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Measuring information transmission from stimulus to response is useful for evaluating the

signaling fidelity of biochemical reaction networks (BRNs) in cells. Quantification of infor-

mation transmission can reveal the optimal input stimuli environment for a BRN and the

rate at which the signaling fidelity decreases for non-optimal input probability distributions.

Here we present sparse estimation of mutual information landscapes (SEMIL), a method to

quantify information transmission through cellular BRNs using commonly available data for

single-cell gene expression output, across a design space of possible input distributions. We

validate SEMIL and use it to analyze several engineered cellular sensing systems to demon-

strate the impact of reaction pathways and rate constants on mutual information landscapes.
aCertain commercial equipment, instruments, or materials are identified in this paper in order to specify the ex-

perimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified

are necessarily the best available for the purpose.
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Introduction

All living systems need to sense and respond to environmental changes for survival. At the cellu-

lar level, biochemical reaction networks (BRNs) accomplish the necessary sensing and response

functions by controlling the conditional expression of genes. Studies of natural BRNs highlight the

importance of sensing to optimally adjust gene expression in naturally evolved systems. More re-

cently, advances in synthetic biology have enabled the design of synthetic BRNs and the construc-

tion of hierarchical modular arrangements of BRNs1. These new capabilities to engineer BRNs

offer enormous potential for living therapeutics2 and other applications of programmed sensing3.

However, the reliable engineering of BRNs will require quantitative metrics for performance and

robust methods to evaluate those metrics from experimental data.

BRNs allow cells to react to unpredictable environments by transmitting information about

input stimuli into cellular output response4. Consequently, as a performance metric for engineered

BRNs, one should ask, how much information do they transmit? Information theory provides the

only general metric for this: the mutual information between the input and the output, which is

a logarithmic measure of the number of distinguishable output response levels5–8. Mutual infor-

mation has emerged as an important aspect of biology as we search for quantitative principles to

unify our understanding of signal transmission in gene expression9, differentiation10, cell death11,

and other biological processes7, 8, 12, 13.

Notably, information transmission depends both on the probability distribution of the in-

put and the conditional probability distribution of the output for each possible input. The role of
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stochasticity in BRN outputs is mainly studied using the magnitude of noise14, 15, but the evalua-

tion of mutual information would provide a universally applicable way to study the impact of a

stochastic input environment on the state of a BRN16. With mutual information different BRNs

could be compared independent of their biological context using the same metric, and the same,

comparable units (e.g. bits). However, conventional methods for computing mutual information

cannot be directly applied to most commonly available data, which consist of output distributions

measured at a relatively small number (∼10) of fixed input values, because those methods either

require data at a large number of densely-spaced input values17, or a parametric model of the output

response18.

Here, we present Sparse Estimation of Mutual Information Landscapes (SEMIL), a method

to determine the information transmission through BRNs using commonly available data such as

flow cytometry or single-cell microscopy. SEMIL finds the best discrete and sparse approximation

for each possible continuous input probability distribution19, which enables estimation of infor-

mation transmission using BRN output data for a small number of discrete input values (Methods

and Supplementary Methods 1). SEMIL produces mutual information landscapes that quantify the

performance of engineered BRNs across a design space consisting of the input probability distribu-

tions within which the BRNs are targeted to function (Fig. 1). We validate the accuracy of SEMIL

using simulated output from model BRNs, and demonstrate the utility of SEMIL using engineered

BRNs in bacterial cells.
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Results

Validation of SEMIL using model response functions To validate SEMIL, we first used sim-

ulated data for a model response function approximating the gene expression output of a BRN

using a gamma distribution with parameters that depend on the value of the input (Fig. 2b and

Supplementary Methods 2). We used this model to generate mock data to analyze using SEMIL

and compared the estimated mutual information with the correct results obtained via numerical

integration. The comparison demonstrates that SEMIL can provide accurate estimates of mutual

information (typically within 0.05 bits) even with data from a set of only five discrete input values

(Fig. 2b-2c). The accuracy further improves (typically within 0.02 bits in the high information

transmission region) if the set of input values is increased from five to ten. Larger error (around

0.2 bits) only occurs when the input distribution cannot be well approximated by the set of inputs at

which the output data is available, for example, when the geometric mean of the input distribution

is comparable to the lowest discrete input value (near the left boundary of Fig. 2c).

We further evaluated SEMIL by comparing with an exact result for information transmission

in the small noise limit: the cumulative distribution function of the optimal input distribution, at

which information transmission is maximal, converges to the mean input-output response function

with decreasing noise in the output 16. Therefore, we considered three model input-output response

functions with the same mean response function but decreasing magnitudes of noise (green lines in

Figures 2d-2f and Supplementary Methods 3). For each of the three model response functions we

sampled the output data for the same set of input values. The corresponding optimal input distri-
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butions from SEMIL matched the theoretically expected trend of approaching the mean response

function with decreasing noise (blue lines Figures 2d-2f).

Validation using stochastic simulation data To test SEMIL with more realistic output data, we

used the Gillespie algorithm to simulate a simple BRN modeled after the lactose sensing system

in E. coli (Methods). We simulated output data for a dense set of input values to compute a

reference mutual information landscape without SEMIL (Supplementary Methods 4). Then, we

took sparse subsets of the total data, for 5, 10, and 20 discrete input values, and determined the

same mutual information landscape using SEMIL. The landscape has a central region of high

mutual information (Fig. 3a-3c panel 2), with well-defined peak that defines the optimal input

distribution (white dots in each plot). The optimal input distribution is approximately matched to

the midpoint of the BRN input-output response function but is generally wider than the response

function (Fig. 3a-3c panel 1). In the center of the design space, the accuracy of SEMIL does

not depend on the number of input levels used (Fig. 3d-3f). Near the boundaries of the design

space the accuracy generally improves with increasing number of input values. This is particularly

noticeable along the boundaries corresponding to very narrow or very wide input distributions (top

and bottom edges of each plot).

Mutual information landscapes of engineered BRNs To demonstrate the utility of SEMIL for

comparing the performance of engineered BRNs, we constructed six different BRNs similar to

the lactose sensing system in E. coli and used them to systematically examine the effect on the

mutual information landscape due to changes in the rate constants and feedback pathways of the
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BRN (Fig. 4a and Methods). Specifically, we studied two groups of BRNs: one with the lacY

gene controlled by the BRN output and one with the deactivated lacY gene. When activated, lacY

increases the transport of the input signal, isopropyl β-D-1-thiogalactopyranoside (IPTG), into the

cell, acting as a positive feedback on the BRN output. Within each group, we also varied the rate

of translation of the lacI repressor by using three different ribosomal binding site (RBS) sequences

with predicted translation rates that varied over three orders of magnitude20. For each of the six

BRNs, we used flow cytometry to measure the distribution of gene expression output at a set of

IPTG concentrations. The mutual information landscapes for the engineered BRNs are shown in

Fig. 4b-4f.

Discussion

The resulting mutual information landscapes of all six BRNs have some common features (Fig. 4).

As with the simulation results, each landscape has a region of high mutual information that approx-

imately coincides with the midpoint of the BRN response function. In addition, the high-mutual

information region is funnel-shaped: as the mean of the input distribution varies, the mutual infor-

mation changes more steeply for narrow input distributions than for wide input distributions. The

mutual information landscapes thus show quantitatively how sensing applications with a narrowly

distributed input signal require more precise matching of the BRN response function to the input

distribution, because the midpoint of the BRN response function must be near the median of the

input distribution to enable high information transmission. Whereas applications with a wide in-

put distribution will require less precise matching since the active range of the BRN response will
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overlap with the input distribution, providing relatively high information transmission even when

the median of the input distribution and midpoint of the BRN response function do not coincide.

SEMIL compares favorably with Blahut-Arimoto algorithm (Supplementary Figure 17), which is

the most common existing method to compute the maximum mutual information. However, the

corresponding optimal input distribution from Blahut-Arimoto is spiky and discontinuous and dif-

ficult to interpret as a biologically plausible input distribution 7. SEMIL circumvents this problem

of interpretation by using a well-defined design space of continuous probability distributions.

The shape of the optimal input distribution and the region of high mutual information both

depend on the relative gene expression output noise of the BRN. With small BRN output noise,

the mutual information landscape has a clear local maximum at an input distribution with both

center and width approximately matched to the BRN response function (Fig. 4c-4d). With larger

BRN output noise, the optimal input distribution has a higher geometric standard deviation, and

the information transmission becomes less sensitive to changes in the width of the input distribu-

tion. Positive feedback decreases the width of the response function, but it also increases the BRN

output noise. Consequently, we observe that although the BRNs with feedback have a sharper,

more step-like response function, from low to high output, the resulting optimal input distributions

are wider than the width of the BRN response function (Fig. 4e-4g), or the probability density is

less concentrated near the midpoint of the response function. Additionally, BRNs with positive

feedback have a flatter mutual information landscape with a larger region of nearly optimal infor-

mation transmission compared to the BRNs without positive feedback (black or white contours in

Fig. 4). In particular, the region of nearly optimal information transmission for some of the BRNs
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with positive feedback extends across a large range of geometric standard deviation (Fig. 4e-4f

and Supplementary Figures 5-10).

SEMIL uses ideas from information theory and stochastic modeling to provide a universal

quantitative BRN performance metric, which evaluates the information transmission capability

of engineered BRNs across a broad range of possible input environments. Currently, there is

considerable interest in understanding the role of information transmission in biology, specifically

with regard to metabolic activity, fitness, and phenotypic differentiation. As we demonstrate here,

SEMIL can be easily applied to explore these questions using readily available single-cell response

data.
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Figure 1: Estimating Mutual Information of BRNs with SEMIL. Scheme for computing mutual

information with SEMIL using output distributions for a sparse set of input values. Step 1: Data is

acquired for the distribution of BRN output at a set of fixed input values. Step 2: A design space

is specified to span the range of input probability distributions within which the BRNs are targeted

to function. Each point in the design space corresponds to a possible input probability distribution.

Step 3: The best discrete approximation is identified for each input distribution in the design space.

Step 4: The output distributions and the discrete approximation to the input distribution are used

to calculate the mutual information landscape.
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Figure 2: Validation of SEMIL using model response functions. a Model input-output response

used for validation of SEMIL. The green line is the mean gene expression input-output response

function and the shaded region shows the 5% to 95% quantile range. The point symbols mark the

discrete input values used for mutual information estimates with five (red circles) or ten (all mark-

ers) input values. b Comparison between SEMIL mutual information estimates and the correct

mutual information for input distributions with a fixed geometric mean, E, and varying geometric

standard deviation, σ. c, Comparison between SEMIL mutual information estimates and the cor-

rect mutual information for input distributions with fixed geometric standard deviation and varying

geometric mean. In b,c, the red curves are the mutual information estimates obtained using SEMIL

with mock data at five input values and the blue curves are the estimates obtained with ten input

values. The shaded region around each curve bounds the 5% to 95% confidence interval from 100

replicates. The dashed black curve is the correct mutual information calculated using numerical

integration. The fixed geometric mean for b and the fixed geometric standard deviation for c were

chosen to match the input distribution at which mutual information is maximum. d,e,f Compar-

ison of SEMIL result to the small-noise-limit prediction. The green curves (left y-axis) are the

mean gene expression output and the shaded region shows the 5% to 95% quantile range. The blue

curves (right y-axis) show the optimal cumulative distribution function (CDF), corresponding to

the input distribution that maximizes the mutual information. The geometric means of the optimal

input distributions are 7.76 (d), 19.5 (e), and 39.8 (f). The geometric standard deviations of the

optimal input distributions are 100 (d), 19 (e), and 4.07 (f). For comparison, an input distribution

with a CDF exactly matched to the mean gene expression output curve would have a geometric

mean of 50 and a geometric standard deviation of 2.51.
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Figure 3: Accuracy of mutual information landscapes estimates from SEMIL for simulated

BRN data. a,b,c, Mutual information landscapes from SEMIL obtained using data at 5 (a), 10 (b),

and 20 (c) discrete input values. Panel 1 of each subplot shows the mean gene expression input-

output response function (green, left y-axis) and the cumulative distribution functions (CDFs) of

the optimal input distribution (blue, right y-axis) for the simulated BRN. The optimal input distri-

bution is the distribution that maximizes the mutual information. The green point symbols indicate

the discrete input values used for each case. Panel 2 of each subplot shows the mutual information

landscape. Each point in the 2-dimensional landscape represents an input distribution with the

specified geometric mean, E, and geometric standard deviation, σ. The heat map color indicates

the mutual information, I , for the input distribution defined by the coordinates (E, σ). The opti-

mal input distribution is marked with a white dot in each landscape plot. The geometric means

of the optimal input distributions are the same in all three cases, 33.9. The geometric standard

deviations of the optimal input distributions are 15.9 (a), 17.3 (b), and 20.2 (c). d,e,f, Accuracy

of SEMIL across the design space. The heat map plots show the error in the SEMIL results,

δI = ISEMIL − Icorrect, for mutual information estimates obtained using data at 5 (d), 10 (e), and 20

(f) discrete input values.
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Figure 4: Applications of SEMIL to experimentally-measured BRNs. a DNA design

schematic21 of the engineered BRNs used to obtain output data for SEMIL (Methods). To sys-

tematically study the effect of positive feedback on mutual information landscapes, half of the

engineered BRNs (data shown in e,f,g) included the lacY gene as shown in the diagram, while the

other half (data shown in b,c,d) included a deactivated lacY gene (Supplementary Methods 6). b-g

Panel 1 of each plot shows the measured input-output response function (green, left y-axis) and the

cumulative distribution functions (CDFs) of the optimal input distribution (blue, right y-axis) for

each BRN. The optimal input distribution is the distribution that maximizes the mutual informa-

tion. The green point symbols indicate the discrete input values used for each case. Panel 2 of each

plot shows the mutual information landscape calculated with SEMIL for each BRN. b,c,d Results

for BRNs without the lacY feedback with three different translation rates for the lacI repressor

gene. e,f,g, Results for BRNs with the lacY feedback for the same three lacI translation rates.

The estimated relative lacI translation rate constants are 0.008 (b,e), 1 (c,f), and 10 (d,g)20.. For

each mutual information landscape, black or white dots indicate the location of the optimal input

distribution and the same-colored contours around them bound the mutual information values that

are within 0.05 bits of the maximum. Biological replicate data for each BRN is shown in Supple-

mentary Figures 5-10. For the BRN without lacY feedback and the weakest lacI translation rate

constants (b), the maximum mutual information is located at the boundary of the design space for

2 out of 3 biological replicates, hence a does not show an optimal input distribution.
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Methods

Data requirements for SEMIL

The data needed for SEMIL consists of single-cell gene expression output data measured at dif-

ferent values of an input stimulus. The input stimulus is typically the concentration of a chemical

species applied to induce the measured cellular response, but could also be the temperature or any

other control parameter that affects the cellular response. One of the key benefits of SEMIL is that

it only requires output data for a relatively small number of discrete input stimulus values. The

output data can be obtained from simulations or from experiments such as flow cytometry (used

in this work), or from other measurements such as single-cell microscopy or single-cell RNA se-

quencing. At each input stimulus value, accurate mutual information calculations with SEMIL

require a sufficient number of single-cell output data points to serve as a model-free estimate of the

conditional output probability distributions (see below). For the results shown in Fig. 3, 250,000

points were used for each input value, and for the results in Fig. 4 between 1,000 and 50,000 data

points were used for each input value.

Design space for mutual information landscapes

The first step in analyzing a BRN with SEMIL is to choose the design space, which is the space of

input probability distributions, p(X), over which the mutual information will be calculated. The

design space can consist of any continuous probability distribution, but as we are using a fixed set

of input values we have restricted to bounded probability distributions of input values,X . The error

in estimating an arbitrary continuous unbounded distribution using a discrete distribution based on

a fixed set of input values will be high enough. For most BRNs, the bounded interval can be chosen
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based on the application, e.g. the minimum and maximum chemical concentrations that might be

encountered in a sensing application. If necessary, an unbounded range of input values can be

mapped to a bounded interval using, for example, the logistic transform, so the requirement for a

bounded interval of input values does not affect the general applicability of SEMIL. In this work,

we chose a design space of log-transformed beta distributions on a bounded interval of the input

concentration, which enables inclusion of both unimodal and antimodal probability distributions

in the same design space. For visualization of the resulting mutual information landscapes, we plot

the mutual information values as a heat map vs. the center (geometric mean) and width (geometric

standard deviation) of the input distributions. More specifically:

X = input concentration;

p(X) =
1

X log(Xmax/Xmin)
ρbeta

(
log10(X/Xmin)

log10(Xmax/Xmin)

)
; (1)

where Xmin and Xmax are the upper and lower bounds for the input concentration, X , and ρbeta is

the beta density function for the domain [0, 1].

The input stimulus values used to generate the data for SEMIL need to be matched to the

design space so that the range of input values with high probability density is well-covered by the

set of discrete input values. For example, for the mutual information landscapes shown in Figs. 2-

3, the input values were chosen to span the range of geometric means used for the design space, and

the spacing between different input values was chosen to match the minimum geometric standard

deviation used for the design space.
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Stochastic Reduced-Order Model of Input distribution

The second step of SEMIL is to find the best discrete approximation for each continuous input dis-

tribution in the design space. For each input distribution in the design space, stochastic reduced-

order modeling is used to find the optimal probability masses to assign to the available set of

discrete input values so that the resulting discrete probability distribution best represents the con-

tinuous input distribution. The best discrete approximation is found by minimizing the sum of two

error functions, one given by the integral of the squared error of the cumulative distribution and the

second given by the sum of squared errors of the distribution moments (Supplementary Methods

1).

Calculation of Mutual Information

SEMIL computes the mutual information of a BRN for each input distribution in the design space

using discrete approximations of the probability distributions of the input, X , and the output, g.

The stochastic reduced-order model maps each continuous input distribution p(X), to a discrete

distribution of the input, P (X = xi), where the input, X , takes a set of fixed values {xi}. The

BRN output data for each of the fixed input values, X = xi, is used to estimate discrete conditional

probabilities of the output, P (g = gj|X = xi) for the set of possible output values, {gj}. For

naturally discrete output data (e.g. molecular counts from the Gillespie simulations), the set of

possible output values is taken to be the set of non-negative integers. For continuous output data

(e.g. flow cytometry data), the output values are binned following a procedure to minimize bias

in the mutual information estimates (Supplementary Methods 5). To avoid the need for additional

assumptions, the observed frequencies are used directly as the estimates for the discrete conditional
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probabilities used to calculate the mutual information, I:

I(X; g) =
∑
i

P (X = xi)H(g|X = xi) +H(g), (2)

where H(g) is the entropy of the associated marginal output distribution

H(g) = −
∑
j

P (g = gj) log2 P (g = gj), (3a)

P (g = gj) =
∑
i

P (X = xi)P (g = gj|X = xi), (3b)

and where H(g|X = xi) is the entropy associated with the conditional output distribution,

H(g|X = xi) = −
∑
j

P (g = gj|X = xi) log2 P (g = gj|X = xi). (4)

Estimates of mutual information directly from finite data as described here can be systemati-

cally biased. To correct for this bias, for every point in the design space, we extrapolate to the limit

of infinite data using previously described methods4, 7, 16(Supplementary Methods 5).

Simulations

Simulated BRN output data used for validation of SEMIL (Fig. 3a-3f) were obtained using the

Gillespie algorithm to simulate the output response from a reaction network model of the E. coli

lac operon22 (Supplementary Methods 4).

Strain construction

Wild-type E. coli strain MG1655 was purchased from the American Type Culture Collection

(ATCC 47076). The strain MG1655∆lac was constructed by replacing the genomic copy of the

lactose operon, comprising genes lacIZYA, with the bleomycin resistance protein from Streptoal-
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loteichus hindustanus (Shble). The Shble cassette was synthesized by Integrated DNA Technolo-

gies (IDT) as a gBlock, and was codon optimized for expression in E. coli and placed under control

of the constitutive promoter J23101 and the RiboJ ribozyme-insulator23. The Shble cassette was

inserted into the genome of E. coli MG1655 using recombination to facilitate homologous recom-

bineering as described below.

E. coli MG1655 was transformed with the recombineering plasmid pSIM29, described elsewhere24.

Briefly, pSIM29 contains λ phage genes Exo, Beta, and Gam under control of a temperature-

dependent repressor (cI857) and temperature sensitive origin of replication. Plasmid pSIM29 was

maintained in MG1655 using lysogeny broth (LB) supplemented with hygromycin (200 µg mL−1)

and grown at 30◦C.

The Shble cassette was amplified by PCR using primers DT.01 and DT.02 (Supplementary

Methods 6) which included 50 bp of homology to the genome sequence flanking the lactose operon

of E. coli MG1655. Overnight culture of E.coli MG1655 containing pSIM29 was diluted 1000-

fold and grown at 30◦C in LB to mid-log phase (5 hours). Culture was then submerged in 44◦C

water bath for 1 hour followed immediately by a 30 minute incubation in ice slurry. Cultures were

pelleted and washed with 10% glycerol twice, and electroporated to transform the amplified Shble

cassette. Cultures were recovered with Super Optimal broth with Catabolite repression (SOC) at

37◦C for 3 hours, and then plated on LB-agar supplemented with zeocin (50 µg mL−1).

The following day, colonies were screened using colony PCR to verify insertion of the Shble

cassette. Two colonies were genome sequenced using the Illumina MiSeq platform, with 600
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cycle chemistry (2 x 300, paired ends). Reads were aligned to the MG1655 published genome

NC000913.3 using breseq program25. Sequencing results verified successful substitution of the lac

operon with the Shble cassette.

Plasmid construction

Plasmids used for the results shown in Fig. 3 were constructed from the plasmid pAN18181.

Plasmid pAN1818 encodes YFP under control of the tacI promoter and regulated by the symL

(lacO) operator, pAN1818 also contains the kanamycin resistance marker, and p15A origin of

replication.

To evaluate feedback effects, the lacY gene was added to pAN1818 downstream of the YFP

cassette (Fig. 3(a)). The lacY gene was amplified by PCR from the genome of E. coli MG1655

using primers DT.03 and DT.04. Plasmid pAN1818 was amplified by PCR using primers DT.05

and DT.06. The plasmid amplicon and lacY amplicon were combined with Gibson assembly and

sequence verified with Sanger sequencing. The resulting plasmid was used for the results shown

in Fig. 3(f).

The plasmid with increased lacI translation rate (Fig. 3(d,g)) was constructed by changing

the lacI RBS. The plasmid was amplified by PCR using primers DT.07 and DT.08. The resulting

amplicon was recircularized with Gibson assembly. Plasmids containing the correct sequence were

verified with Sanger sequencing.

The plasmid with decreased lacI translation rate (Fig. 3(b,e)) was constructed by changing

the lacI RBS. The plasmid was amplified by PCR using primers DT.09 and DT.10. The result-
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ing amplicon was circularized with Gibson assembly in the presence of primer DT.11. Plasmids

containing the correct sequence were verified with Sanger sequencing.

Plasmid constructs without feedback (Fig. 3(b,c,d)) were generated by inserting three se-

quential stop codons at positions D35 I36 N37 into the lacY gene encoded on the plasmid. The

plasmids were amplified by PCR using primers DT.12 and DT.13. The resulting amplicon was

circularized with Gibson assembly. Plasmids containing the correct sequence were verified with

Sanger sequencing. All plasmid constructs were electroporated into MG1655 for routine cloning.

Plasmids were sequence verified using Sanger sequencing (Psomagen USA).

Flow cytometry

Two or three biological replicates of MG1655∆lac with each plasmid were grown overnight to

stationary phase in M9-glucose media. Each replicate was then diluted 1000-fold into a 96-well

assay plate (4titude, 4ti-0255) containing 500 µL M9-glucose media per well with various con-

centrations of IPTG, ranging from zero to 2.048 mmolL−1. For each biological replicate, three

technical replicates were included in each plate. Plates were sealed with clear gas-permeable seals

(4titude, 4ti-0541/SLIT) and cultures were grown for 3.5 hours with double orbital shaking in

BioTek Epoch 2 plate readers at 37◦C. Optical density at 600 nm (OD600) was monitored during

growth, and typical OD600 values at the end of 3.5 hours were between 0.04 and 0.07. After

growth, 20 µL samples from each well were diluted into 180 µL of phosphate buffered saline sup-

plemented with 170 µg mL−1 chloramphenicol to halt protein translation. The resulting diluted

samples were measured on an Attune NxT flow cytometer with 488 nm excitation laser and a 530

nm ± 15 nm bandpass emission filter. Blank samples were measured with each set of E. coli sam-
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ples, and the results of the blank measurements were used with an automated gating algorithm to

discriminate cell events from non-cell events. A second automated gating algorithm was used to

select singlet cell events and exclude doublet, triplet, and higher-order multiplet cell events. All

subsequent analysis was performed using the singlet cell event data.

Data availability

The parameters for the numerical studies and Gillespie simulations are present in the Supplemen-

tary Tables 1-4. The data for the main figures are in Supplementary Data 1. The flow cytometry

data and all other data are available upon request.

Code availability

The code to compute mutual information landscapes is available at https://github.com/

usnistgov/InGene26.
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