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A B S T R A C T

Firearm evidence identification has been challenged by the 2008 and 2009 National Research Council
(NRC) reports and by legal proceedings on its fundamental assumptions, its procedure involving
subjective interpretations, and the lack of a statistical foundation for evaluation of error rates or other
measures for the weight of evidence. To address these challenges, researchers of the National Institute of
Standards and Technology (NIST) recently developed a Congruent Matching Cells (CMC) method for
automatic and objective firearm evidence identification and quantitative error rate evaluation. Based on
the CMC method, a likelihood ratio (LR) procedure is proposed in this paper aiming to provide a scientific
basis for firearm evidence identification and a method for evaluation of the weight of evidence. The initial
LR evaluations using two sets of 9 mm cartridge cases’ breech face impression images with different
sample sizes, imaging methods and ammunition showed that for all the declared identifications of the
tested 2D and 3D image pairs, the evaluated LRs for the least favorable scenario were well above an order
of 106, which provides Extremely Strong Support for a prosecution proposition (e.g. a same-source
proposition) in a Bayesian frame. The LR evaluations also showed that for all the declared exclusions of
the tested 3D image pairs, the evaluated LRs for the least favorable scenario were above an order of 102,
which provides Moderately Strong Support for a defense proposition (e.g. a different-source proposition)
in a Bayesian frame.

© 2020 Published by Elsevier B.V.
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1. Background

Bullets and cartridge cases fired or ejected from guns pick up
characteristic surface topographies from the gun parts, resulting in
toolmarks of a special kind, called “ballistics signatures”, on the
surface of the bullets and cartridge cases. Passage of the bullet
through the gun barrel results in striation signatures. Impact of the
cartridge case with the firing pin, breech face and ejector results in
impression signatures. Both the striation and impression signa-
tures are predominantly considered to be unique and reproducible
to the firearm [1]. By analyzing these ballistics signatures, firearm
examiners can connect a firearm to criminal acts [1].

Side-by-side tool mark comparison for firearm evidence
identification has a history of more than a hundred years.
However, the scientific foundation of firearm and tool mark
identification has been called into question by several government
funded reports in 2008, 2009 and 2016 [2–4] and by recent court
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decisions [2] on its fundamental assumptions, its procedure
involving subjective interpretations, and the lack of a statistical
foundation for evaluation of error rates or other measures for the
weight of evidence.

Firearm evidence identification based on image comparison is
fundamentally probabilistic in nature [2–5]. However, at present,
most experts and institutes in the U.S. present the results of a bullet
or cartridge case comparison in a “yes/no/inconclusive” range of
conclusions [1] without a quantitative statement of error rate and
likelihood ratio (LR). It ignores the probabilistic nature of firearm
identification, and forces the expert to either defend a “yes” or “no”
position based on more subjective grounds, or throw away
valuable information by merely giving an “inconclusive” result [5].

There are several reasons underlying the existing practice [5].
The most important one might be the statement by the Committee
for the Advancement of the Science of Firearm & Toolmark
Identification that a condition of sufficient agreement between
signatures implies that the likelihood that two different firearms
generated the marks is so remote as to be considered a practical
impossibility [1,5]. Another reason for the use of a yes/no/
inconclusive format, instead of a probabilistic one, might be that
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Fig.1. Relative frequency distribution of image pairs vs. CMC number for 63 KM and
717 KNM image pairs. The KM and KNM distributions are each scaled to their
sample size. The red and brown curves represent binomial and β-Binomial
distribution models, respectively, for the KM data. The overlapping blue curves
represent the two models for the KNM data. Note that the distribution models are
discrete histograms, with the connecting lines drawn for visualization. The number
of image pairs having a specific CMC value is shown just above each bar in the
histograms. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).
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the current practice of bullet or cartridge case comparison does not
result in objective numerical values for the agreement of the
signatures [5].

Since the 1980’s, estimates of likelihood ratio and coincidental
match probability (CMP) have been used for specifying uncertainty
of DNA identifications: “The courts already have proven their ability
to deal with some degree of uncertainty in individualizations, as
demonstrated by the successful use of DNA analysis (with its small, but
nonzero, error rate)” [3]. It is therefore a fundamental challenge in
forensic science to establish a scientific foundation and statistical
method for probabilistic, quantitative expressions of the weight of
evidence to support firearm evidence identifications, in the same
way that reporting procedures have been established for forensic
identification of DNA evidence [3,4]. Several experimental and
theoretical efforts have been pursued along this line including the
machine learning approach of Petraco et al. [6,7], the work on
likelihood ratio by Riva et al. [8], the study of examiner error rates
by Baldwin et al. [9] and Mattijssen et al. [10], the feature-based
matching algorithm of Lilien et al. [11,12], the random forest
approach of Hare et al. [13], and the work on image cross
correlations and congruent matching cells (CMC) of Song et al. [14–
23].

For firearm evidence identifications, in an “ideal world” – as
stated by Kerkhoff et al. [5], “the appropriate numbers for each
individual case could be established with an objective, quantitative
method.” The expert would then be able to formulate an
identification or exclusion conclusion associated with an error
rate and likelihood statement, based on which the judge or jury can
assess this information in combination with other aspects of the
case and decide whether “they are willing to assume” that a bullet or
cartridge case was indeed fired from a submitted gun [5]. In the
ideal world, the expert provides, in a scientifically sound way, a
quantitative measure for the weight of the evidence, and the judge
or jury decides whether to accept the evidence and what weight to
assign to it [5]. This raises an interesting question about the yes/no/
inconclusive conclusion format: “Why should the expert decide on
the yes/no question in the absence of numbers, if it would be left to a
judge or jury if numbers were available? [5]”

In this paper, we aim towards the “ideal world” to provide “the
appropriate numbers for each individual case” as mentioned above
[5], i.e. to establish an automated and objective method for firearm
evidence identification and quantitative LR evaluation procedure
based on the congruent matching cells (CMC) method developed at
NIST [16–23], and to provide a statistical basis for firearm evidence
identifications in forensic science. The initial LR evaluation results
using two sets of 9 mm cartridge cases’ breech face impression
images with different sample sizes, imaging methods and
ammunitions show that, for all the declared identifications of
the tested 2D and 3D image pairs, the evaluated LRs for the least
favorable scenario were well above an order of 106. According to
the verbal scale example of the 2010 Guideline of the European
Network of Forensic Science Institutes (ENFSI) [24], those LRs
provide an “Extremely Strong Support” to the forensic findings for
the first proposition (same-source) compared to the alternative
(different-source). The LR evaluation results also show that, for all
the declared exclusions of the tested 3D image pairs, the evaluated
LRs for the least favorable scenario are above an order of 102, which
provides “Moderately Strong Support” of the forensic findings for
the first proposition (different-source) compared to the alternative
(same-source) [24].

In the following, we introduce the CMC method for automatic
and objective firearm identification and error rate evaluation in
Section 2, then discuss LR evaluation based on the CMC method
in Section 3. In Section 4, we introduce initial LR evaluation
results, and finally, we discuss our results and future work in
Section 5.
2. CMC method for firearm evidence identifications and error
rate evaluation

2.1. CMC method for firearm evidence identification

The congruent matching cells (CMC) method was developed for
the objective correlation of impressed toolmarks [16,17]. This
method is based on discretization – it divides a toolmark image
into small correlation cells and uses pairwise cell correlations
instead of correlation of the entire images. Multiple identification
parameters are defined for quantifying the topography similarity of
the correlated cell pairs, and the pattern congruency of the cell
registration locations on both images [16,17]. The set of cell pairs
that meet both the topography similarity and pattern congruency
qualifications are defined as congruent matching cell pairs (CMCs).
When the correlation result shows that the number of CMCs is
equal or larger than an identification criterion say, CMC � 6 [16,17]
(or above a given LR threshold if the LR is used for reporting the
weight of evidence), one might consider that the correlated images
originate from the same firearm with a stated error rate (or LR).

The initial validation tests for the CMC method were conducted
using a set of breech face impression images of cartridge cases,
called the Fadul dataset consisting of 40 cartridge cases ejected
from guns with 10 consecutively manufactured pistol slides [25].
The breech face impression topographies were captured by a disk
scanning confocal microscope [18]. Fig. 1 shows the test results
consisting of 717 known non-matching (KNM) and 63 known
matching (KM) image pairs. The KM and KNM distributions show a
significant separation. The number of congruent matching cell
pairs (CMCs) for the 63 KM topography pairs ranges from 9 to 26;
while the number of CMCs for the 717 KNM topography pairs
ranges from 0 to 2. With a predetermined identification criterion
for the number of CMC cells C � 6 [16,17], there are no false positive
or false negative results. The estimated KM and KNM distribution
models enable choices for the C value based on the acceptable false
positive/negative error rates. The estimated KM and KNM
distribution models also enable LR evaluation for reporting the
weight of evidence. Note that the identification criterion C is not



Fig. 3. Relative frequency distribution of CMC numbers for 370 KM and 4095 KNM
image pairs of the Weller dataset [26].
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requested when presenting the weight of evidence for a CMC
correlation result using the LR approach.

2.2. Statistical data fitting based on the Binomial and β-Binomial
models

The initial data fitting as shown in Fig. 1 was based on two
statistical models: Binomial model and β-Binomial model with a
fixed cell number N [23]. For the 717 KNM image pairs, both
models showed very good fitting results: the overlapping blue
curves represent the two model fittings for the KNM data.
However, for the 63 KM image pairs, the red and brown curves
representing Binomial and β-Binomial distribution models, re-
spectively, which showed differences in the fitting results: the β-
Binomial distribution model (brown) showed a closer fit to the KM
data than the Binomial distribution model (to be discussed in
Section 5).

It must be noted that, the actual cell number N for each cell
pair’s comparison is a variable. N is determined by the specific
location of the cell grids on the reference images, and it will affect
the shape of the β-Binomial distribution. In our initial fitting of the
β-Binomial model, we started with a fixed cell number N. As a
result, the fitted curve of the β-Binomial model was a smooth curve
as shown in Fig. 1. [23]. Considering the actual cell numbers N
varying between cell pair comparisons, we used the actual cell
numbers N to fit the β-Binomial model. As a result, the fitting
results showed many ups and downs [23]. Fig. 2 shows an
additional test on the same set of Fadul breech face impressions
using an improved version of the correlation software [22] and
using the variable cell number N.

The experimental distributions for the KM and KNM image
pairs in Fig. 2 have a larger separation than those shown in Fig. 1.
For the 63 KM image pairs, the CMC values range from 15 to 30 and
the number N of evaluated cell pairs ranges from 19 to 31. For the
717 KNM image pairs, the number of correlated CMCs ranges from
0 to 2 with N ranging from 16 to 32.

When we fit the histogram data of Fig. 2 with the variable cell
numbers N [23], the red-cross curve in Fig. 2 represents a β-
Binomial distribution model for the KM data, and the blue-dot
curve represents a Binomial model for the KNM data. The green
line shows the identification criterion C = 6 [16,17]. The brown line,
C = 8, shows an alternative identification criterion located approxi-
mately midway between the KM and KNM correlation results [23].
Fig. 2. Relative frequency distribution of image pairs vs. CMC number for 63 KM and
717 KNM image pairs of the Fadul dataset. The KM and KNM distributions are each
scaled to their sample size.
The use of the variable cell number models in Fig. 2 does not
change the fitted KNM distribution significantly but does produce a
KM distributionwith slope discontinuities. As a result, it fits the KNM
histogram data significantly better than fitting either the Binomial of
the β-Binomial model (Fig. 1). For the KNM data, we obtained a
maximum likelihood estimator for the probability of a cell to be a
CMC cell, bpKNM [23], of 0.0053. For the KM data, we obtained

maximum likelihood estimators for the â and b̂ parameters of the
β-Binomial model [23], of 9.22 and 0.87, respectively.

Fig. 3 shows another validation test using the Weller dataset
consisting of 4465 topography image pairs of 95 cartridge cases
ejected from guns with 11 pistol slides, 10 of which were
consecutively manufactured [26]. The experimental distributions
for the KM and KNM image pairs also show significant separation.
For the 370 KM cartridge pairs, the number of CMCs ranges from 14
to 43, and N ranges from 22 to 44. For the 4095 KNM cartridge
pairs, the number of CMCs again ranges from 0 to 2, and N ranges
from 22 to 45. The different values of N are again taken into account
when fitting the Binomial distribution model to the KNM data,
yielding a value for bpKNM [23] of 0.0011, and when fitting the β-
Binomial distribution to the KM data, yielding values for â and b̂
[23] of 10.61 and 0.81, respectively. The resulting modeled
frequency distribution for the KM values of the dataset provides
a better fit to the experimental data when using the variable cell
numbers N, as shown in Figs. 2 and 3.

2.3. Error rate evaluation based on the CMC method

Error rates can be considered from two points of view [27]. The
first point of view addresses the reliability of the identification
system and procedure [27]. This reliability is specified and
characterized by the cumulative false positive and false negative
error rates for a given set of KM and KNM samples with an
identification criterion C [17,23]. The cumulative false positive
error rate represents the probability of obtaining erroneous result
of identifications (declared matches) when comparing samples
from different sources (KNM). The cumulative false negative error
rate represents the probability of obtaining erroneous result of
exclusions (declared non-matches) when comparing samples from
the same source (KM). The cumulative false positive and false
negative error rates can be used as a measure of the reliability of
the identification system and procedure. In this paper and our
previous publication [17,23], the cumulative false positive and
false negative error rates for a given identification system are
represented by E1 and E2.



Fig. 4. Conceptual diagram of the CMC probability mass functions for KM and KNM
comparisons, FCMC and CCMC [17,23]. CMC is the number of congruent cells. The
regions E1 and E2 under the curves represent cumulative false positive and false
negative error rates. The lines at h and g represent probabilities of specific CMC
scores representing an identification conclusion (CMC = h) with true positive and
false positive probability (TPP and FPP); or an exclusion conclusion (CMC = g) with
true negative and false negative probability (TNP and FNP) [17,23].
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The second point of view addresses the probability of incorrect
conclusion for an identification (declared match) or exclusion
(declared non-match) from a case work [27]. This probability is of
interest during legal proceedings. For example, when a firearms
examiner concludes that the evidence and reference items are
from the same source, an attorney may ask: “What is the
probability that these two items are actually from different
sources?” This probability is represented by an individual false
positive error rate R1 for a given evidence/reference image pair to
be concluded erroneously as derived from the same source. The
symbol R2 represents the error rate for the opposite condition [23].

The large number of pairwise cell correlations using the CMC
method can facilitate a statistical approach to modelling the
distribution of correlation scores. These distributions can be used
to evaluate cumulative false positive and false negative error rates
and LRs. Fig. 4 shows a conceptual diagram of the CMC probability
mass functions for KM and KNM correlations: FCMC and CCMC.
CMC is the number of congruent cells. To illustrate clearly the listed
quantities, the schematic depicts the discrete probability distri-
butions as continuous density functions that overlap much more
than they would be expected to in practice. We use an
identification criterion C to facilitate the description of the
concepts. However, as we mentioned before, C is not a necessary
factor for LR estimation. The LR value could be presented directly to
the judge or jury without an identification criterion C and a
declared match/non-match statement of conclusion, that would be
left to a judge or jury when they assess the LR information in
combination with other aspects of the case, and decide whether
“they are willing to assume” that a bullet or cartridge case was
indeed fired from a submitted gun [5].

The regions E1 and E2 under the curves represent the
cumulative false positive and false negative error rates [17,23],
which describe the reliability of the identification system and
procedure as specified in Ref. 27. E1 and E2 can be calculated from
the KM and KNM probability mass functions FCMC and CCMC

associated with the known number of correlated cells N and the
identification criterion C [23]:

E1 ¼
XCMC ¼ N

CMC ¼ C

C CMCð Þ ¼ C CMC¼Cð Þ þ C CMC¼Cþ1ð Þ þ � � � þ C CMC¼Nð Þ

¼ 1 � C CMC¼0ð Þ þ C CMC¼1ð Þ þ � � � þ C CMC¼C�1ð Þ
� �

:

ð1Þ

E2 ¼
XCMC ¼ C�1

CMC ¼ 0

F CMCð Þ

¼ F CMC¼0ð Þ þ F CMC¼1ð Þ þ � � �  F CMC¼C�1ð Þ: ð2Þ
For the two sets of cartridge case correlations showing in
Figs. 2 and 3, the cumulative false positive and false negative error
rates E1 and E2 are calculated by Eqs. (1) and (2) and shown in
Table 1. In our calculations, we use a Binomial distribution model
for the KNM probability mass function CCMC, and a β-Binomial
model for the KM probability mass function FCMC, both with
parameters estimated from the experimental data [23]. With the
initial identification criterion C = 6 [16,17], the cumulative false
positive error rates E1 are 7.94 � 10�9 and 3.94 �10�12, and the
cumulative false negative error rates E2 are 3.86 � 10�5 and
1.05 �10�6 for Fadul and Weller datasets, respectively. With the
alternative identification criterion C = 8 [23], the cumulative false
positive error rates E1 are 2.07 � 10�12 and 8.91 �10�17, and the
cumulative false negative error rates E2 are 2.30 � 10�4 and
7.41 �10�6 for Fadul and Weller dataset, respectively. It can be
seen that the cumulative false negative error rates E2 are
significantly larger than the cumulative false positive error rates
E1, because of the larger dispersion of the CMC distributions of the
KM image pairs (see Figs. 2 and 3). From a legal perspective, low
false positive error rates E1 are critical in avoiding wrongful
convictions.

For each “declared match” CMC score h (h � C), Fig. 4 illustrates
the probabilities of achieving this score for both KM samples (black
dashed bar which extend down to the x-axis) and KNM samples
(red bar). For each “declared non-match” CMC score g (g < C), it
illustrates the probabilities of achieving this score for both KNM
samples (black dashed bar) and KM samples (red bar). Note that in
both cases, these probabilities would not represent the probability
of an incorrect “identification” or “elimination” conclusion for a
case work (it must be represented by the individual false positive
and false negative error rate R1 and R2 [17,23]). In the case work of
firearm identifications, there are two kinds of probabilities needed
for evaluation: 1) probability for the “identification” hypothesis of
the prosecution proposition Hp (i.e. a same-source proposition),
and 2) probability for the “elimination” hypothesis of the defense
proposition Hd (i.e. a different-source proposition). Both evalua-
tions require knowledge about the prior odds on the reference
image belonging to the dataset to be referred, i.e., a knowledge
about the reference image being submitted for comparison and the
reference dataset being referred for evaluation of the weight of
evidence. These propositions are often referred to as hypotheses in
Bayesian terms [28].

Based on the probabilities of achieving a specific CMC score (h
or g) from both KM and KNM samples illustrated in Fig. 4, we can
derive a likelihood ratio procedure for firearm evidence identi-
fications.

3. Evaluation of likelihood ratio in firearm evidence
identifications

3.1. The likelihood ratio in firearm evidence identifications

The Likelihood Ratio (LR) is a numerical value that expresses the
weight of the forensic evidentiary findings E. It is obtained by the
ratio of the probabilities (Pr) of the findings E (i.e. CMC correlation
result h or g) under competing propositions from the prosecution
(Hp) and the defense (Hd) [8]:

LR ¼ PrðE  Hp;  Ij
PrðE j Hd;  IÞ ð3Þ

In cases involving a suspect firearm and a questioned cartridge
case (specific-source scenario), these propositions can be formu-
lated in the following way [8]:

Hp: The questioned cartridge case was fired by the suspect
firearm.



Table 1
The cumulative false positive and false negative error rates E1 and E2 for the two sets of cartridge case correlations shown in Figs. 2 and 3.

Sample
set

Cartridge number Image pairs
KNM/KM

Statistical
Models KNM/KM

ID
Criteria

E1 E2 Note

Fadul 40 717/63 Bi./β-Bi. C = 6 7.94 �10�9 3.86 � 10�5 Fig. 2
Bi./β-Bi. C = 8 2.07 � 10�12 2.30 � 10�4 Fig. 2

Weller 95 4095/370 Bi./β-Bi. C = 6 3.94 �10�12 1.05 �10�6 Fig. 3
Bi./β-Bi. C = 8 8.91 �10�17 7.41 �10�6 Fig. 3
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Hd: The questioned cartridge case was not fired by the suspect
firearm but by another unknown firearm.

The background information (I) represents case-specific infor-
mation that may help to specify the nature of the relevant
population considered under the proposition Hd [8].

3.2. Evaluating LR based on the CMC method

Different methods are used for evaluation of LR values,
including feature-based and score-based methods [29–31].
Typical usage of the feature-based method is the LR evaluation
of DNA tests, while the score-based method is typically used for
pattern evidence, such as firearm toolmarks. In a score-based
method, the LR value is calculated from a comparison or a
correlation score that summarizes the degree of similarity
between the relevant properties of two samples [23,31]. For a
specific-source scenario in firearm identification, the reference
sample is typically a test fire obtained from the suspect firearm,
and the questioned (trace or evidence) sample is a sample found
at the crime scene.

As a starting point of LR evaluation, we assume that the
questioned and the reference toolmark images are random draws
from the same statistical population whose KM and KNM score
distributions have been previously characterized. As shown in
Fig. 4 right, the black dashed bar (which extends down to the x-
axis) represents the probability of obtaining a declared match
score h ðh � CÞ assuming the proposition Hp that both samples are
from the same firearm is true. This is the true positive probability
TPP, or PrðCMC ¼ h  Hp;  Ij [28]. The red bar on the right side of
Fig. 4 represents the probability of a declared match score h ðh �
CÞ assuming the proposition Hd that both samples are from
different firearms is true. This is the false positive probability FPP,
or PrðCMC ¼ h j Hd;  IÞ [28]. From Eq. (4) and Ref. [28], the ratio of
TPP vs. FPP, or PrðCMC ¼ h  Hp;  Ij vs. PrðCMC ¼ h j Hd;  IÞ
represents the true positive likelihood ratio (LR1) for a declared
identification resulting from a correlation result of CMC = h (h � C,
see Fig. 4, right):

LR1ðCMC¼hÞ ¼
PrðCMC ¼ hj Hp;  IÞ
PrðCMC ¼ h j Hd;  IÞ ¼  

’ðCMC¼hÞ
cðCMC¼hÞ

¼  
TPPðhÞ
FPPðhÞ

 ðh � CÞ: ð4Þ
Table 2
The values of likelihood ratio and the verbal equivalents proposed as examples in the 

Values of likelihood ratio Verbal scal

1 The forensi
2–10 Weak supp
10–100 Moderate s
100–1000 Moderately
1000–10,000 Strong sup
10,000–1,000,000 Very strong
1,000,000 and above Extremely 
Similarly, for CMC = g (g < C, see Fig. 4 left):

LR2ðCMC¼gÞ ¼ PrðCMC ¼ gj Hd;  IÞ
PrðCMC ¼ g j Hp;  IÞ ¼  

cðCMC¼gÞ
’ðCMC¼gÞ

¼  
TNPðgÞ
FNPðgÞ

 ðg < CÞ: ð5Þ

The weight of the forensic findings is essentially a relative and
conditional measure that helps to progress a case in one direction
or the other depending on the magnitude of the likelihood ratio
[24]. As stated in the ENFSI Guidelines for Evaluative Reporting in
Forensic Science: “The conclusion shall be expressed either by a value
of the likelihood ratio and/or using a verbal scale related to the value of
the likelihood ratio. The verbal equivalents shall express a degree of
support for one of the propositions relative to the alternative. The
choice of the reported verbal equivalent is based on the likelihood ratio
and not the reverse” (see Table 2 below) [24].

It must be noted that both the LR value and the LR evaluation
procedure are independent of any identification criterion C.
However, for the practical usage of CMC method for evaluating
of error rates [17,23], two identification criteria C1 and C2 for
firearm evidence identification could be used: a high criterion C1

for identification conclusions and a low criterion C2 for exclusion
conclusions. The gap between C1 and C2 would be an inconclusive
region. The values of C1 and C2 can be determined by the proposed
LR values (Table 2) [24].

4. Initial results of likelihood ratio evaluation

4.1. Influence quantities for likelihood ratio evaluation

Based on the KM and KNM distributions developed from the CMC
method [17,23], and the relationship between LR and the true positive
andfalsepositiveprobabilitiesTPPand FPP (see Fig. 4 right and Eqs. (3)
and (4)), we can evaluate the true positive likelihood ratio LR1 CMC¼hð Þ
for identification results concluded by CMC = h (h � C). We can also
evaluate the true negative likelihood ratio LR2 CMC¼gð Þ based on the
relationship between LR and the true negative and false negative
probabilities TNP and FNP (see Fig. 4 left and Eqs. (3) and (5)) for
elimination results concluded by CMC = g (g < C). However, as
mentioned above, from a legal perspective, the true positive
likelihood ratios LR1 are critical for firearm evidence identifications
as they can be used to yield a probability of false positives (false
identifications), which are to be avoided at almost any cost.
2010 ENFSI Guideline for Evaluative Reporting in Forensic Science [24].

e

c findings do not support one proposition over the other
ort of the forensic findings for the first proposition compared to the alternative
upport . . . . . .

 strong support . . .
port . . .

 . . .
strong . . .



Table 3
Likelihood ratio evaluation for two sets of samples.

Sample
set

Cartridge
number

Image
pairs
KNM/KM

Statistical
Models
KNM/KM

Number of
cells N

CMC
values
for KNM

True
negative
LR2 CMC¼gmaxð Þ

CMC
values
for KM

True
positive
LR1 CMC¼hminð Þ

Note

Fadul 40 717/63 Bi./β-Bi. 19 0–2 1.13 � 103 15–30 2.14 �1029 Fig. 2
Weller 95 4095/370 Bi./β-Bi. 24 0–2 2.27 � 103 14–43 6.52 �1032 Fig. 3
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In this context, it should be noted that conclusions of exclusion
based on individual characteristics are somewhat controversial.
Some labs only allow conclusions of exclusion when there are
differences in class characteristics. There are many reasons for this
restriction, for example, the firearm could have been tampered
with or have excessive wear or damage since the incident, or the
firing conditions and ammunition may have been very poor for the
replication of individual characteristics. For matched class
characteristics without support of matched individual character-
istics, these labs may use different classes of inconclusive if
agreement between individual characteristics is not sufficient for
the declaration of a declared match.

There are several uncertainty sources for LR evaluation. As a
starting point, we evaluate possible variation in LR values based on
the first three of the following critical influence quantities:

� Datasets: The choice of the relevant population regarding
firearm breech face manufacturing method or ammunition, as
well as the datasets used to represent the population, can have a
major influence on the correlation score distributions, in
particular those for KM samples. In this study, two datasets
were used: 1) the Fadul dataset with 40 cartridges ejected from
10 consecutively manufactured Ruger1 P95PR15 slides [25]
yielding correlation results shown in Fig. 2; and 2) the Weller
dataset with 95 cartridges fired from 10 consecutively manufac-
tured Ruger P95DC slides (plus one extra slide) [26] yielding
correlation results shown in Fig. 3. The breech faces in both sets
were finished using a sand/bead blasting process. The ammuni-
tion used in the Fadul dataset (Federal) is different from that
used in the Weller dataset (Winchester).

� 2D vs. 3D imaging method: Historically, comparing 2D
reflectance images obtained with a comparison microscope
had been the only method for firearm evidence identification.
However, 2D images are significantly affected by optical
conditions and surface properties that are not relevant to
identification, such as lighting direction, image intensity, surface
color, surface reflectivity etc., which may significantly affect the
firearm evidence identification results [32,33]. In the past 20
years, 3D topography measurement instruments have demon-
strated significant advantages. However, the optical comparison
microscope is still the instrument used for the one-to-one
sample comparisons required for court proceedings. It is
therefore of interest to compare the LR ratio evaluations of 2D
optical reflective images and 3D topography images using the
same set of samples.

� Statistical model and identification criteria: The choice of the
appropriate statistical model and identification criteria for
firearm evidence identification is particularly important. For
the KNM image pairs, both the statistical models of Binomial and
β-Binomial distributions showed very close results (Figs. 2 and 3,
1 Certain commercial equipment, instruments, or materials are identified in this
paper to specify adequately the experimental procedure. Such identification does
not imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
also see [23]). The Binomial model is used here for describing the
distribution of the KNM comparison scores. For the KM image
pairs, however, the β-Binomial fitted the data more closely than
the Binomial model (Figs. 2 and 3, also see [23]). Therefore, the β-
Binomial model was used for describing the distribution of the
KM comparison scores.

� Measurement uncertainty: There are many influence quantities
for error rate and LR evaluations, each may have a large variation
range that may significantly increase the error rates and decrease
the LR values and may result in a large uncertainty range. It will
be discussed in Section 5 – Future work.

For each set of LR estimations, we calculate LR values for the
different choices of scenario described above and report only the
LR values for the least favorable scenario in the histogram data. For
example, for the identification results where CMC = h (h � C, see
Fig. 4, right), we report the minimum true positive likelihood ratio
LR1 obtained at the smallest observed CMC value, that is, hmin = 14
(N = 24) for the Weller data (Fig. 3) and hmin = 15 (N = 19) for the
Fadul set (Fig. 2). For the exclusion results where CMC = g (g < C, see
Fig. 4, left), we report the minimum true negative likelihood ratio
LR2 obtained at the maximum observed CMC score, that is, gmax = 2
for both datasets in Figs. 2 and 3. The estimated LR1 and LR2 are
shown in Table 3.

As mentioned in Section 2.2, the actual cell number N for each
cell pair’s correlation is variable. In our initial fitting of the β-
Binomial model, we started with a fixed cell number N, as a result,
the fitted curve of the β-Binomial model was a smooth curve as
shown in Fig. 1 [23]. Considering the actual cell numbers vary
between cell pair comparisons, when using the actual cell numbers
N to fit the β-Binomial model, the fitting results are with so many
ups and downs as shown in Figs. 2 and 3 (also see Ref. 23). In the
following discussions, we use the variable cell number N to fit the
β-Binomial distribution, and use the averaged value at each CMC
point of the KM distribution for evaluation of the LR.

4.2. Initial results of LR evaluation

Table 3 shows the initial results of LR evaluation for the two
sample sets as shown in Figs. 2 and 3. The respective LR values are
presented for two statistical models: Binomial (Bi) for the KNM
distributions and β-Binomial (β-Bi) for the KM distributions. For
the KM image pairs, the minimum true positive likelihood ratios
LR1 CMC¼hminð Þ are (2.14 � 1029) and (6.52 � 1032) for the two sets of
samples, which are well above an order of 106 that provides an
Extremely Strong Support for a same-source proposition, see
Table 2 [24]. For the KNM image pairs, the minimum true negative
likelihood ratios LR2 CMC¼gmaxð Þ are (1.13 � 103) and (2.27 � 103),
which are above an order of 103 that provides a Strong Support for a
different-source proposition, see Table 2 [24].

Table 4 shows LR evaluations obtained from 2D optical
reflective images and 3D topography images for the same Fadul
dataset [25]. The 2D images were captured using a comparison
microscope with a top-ring lighting source. Detailed measurement
procedures and correlation results can be found in [20]. For both
the 2D and 3D image data, the cell size was increased to 500 m



Table 4
Likelihood ratio estimations for the Fadul dataset using 2D reflective images vs. 3D topography images.

Sample
set

Cartridge
number

Image
pairs
KNM/
KM

Statistical
Models KNM/KM

Number of
cells N

CMC
values
for KNM

True
negative
LR2 CMC¼gmaxð Þ

CMC
values
for KM

True
positive
LR1 CMC¼hminð Þ

Note

Fadul (2D) 40 717/63 Bi./β-Bi. 21 0–3 0.16 9–28 7.98 � 1012 Ref. [20]
Fadul (3D) 40 717/63 Bi./β-Bi. 16 0–2 587 11–26 6.72 � 1018 Ref. [23]
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m � 500 mm, yielding a lower number N for 3D image correlations
and, on average, lower CMC scores. For the 63 KM image pairs, the
minimum true positive likelihood ratio LR1 CMC¼hminð Þ is (6.72 � 1018)
for the 3D method, and it decreases to (7.98 � 1012) for the 2D
method. But both are still above an order of 106 that provides an
Extremely Strong Support for a same-source proposition, see
Table 2 [24]. For the 717 KNM image pairs, the minimum true
negative likelihood ratio LR2 CMC¼gmaxð Þ is 587 for the 3D method,
which provides a Moderately Strong Support for a different-source
proposition, see Table 2 [24]. However, for the 717 KNM image
pairs using the 2D method, the minimum true negative likelihood
ratio LR2 CMC¼gmaxð Þ is significantly reduced to less than one (LR
= 0.16). As mentioned before, the quality of 2D optical reflective
images largely depends on the surface properties and lighting
conditions. For example, when changing the lighting direction only
a few degrees for one image of the compared image pair, a perfect
matched sample pair may result in a declared non-match due to
the change in reflections and shadows of the compared image
[32,33]. The higher variability of the image data results in a higher
probability of false negatives, which may be reflected by the lower
value (less than 1) of the true negative likelihood ratio LR2.

5. Conclusion, discussion and future work

Likelihood ratio evaluation aims to provide a quantitative
measure for the weight of evidence in firearm identifications. It
makes it possible for ballistics experts to formulate, in a
scientifically sound way, an identification or elimination conclu-
sion associated with a LR statement. Based on the LR values and the
verbal equivalents, the judge or jury can assess this information in
combination with other aspects of the case and decide whether
“they are willing to assume” [5] that a bullet or cartridge case was
indeed fired from a submitted gun and what weight to assign to it.
The automatic, objective and quantitative LR evaluation can
provide unbiased support to firearm identifications in forensic
science, and provide a powerful tool for firearm examiners’ case
work and court testimonies.

The congruent matching cells (CMC) method was developed at
NIST for automatic and objective firearm evidence identification
and quantitative error rate and LR estimation. In this paper, a
procedure is proposed for evaluation of the LR for firearm evidence
identifications. Initial LR estimations using two sets of 9 mm
cartridge cases with different sample sizes, imaging methods and
ammunition showed that, for all the declared identifications of the
tested 2D and 3D image pairs, the estimated LRs were well above
the order of 106 that provides Extremely Strong Support for a
prosecution proposition (e.g. a same-source proposition). The LR
estimations also showed that, for all the declared exclusions of the
tested 3D image pairs, the estimated LRs were above the order of
102, that provides Moderately Strong Support for a defense
proposition (e.g. a different-source proposition).

The CMC method for LR evaluation can be applied to both 3D
topography images and 2D optical reflective images. However, the
2D optical reflective images are significantly affected by optical
conditions and surface properties that are not relevant to
identification, which may significantly affect the firearm evidence
examinations. As a result, the LR values for 2D image comparisons
were significantly smaller than those for 3D image comparisons,
especially for the true negative likelihood ratio LR2.

LR estimations depend on the chosen statistical models and
parameters, the relevant firearm/ammunition image datasets used
to estimate distribution parameters, correlation programs and
measurement procedures. In this paper, the initial LR estimations
are limited to two small datasets of KM and KNM image pairs of
breech face impressions with granular marks. Our next steps are to
apply the procedure to larger datasets, selected from the NIST
Ballistics Toolmark Research Database [34] with different breech
face and firing pin impression marks, and test CMC correlation
algorithms and error rate procedures accessible for evaluation of
the LR. We expect that LR and error rate evaluation for case work
will require procedures for the selection of the distributions of the
reference datasets that match different types of evidence images,
such as granular, striation and mixed type of images.

It must be noted that the extrapolation of parametric
distributions at their tails of Binomial and β-Binomial model leads
to great uncertainty. Perhaps other parametric approximations
would be more appropriate at the tails of the graph. A NIST
statistician is working to develop a new statistical model, and
compare with the existing Binomial and β-Binomial model using
the qq-plot sometimes used for comparison of two statistical
models [35]. We are also working to characterize LR using the
Tippett plots, as that used for report of forensic fingerprint
evaluation method [36].

There is an interesting question regarding the Binomial and β-
Binomial distribution: “Why the Binominal model fitted the KNM
scores very well, while it didn’t fit the KM scores well?” We believe
the major reason is that the Binomial distribution is based on two
key assumptions: 1) the comparisons between cell pairs are
independent from each other, and 2) each cell pair comparison for
the KNM images has the same probability p = pKNM [23], and each
cell pair comparison for the KM images has the same probability p
= pKM [23] to be qualified as a CMC. The resulting Binomial model
fitted the KNM data quite well, because the KNM cell pair
comparisons are independent from each other, and each cell pair
comparison for the KNM images has the same probability p = pKNM
to be qualified as a CMC. As a result, the KNM cells appear to be
qualified as a CMC cell pair is likely driven by random, non-
selective factors, and systematic measurement errors are not
significant factors in the evaluation.

On the other hand, both assumptions (independent cell
comparisons and constant p value) are not fulfilled for KM cells.
The cell pair comparisons may not be independent among the
neighborhood cell pairs, and each cell pair comparison has
different probability p = pKM to be qualified as a CMC. Furthermore,
systematic variations in firing conditions, firearm wear, contam-
inants and breech face impression area may cause variations in the
size and quality of the common valid correlation areas of a KM
image pair, which may cause additional variations in the
probability pKM of the cell pairs to be qualified as CMCs [23].
These effects can be improved using the β-Binomial distribution
with variable pKM values which can improve the KM distribution
fitting [23].
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One of our future works is to develop an uncertainty analysis
procedure for both the error rate and LR evaluations. There are
many influence quantities that may significantly increase error
rates and decrease LR evaluations. However, the extremely large
value of the true identification LR1 estimated from different sets of
9 mm cartridge cases with different imaging methods (see Tables 3
and 4) suggest that it would be feasible to scale up the error rate
and LR procedure for case work and database searching with large
population size, and still arrive at reasonable and useful LR values
to support firearm experts’ case works and court testimonies.
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