops linearly (Fig. 4a) as a function of y
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because of the presence of the gravitational field, while Fig. 4c shows the increase in pressure
above the obstruction and subsequent drop to its level without the obstruction as we move
along the channel away from the obstruction. Without the obstruction, the vx component
maintain its parabolic shape as function of y imposed by the inflow boundary condition with
almost no discernible in vy (Fig. 4b). In contrast, vx has large maxima above and below the
obstruction as the fluid has to speed up in the narrow channels in order to maintain laminar
divergenceless flow. Figure 4d shows the maximum in vx above the obstruction as well as
the acquired vy component in the vicinity of the obstruction.

We then examine numerical behavior via the computed L2 error by performing a con-
vergence study to understand how the L2 error varies with mesh resolution. The global

L2 error is computed as
√∫

(η − ηref)2 dV , while the local error is calculated as ηref − η,

where η refers to the variable in question, and ηref is a reference solution. The results are
shown in Fig. 5. For the simulations without the obstruction, the L2 errors for p, vx, and vy
are extremely small. Interestingly, the error increases slightly for p and vx with the higher
number of degrees of freedom (DOFs), and we suspect this is simply due to accumulation
of round-off error in the post-processor used to calculated the error. While these results are
atypical for a convergence study, they are understandable because the solution is trivial and
may be described with only one element for the entire computational domain. However,
the L2 error follows the expected behavior for the non-trivial problem with the obstruction:
the error decreases as number of DOFs increases. In order to gain some insight into the
error behavior, we examine the local error. The local error for p is shown in Fig. 6 for both
the finest mesh tested with respect to the reference solution and the coarsest mesh. The
error is greatest in the elements on the boundary around the highest-curvature regions of
the obstruction, but becomes negligible to the right of and away from the obstruction as
the solution becomes very smooth. The error behavior for vx and vy is similar (not shown).
These results indicate that the mesh should be modified to place the highest concentration of
DOFs, that is, use the smallest elements near the high-curvature regions of the obstruction
where the flow is non-trivial, while lower resolution is acceptable at regions far from the
obstruction.

Finally, in the course of developing the benchmark problem, we discovered an unantici-
pated behavior with respect to adaptive meshing while using the MOOSE framework. We
found that adaptive meshing did not correctly snap the nodes to the curved interior sur-
face, essentially moving and distorting that curved internal surface. This was communicated
to MOOSE developers and a the code was soon updated to provide the correct behavior.
This is an example of the unanticipated utility of benchmark problems and the strength of
collaborative, open-source software development.

4.2. Coupled Cahn-Hilliard-Poisson problem

The coupled Cahn-Hilliard-Poisson problem is an extension of the spinodal decomposition
benchmark problem [1]; the parameters in the new problem are selected to generate a clear
and discernible effect by the electrostatic field on the spinodal decomposition. In the absence
of an applied electric field, the evolution of the coupled system is driven to minimize its total
energy by balancing competing forces, i.e., the bulk and interfacial energies drive the system
toward homogeneous domains with compositions of c = cα and c = cβ with a minimal
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The pressure and velocity component fields for the Stokes benchmark problems a, c, e) without
and b, d, f) with the obstruction. a, b) Pressure field; c, d) vx field; e, f) vy field. Data are shown for the
reference solution.
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(a) (b)

(c) (d)

Figure 4: Line cuts through the computational domains for the Stokes benchmark problem with and without
the obstruction. a) Pressure profile and b) velocity profiles for x = 7 (note the overlap in vy profiles), c)
pressure profile and d) velocity profiles for y = 5. Gaps in the lines indicate the presence of the obstruction.
Data are shown for the reference solution.
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(a) (b)

Figure 5: Convergence plot of the global L2 error versus degrees of freedom (DOFs) for the Stokes problem
a) without the obstruction, b) with the obstruction (note the overlap in vx and vy). The solution for the
problem without the obstruction may be found with a single element, resulting in the extremely small and
practically constant global L2 error versus DOFs, while the non-trivial problem with an obstruction follows
the typical convergence behavior, i.e., reduction in error with increasing mesh resolution.

(a)

(b)

Figure 6: Local L2 error in the pressure field for the Stokes benchmark problem with the obstruction, shown
for a) the finest mesh and b) the coarsest mesh tested with respect to the reference solution. The error is
greatest around the highest-curvature region of the obstruction.
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interface between them, while the electrostatic energy drives the system toward a uniform
charge (and therefore mass) distribution. Thus, if the electrostatic energy is much larger
than bulk and interfacial energies, the mass distribution will be homogeneous. Conversely,
if the electrostatic energy is negligible, the system will undergo spinodal decomposition. It
is instructive and simple to observe these two behaviors by setting the dielectric constant to
something large (e.g., 100) to suppress the electrostatic energy, or to something small (e.g.
1) to make the electrostatic energy dominate. Further discussion and derivation is included
in the Appendix.

In the presence of an applied field, the total energy may not necessarily decrease mono-
tonically with time, but for the parameters, initial conditions, and boundary conditions
chosen here, the energy L is monotonically non-increasing. For sufficiently long times, the
system will reach a steady state (∂c/∂t = 0) that will, for not too large applied electric fields,
resemble the mass distribution in the absence of an applied electric field in the interior of the
computational domain. The reason for this is that mobile charges (or mass, as the mobile
charge distribution is proportional to the concentration field c) will initially move to screen
the external field. That means that the interior of the domain will subsequently evolve under
chemical and electrostatic forces generated by the mass and charge distributions themselves
rather than the applied external field.

The evolution of the concentration field c from t = 0 to t = 400 for the half-curved
computational domain D2 in the presence of an applied field is shown in Fig. 7. Mass flows
towards the right curved boundary in response to the applied field, after which the interior
evolves under a total electric field modulated by the mass/charge distribution. This is fur-
ther illustrated in Fig. 8, which shows the concentration fields and electrostatic potentials
at t = 400 for the domains D1 and D2 without an applied field (Figs. 8a, 8e, 8b, 8f), and
with an applied field (Figs. 8c, 8g, 8d, 8h). These figures clearly show that the interior mass
distributions are quite similar with or without the applied field; the main difference is that
mass moves to screen the applied field (Figs. 8c, 8g), resulting in mass accumulation on the
right boundary and mass depletion on the left boundary. Similarly, because the electrostatic
potential must obey Poisson’s equation locally, there are clear similarities between the elec-
trostatic potential in the interior without (Figs. 8b, 8f) and with (Figs. 8d, 8h) an applied
field. However, near the boundaries the electrostatic potential changes in the presence of
an applied field as a combination of the charge accumulation/depletion and the boundary
conditions on the electrostatic potential.

Line cuts at y = 50 of c (Fig. 9) and Φ (Fig. 10) are shown at different times t for
the curved domain D2. Figure 9 clearly shows the similarities of the concentration field in
the bulk, as well as the differences near the boundaries as mass (charge) moves to screen
the applied field in Fig. 9b. This screening effect is clearly visible in Fig. 10b. At small
times, the electrostatic potential decreases approximately linearly, reflecting the fact that
the potential is largely due to the constant applied field as the charge distribution initially
is fairly uniform. As the system evolves, charge moves to screen the applied field, and the
potential distribution in the interior develops modulations similar to the potential without
an applied field (Fig. 10a).

Figure 11 shows the evolution of the total energy of the system without and applied field
(black line), and with an applied field (blue line). The total energy without an applied field
decreases monotonically, as expected. It does so also in the presence of the applied field –
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in this case energy flows out of the system due to the applied field (see Appendix).
Finally, some simple checks on the coupled Cahn-Hilliard-Poisson problem are discussed.

As aforementioned, it is instructive to set ε = 100 and ε = 1 to make sure that the system
evolves towards a regular spinodal decomposition or a uniform mass distribution, respec-
tively. Another useful check is to calculate c− ε∇2Φ/q and to plot the difference between it
and c0. The difference should be zero everywhere to within numerical error, and the regions
with the largest errors indicate where numerical errors arise from meshing or numerical al-
gorithms. The total mass should also be monitored; by construction, it should be conserved.
Finally, it is instructive to change the boundary conditions for part (b) from the specified
Dirichlet boundary conditions c = 0.5 to Neumann boundary conditions ∇c · n̂ = 0 on the
left and right boundaries. The system is now ill-defined; what the resulting solution or lack
thereof probably depends on the numerical implementation of the solver. In our case, using
MOOSE, the system converged nicely at each time-step, but the total mass was continuously
decreasing.

5. Conclusion

The benchmark problems presented in this work are an addition to our ongoing work to
develop benchmark problems for phase field modeling [1, 2]. Here, we expand the portfolio of
benchmark problems to include a problem on Stokes flow in a simple but non-trivial geometry
and a problem coupling the Cahn-Hilliard equation to the electrostatic Poisson equation.
The Stokes problem is strictly speaking not a phase field problem in the traditional sense.
However, we felt it is a problem with increasing importance as the Stokes formulation of fluid
flow is applicable to meso- and nanoscale systems. Such systems are becoming extremely
important in the area of, e.g., water filtration and purification. Because the benchmark
problems are now being adopted in classroom teaching we felt that it is of great value to
bring attention to this class of problems to help educate future STEM researchers, who will
undoubtedly deal with water purification. Also, as mentioned in the Introduction, we found
in our workshop that the Stokes problem stressed codes in unexpected ways, and therefore
has real value as a benchmark problem for code developers.

The coupled Cahn-Hilliard-Poisson problem sits more squarely in the realm of traditional
phase field problems. As discussed in the Introduction, this problem is a very simplified, yet
foundational problem in electrochemistry, which is also an increasingly important research
area as it is the heart of multiple fields, such as energy storage, battery science and technology,
and electrolysis. In the course of developing this benchmark, we found that correctly posing
and solving the problem involved multiple unexpected subtleties, and it is our hope that the
discussions of these are of instructional value to practitioners, teachers, and students.

The development of these benchmark problems, as the ones before them, have relied very
heavily on comments and feedback from the community. It is a great experience to work in
this way with an enthusiastic and engaged community. In order to make these benchmark
problems as useful as possible, we urge the community to continue to provide feedback for
existing and possible additional benchmark problems at https://pages.nist.gov/pfhub/.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Composition field for the half-curved computational domain D2 in the coupled Cahn-Hilliard-
Poisson benchmark problem with an applied external field. The evolution in the center of the domain
proceeds initially as spinodal decomposition while the biased boundaries drive mass transport of the charged
solute locally. The connected spinodal structure is broken as mass accumulates at right boundary and is
depleted at the left one to screen out the external field as the system evolves. a) t = 0, b) t = 5, c) t = 10,
d) t = 20, e) t = 50, f) t = 100, g) t = 200, h) t = 400.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Additional examples of the c and Φ fields in the coupled Cahn-Hilliard-Poisson problem. The c and
Φ fields at t = 400 for a, b) no external field, and c, d) with external field for the half-curved computational
domain D2; with an applied field, Φ evolves as the composition field moves to screen out the external field.
The results are similar for the square computational domain D1, as seen for the c and Φ fields at t = 400, e,
f) no external field, and g, h) with an external field.20



(a)

(b)

Figure 9: Line cuts of the c fields along y = 50 in the half-curved computational domain D2 for the coupled
Cahn-Hilliard-Poisson benchmark problem a) without an external field, and b) in the presence of an external
field. The evolution in the interior is similar, both without and with an external field. Near the boundary,
mass/charge accumulates at the right and is depleted at the left boundary to screen out the external field.
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(a)

(b)

Figure 10: Line cuts of the Φ fields along y = 50 in the half-curved computational domain D2 for the coupled
Cahn-Hilliard-Poisson benchmark problem a) without, and b) in the presence of an external field. Without
an external field, the system evolves to minimize the total energy leading inhomogeneous mass and potential
distributions. In the presence of an external field, mass/charge moves to screen out the external field, leading
to modulated mass and potential distributions.
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Figure 11: The total free energy (Eq. 10) for the square and half-curved computational domains in the coupled
Cahn-Hilliard-Poisson benchmark problem. The higher energy for the square domain is due to the larger
area. Note that in the presence of the external field, the total energy continues to decrease monotonically
within the simulation time as energy is flowing out of the system.
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Appendix

The Cahn-Hillard equation leads to a monotonically non-increasing total free energy F .
The constrained generalized free energy L of the coupled Cahn-Hilliard-Poisson problem
does the same. This can quickly be checked; as before, we use Lagrange mulipliers to enforce
the constraint. For simplicity, let us first write

f(c,∇c,Φ) =
κ

2
|∇c|2 + fchem +

1

2
ρΦ, (34)
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then,

L =

∫
V

f(c,∇c,Φ) dV −
∫
V

λ(x) [∇ · (ε∇Φ) + ρ] dV (35)

and
dL
dt

=

∫
V

[
∂f

∂c

∂c

∂t
+

∂f

∂∇c
∂∇c
∂t

+
∂f

∂Φ

∂Φ

∂t
− λ(r)

dρ

dc

∂c

∂t
− ∂Φ

∂t
∇ · ε∇λ(r)

]
dV. (36)

The last term in Eq. 36 comes from integrating λ(r)∇ · (ε∇Φ) twice by parts and noting
that the terms that appear involving the volume integral of the divergence cancel. We can
now eliminate λ = −Φ/2, note that the third and fifth terms of Eq. 36 cancel, and integrate
by parts to find that

dL
dt

=

∫
V

[
µ
∂c

∂t
+∇ ·

(
∂f

∂∇c
∂c

∂t

)]
dV. (37)

We replace ∂c/∂t = −∇ · jp and integrate by parts again:

dL
dt

=

∫
V

[
∇µ · jp −∇ ·

(
∂f

∂∇c
∇ · jp + µjp

)]
dV. (38)

We can make things more transparent by using jp = −M(c)∇µ:

dL
dt

=

∫
V

[
−M(c)∇µ · ∇µ+∇ ·

(
∂f

∂∇c
∇ · [M(c)∇µ] + µM(c)∇µ

)]
dV,

= −
∫
V

M(c) [∇µ]2 +

∫
∂V

(
∂f

∂∇c
∇ · [M(c)∇µ] + µM(c)∇µ

)
· n̂ dS (39)

which shows that the total free energy will decrease if the surface terms (which are energy
fluxes) vanish. Note that this result is independent of any implicit or explicit spatial- or
concentration-dependence of M . Also, in the presence of an external electric field, the total
energy L may increase or decrease depending on the flow of energy into or out of the system.

We close with a remark on the boundary conditions for c in part (b) of the Cahn-
Hilliard-Poisson problem. The Cahn-Hilliard equation for c is a nonlinear time-dependent
partial differential equation that is fourth-order in space and which in general requires two
boundary conditions together with an initial condition. In the split formulation we have
one second-order (in space) partial differential equation, and one time-dependent differential
equation of second-order in space. These coupled equations can also be solved with one
initial condition on c and two boundary conditions [16]. In many applications, the system is
closed, so the physical boundary condition is no flux at the boundaries, M∇µ · n̂ = 0. Often,
this is supplemented with the natural boundary condition for c arising from the variational
problem of minimizing the free energy of the system, κ∇c · n̂ = 0. When the system is not
closed, energy is not necessarily conserved, so a natural boundary condition for ∇c certainly
does not arise from any variational problem of minimizing the free energy. There is now
flux in and out of the system and the boundary conditions are obtained by balancing flux
of mass, momentum, charge, and energy at the interfaces. This is a topic beyond the scope
of the benchmark problems considered here, but for pedagogical purposes, we will illustrate
how assigning boundary conditions without careful consideration can lead to inconsistencies.
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We return to the governing equation for c and consider this equation for given µ and Φ, at
time t,

κ∇2c− ∂f

∂c
− qΦ + µ = 0. (40)

Together with Dirichlet boundary conditions c = ci on boundary i, this is a well-defined
partial differential equation. We can take the gradient of Eq. 40 and take the scalar product
with n̂ to get

κn̂ · ∇
[
∇2c− ∂f

∂c

]
− qn̂ · ∇Φ + n̂ · ∇µ = 0 (41)

Note that Eq. 41 is trivially true as it follows directly from Eq. 40. Now, suppose that
instead of Dirichlet boundary conditions, we have natural (Neumann) boundary conditions
on c, ∇c · n̂ = 0. Because ∇∂f/(∂c) = ∂2f/(∂c2)∇c, we can use the Neumann boundary
condition ∇c · n̂ = 0 to remove the term in ∂f/(∂c). If we also assume (for simplicity and
in order to illustrate a point) that the boundaries are along coordinate axes in a Cartesian
coordinate system, then Eq. 41 becomes

κn̂·∇
[
∇2c

]
−qn̂·∇Φ+n̂·∇µ = κ∇2 [∇c · n̂]−qn̂·∇Φ+n̂·∇µ = −qn̂·∇Φ+n̂·∇µ = 0. (42)

This obviously does not hold if there are fluxes such that −qn̂ · ∇Φ + n̂ · ∇µ 6= 0.
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