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ABSTRACT
Computation Tree Measurement Language (CTML) is a

newly developed formal language that offers simultaneous model
verification and performance evaluation measures. While the
theory behind CTML has been established, the language has yet
to be tested on a practical example. In this work, we wish to
demonstrate the utility of CTML when applied to a real-world
application based in manufacturing. Mobile manipulators may
enable more flexible, dynamic workflows within industry. There-
fore, an artifact-based performance measurement test method for
mobile manipulator robots developed at the National Institute of
Standards and Technology was selected for evaluation. Contri-
butions of this work include the modeling of robot tasks imple-
mented for the performance measurement test using Petri nets,
as well as the formulation and execution of sample queries using
CTML. To compare the numerical results, query support, ease of
implementation, and empirical runtime of CTML to other tem-
poral logics in such applications, the queries were re-formulated
and evaluated using the PRISM Model Checker. Finally, a dis-
cussion is included that considers future extensions of this work,
relative to other existing research, that could potentially en-
able the integration of CTML with Systems Modeling Language
(SysML) and Product Life-cycle Management (PLM) software
solutions.

∗Address all correspondence to this author.

1 INTRODUCTION

In the field of formal verification, Computation Tree Mea-
surement Language (CTML) offers many advantages over con-
ventional methods for conducting performance-reliability analy-
sis. CTML combines performance and reliability evaluation ca-
pabilities under one language [1]. Jing and Miner establish the
theoretical foundation for CTML, describe the advantages of the
language, and provide an example of the language usage through
modeling the Dining Philosophers problem. In their work, a few
primary advantages of CTML are noted. First, CTML is able
to respond to nested queries with either a real-valued quantity
or a probability. In addition, CTML matches the functionality
of Probabilistic Computation Tree Logic (PCTL) [2] and can re-
spond to a (non-trivial) subset of Probabilistic Linear Temporal
Logic (PLTL) queries that are not expressible in PCTL [1, 3].
Most importantly, the functionality of CTML extends beyond the
aforementioned logics as the language can answer queries not
expressible in either PCTL or PLTL [1]. For example, CTML
can answer survivability queries, which ask how much time re-
mains until an event occurs given that another event has already
occurred. Finally, Jing and Miner theoretically established the
running efficiency of CTML as polynomial with respect to the
both the formula and state size [1].

The theoretical advantages of CTML just described also sug-
gest potential benefit towards Industry 4.0 applications. Indus-
try 4.0 is the convergence of “robotics, cyber-physical systems,
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software services, and human participants” towards “interoper-
ability, information transparency, technical assistance, and de-
centralized decisions” [4]. For example, consider the following
work in assessing picker robot workflow (modeled using work-
flow nets) conformance to the specifications of an automated
warehouse [4]. CTL queries were formulated to verify safety
properties of the workflow, such as an absence of deadlocks,
proper workflow completion, and proper workflow termination
among other properties. CTML could theoretically extend this
assessment to include how much time remains until a product is
shipped given the robot just picked up the product or the proba-
bility a deadlock occurs within 15 minutes given that a procure-
ment has just completed [1, 4].

While the theoretical advantages of CTML have been tested
through a dining philosopher example scenario and the origi-
nal state-based language has been extended to support reason-
ing over paths with multiple actions and states, the adoption of
CTML towards Industry 4.0 applications would benefit from a
more focused exploration of its use in a real-world problem [1,5].
Therefore, in this work, we explore the viability of CTML and
its theoretically established benefits by applying the language to-
wards the formal verification of a contemporary, manufacturing-
based application. The application consists of a performance
measurement test method for mobile manipulators currently un-
der development at the National Institute of Standards and Tech-
nology (NIST)1 [6]. Mobile manipulation offers an abundance
of potential real-world uses, especially within manufacturing en-
vironments. These applications include tasks such as sanding or
painting large surfaces, welding large parts, managing convey-
ors, and other forms of flexible manufacturing [7]. It should also
be noted that existing work has applied Model-Based Systems
Engineering (MBSE) methodologies to the performance mea-
surement test using Systems Modeling Language (SysML) [8].
Whereas the authors state the SysML model was verified through
a systems review and referenced experiments, the utilization of
CTML exemplifies simultaneous, probabilistic verification and
performance evaluation of the test method procedure [8].

To formally evaluate the performance measurement test
method, we selected the Petri-net formalism described in [9] to
develop an initial, high-level model of the robot tasks performed
as part of the mobile manipulator performance test method.
We also selected and formulated a series of sample queries
to be answered by CTML. We then adapted the model and
queries for use with another existing tool, the Probabilistic Sym-
bolic Model-Checker (PRISM) (Download at: http://www.
prismmodelchecker.org/download.php) [10]. Fol-
lowing this step, we compared the supported queries, numerical

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such identi-
fication is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the materi-
als or equipment identified are necessarily the best available for the purpose.

results, Central Processing Unit (CPU) runtime, and ease of im-
plementation. Finally, given the findings of the study, we discuss
potential future applications of CTML, which includes integra-
tion with the previously mentioned SysML model of the perfor-
mance test method and integration with Product Life-cycle Man-
agement (PLM) software.

2 BACKGROUND
2.1 About the Petri net Formalism

The Petri net formalism was selected to develop the initial
model both for the high-level convenience of the formalism and
for its ability to be procedurally converted to a format usable
by CTML and PRISM. Petri nets are described as a “bipartite,
directed graph populated by three types of objects” [9]. The
three objects include places (graphically represented as hollow
circles), transitions (represented by boxes or solid lines), and
directed arcs. Places represent a possible state, condition, or
available resource and transitions represent a change of state or
action. Additionally, tokens (graphically represented as one or
more filled circles or a variable on a place) represent the current
fulfillment of a condition or availability of a resource. A “mark-
ing” consists of the distribution of tokens to places at any given
time (with the “initial marking” at time zero). Arcs, which may
be weighted, may only connect places to transitions or vice versa.
Upon “firing” a transition, the number of tokens required by the
weight of the input arc is consumed from the input place and the
number of tokens indicated by the weight of the output arc is
produced on the output place. A transition can only be fired, or
is “enabled”, if the input place contains enough tokens to satisfy
the weight of the input arc. Inhibitor arcs (marked by a circle in-
stead of an arrowhead) instead require that places have no tokens
in order to fire [9].

2.2 The Mobile Manipulator Performance Test Method
The performance measurement test method modeled in this

paper utilizes a Re-configurable Mobile Manipulator Artifact
(RMMA) [6]. The RMMA provides a known, user-adjustable
measurement uncertainty to compare to ground-truth. Addition-
ally, The RMMA consists of an anodized, machined-aluminum
build and has an adjustable height and table surface rotation. The
table surface can be drilled and tapped with holes arranged in
various geometric patterns (such as a square, circle, or sinusoid).
The holes are analogous to points mounted with retro-reflective
targets, which are digitally detected through the use of a retro-
reflective laser sensor/emitter (RLS) mounted on the end-effector
of a robotic arm.

The use of this non-contact registration sensor reduces the
risk of collisions and is comparable to operations such as the
classic peg-in-hole assembly task [11]. An example of an
RMMA, RLS, and retro-reflective target is shown in Fig. 1a. The
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FIGURE 1. (a) THE RETRO-REFLECTIVE LASER SENSOR AND
EMITTER (RLS) USED FOR ASSEMBLY POINT DETECTION. (b)
TOP VIEW OF RLS AND SPIRAL SEARCH PATTERN

description of the general performance measurement test speci-
fies two potential cases for manipulator and vehicle coordination.
These levels of coordination are described as “indexed” (the ma-
nipulator performs assembly while vehicle is stopped) and “dy-
namic” (both the manipulator and the vehicle are in motion) [6].
The primary metrics of interest include a pass/fail test for ini-
tially detecting the retro-reflective targets at the assembly points,
and a repeatability test in positioning the manipulator over the
assembly points [6]. The RMMA can also evaluate and compare
coordinate registration methods, and the time taken to locate the
retro-reflective targets is also of interest for these methods [12].

3 PETRI NET MODEL DESCRIPTION
3.1 Model Scenario and Parameters

We now specify the instance of the test scenario to be mod-
eled. First, we chose to focus on modeling a mobile manipulator
utilizing an Automatic Guided Vehicle (AGV), specifically one
that cannot re-compute paths around unexpected obstacles. With
this system, an industrial manipulator arm is also fixtured on-
board the AGV throughout the assembly tasks. Second is that
we chose to model the indexed case of the mobile manipula-
tor performance test instead of the dynamic case (see Section
2.2). Finally, we assume the RMMA is configured with six retro-
reflective targets arranged in a square as shown in Fig. 2.

For the performance test method, the AGV travels to and
parks at a sequence of n arbitrary locations next to the RMMA,
which are referred to as “stops”. Each stop is assumed to be
unique in either position and/or orientation. While in transit, it
is possible that an obstacle or hazard causes the AGV to emer-
gency stop (e-stop). Once the obstacle has been removed, the
operator can clear the e-stop, allowing the AGV to resume the
test. The AGV is allowed to e-stop E times before the entire
test is aborted. While the AGV is parked at a stop, the manip-
ulator arm first performs coordinate registration of the mobile
manipulator to the RMMA by locating two retro-reflective tar-

FIGURE 2. EXAMPLE OF RMMA CONFIGURATION WITH AP
REFLECTORS IN A SQUARE PATTERN.

gets, denoted R1 and R2. The manipulator arm then locates the
other four retro-reflective targets, which are used as verification
points to test the accuracy of the initial coordinate registration
and manipulator positioning. These reflectors are denoted as as-
sembly points 1 (AP1) through 4 (AP4). For both previous steps,
the same target localization method is used, which consists of the
manipulator tracing a square spiral pattern as visualized in Fig.
1b [12]. The spiral search is allowed to execute t steps in the
localization pattern before the search is aborted. The detection
of each assembly point, as part of the verification phase, can be
repeated r times. Finally, this entire process can be repeated for
N runs of the test. The values, or parameters, are adjustable set-
tings of the performance test method. Changing each value as
input to the model can increase or decrease the total number of
reachable states associated with the Petri net.

3.2 Description of the Petri net Model
The model and initial marking of the mobile manipulator

performance test (divided into five subnets) is shown in Fig. 3 -
7. Places are denoted Pi, where i is an integer subscript, and tran-
sitions are denoted t j, where j is an integer subscript. Subnets,
shown as rectangles, are annotated to indicate the connections
between subnets. The exponential distribution was chosen as the
firing distribution for transitions. The rate parameter of the expo-
nential distribution was taken to be inversely proportional to the
number of tokens currently in the Petri net at a given time.

3.2.1 AGV Subnet. The first subnet, shown in Fig. 3,
defines the behavior of the AGV during the test. The initial token
on P1 represents the vehicle parked at the initial home position.
After leaving the home position, the AGV proceeds through the
sequence of n stops next to the RMMA. As mentioned previ-
ously, the AGV may e-stop while in transit (see Section 3.2.2).
A token on P2 indicates the AGV is finishing the current test run.
P3 maintains a count of the remaining number of test runs. P3
initially has N tokens, which decreases every time t2 is fired. For
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each run, the AGV parks at each of the n stops in sequence (see
Section 3.2.3). When the token count on P3 reaches 0, t3 must
fire, and the AGV attempts to return to the home position. A to-
ken on P4 indicates the AGV has reached the home position and
completed the test.

3.2.2 E-Stop Subnet. The subnet modeling the occur-
rence of an AGV e-stop is shown in Fig. 4. P5 represents the
vehicle en-route to a stop at the RMMA. P6 is initialized with E
tokens and counts the number of remaining e-stops allowed. P7
counts the number of e-stops that have occurred previously. A
token on P8 indicates the vehicle is currently e-stopped, with an
obstacle preventing the vehicle from currently reaching the in-
tended destination. Since it is possible for the vehicle to recover
from the e-stopped state, t6 is included to connect P5 to P8.

3.2.3 Stop Subnet. The subnet modeling the actions
of the AGV for each stop is shown in Fig. 5. A token on P9
represents the AGV sending a signal to the manipulator to begin
coordinate registration to the RMMA. P10 counts the number of
times the AGV has previously visited the stop. A token on P11
indicates the AGV is currently parked at the RMMA. Transition
t8 passes the signal from the AGV to the manipulator and initial-
izes r tokens on P18 in the manipulator subnet. t9 passes a signal
from the manipulator to the AGV indicating the manipulator has
finished coordinate registration and verification. Upon receiving
this token, the vehicle can proceed to the next stop.

3.2.4 Manipulator Subnet. The subnet defining the
behavior of the manipulator arm is shown in Fig. 6. A token
on P12 indicates the manipulator has received the signal from the
AGV to begin coordinate registration. The manipulator begins
in a stowed position, which allows for safe transport, and is rep-
resented by a token on P13. Upon receiving the signal from the
AGV, the manipulator moves to a stage position whereby it can
access the RMMA. A token on P14 indicates that the manipulator
is moving to the stage position. P15 and, similarly, P20 repre-
sent an e-stopped state. A token on P16 indicates the manipulator
successfully reached the stage position. The manipulator then at-
tempts the localization of two reflectors, R1 and R2, to complete
coordinate registration. If either point cannot be found (as indi-
cated by t26 in the spiral search subnet), the verification phase is
skipped. If both points are localized, the manipulator proceeds
to search for four verification reflectors, AP1 through AP4. A
token on P17 indicates the end of a verification loop. P18 counts
the remaining number of times that the verification loop will be
repeated. A token on P19 represents the manipulator attempting
to reach the stow position again. A token on P21 represents a
signal being sent back to the AGV to proceed to the next stop.

3.2.5 Spiral Search Subnet. The subnet for model-
ing the spiral search localization method is pictured in Fig. 7,
with Fig. 1b providing a visualization of the search routine itself.
For the spiral search, a token on P22 indicates the manipulator in
motion to position the RLS over an initial search point on the
RMMA. The presence of a token on P23 represents a failure by
the manipulator to position the toolpoint over the initial search
point, which results in an e-stop. This is similarly the case for
P30. A token on P24 indicates the successful positioning of the
RLS over the initial search point. Upon this success, t tokens
are placed on P25. P25 counts the remaining steps allowed in the
search pattern. Upon reaching the initial search point, the RLS
either immediately detects the retro-reflective target or does not.
The detection of the target is indicated by a token on P26 while
failing to detect the retro-reflective target is indicated by a token
on P27. If the target is not detected and search steps remain, the
manipulator increments along the search path in attempt to local-
ize the retro-reflective target. A token on P28 indicates the ma-
nipulator attempting to position the RLS over the next step along
the search path. P29 counts the number of search steps previously
taken by the manipulator.

4 EXPERIMENTS
4.1 Methods

We begin by explaining the intermediate steps taken to pre-
pare the model and queries as input for the software implementa-
tion of CTML. Starting with the Petri net, we used the Stochastic
Model-checking Analyzer for Reliability and Timing (SMART)
(Download at: https://asminer.github.io/smart/)
tool to convert the Petri net expression of the model to a Discrete
Time Markov Chain (DTMC) [13]. Next, we used a custom-
written Java program to express the DTMC in the format required
by the CTML software. The Java program also added a set of
“atomic functions” needed by the chosen queries [1]. The atomic
functions calculate a starting quantity based on a given DTMC
state. The augmented DTMC is then fed as input to the CTML
software tool, along with the desired queries, to obtain the nu-
merical result for each query (either a probability or a quantity).
For this study, a total of ten models were generated from the Petri
net by repeating this process with different input parameters. The
parameters were varied to test a variety of model sizes ranging
from a couple hundred states to approximately 4 million states.

For the two CTML queries that were expressible by PRISM,
we were interested in comparing the numerical results, query
support, ease of implementation, and CPU time between the two
tools. To prepare the PRISM input, we started with the same
DTMCs converted from the Petri net models via SMART. Unlike
the CTML software, the PRISM tool required deadlocked states
in the DTMC to have self-looping arcs, which increased the num-
ber of arcs for the PRISM input model (see Tab. 1). Since PRISM
supports the specification of reward functions, which map states
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FIGURE 3. MOBILE MANIPULATOR PETRI NET: AGV SUBNET.

FIGURE 4. MOBILE MANIPULATOR PETRI NET: E-STOP SUB-
NET.

FIGURE 5. MOBILE MANIPULATOR PETRI NET: STOP SUB-
NET.

in the model to real values, each atomic function in CTML is re-
defined as a label (denoted by an “l” in its name) and a reward
function, respectively [14]. Like CTML, the translated DTMC
and queries can be fed into the PRISM tool as input.

The queries were tested on a computer with a 3.2GHz Intel
Core i5 and 16GB of 1867MHz memory, and running MacOS X
with the Java Development Kit (JDK) version 1.7. For CTML (a
prototype tool) and PRISM (version 4.4), the runtime was bench-

marked using the “User Time” field outputted by the time com-
mand line utility. This field is the total CPU time used by the tool
excluding time used for executing operating system kernel code.
The PRISM software tool also provided an internally measured
time for model checking, which we called the “PRISM time”
for short. To reduce the model-construction time in PRISM, we
used “Explicit Model Files” and ran the queries using the ex-
plicit computation engine, which was specified using the -ex
flag. With explicit model files, the states, transitions, and labels
of the model were pre-constructed and each stored in a separate
file. These models were then imported for model-checking by us-
ing the -importmodel flag. Additionally, to ensure there was
enough memory for running the queries on the models, the max-
imum memory was expanded to 8 GB using the -cuddmaxmem
and -javamaxmem flags [14]. All other PRISM configuration
flags were kept to their default values.

4.2 Sample Queries
The sample queries were selected for their ability to test the

boundaries of supported query types for existing temporal logics
(as discussed in the Section 1) and for their relevance to the pre-
viously described metrics of the performance test method. Each
query is presented in their English and CTML expressions. A
complete explanation of CTML syntax and semantics is provided
by Jing and Miner [1]. Likewise, for a complete explanation of
the PRISM syntax and semantics, we refer to the PRISM man-
ual [14]. Queries that could not be consistently translated into
any of the logics supported by the PRISM tool are accompanied
by an explanation. Otherwise, we present the query formulation
in the appropriate logic. Finally, for all of the following queries,
the atomic function one denotes a value of 1 for all states in the
DTMC.

4.2.1 Query 1. “What is the expected time until an e-
stop occurs as the AGV attempts to park at stop 1?” We define
an atomic function agvestop1 with value 1 for the states where
AGV is e-stopped, and 0 otherwise. Here, the atomic function
one denotes one time unit per state. The query can be expressed
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FIGURE 6. MOBILE MANIPULATOR PETRI NET: MANIPULATOR SUBNET.

in CTML as:

M oneU+ agvestop1 (1)

The Until Plus operator U+ accumulates one along a path be-
fore reaching the first agvestop1 state, s, with agvestop1(s)> 0.
The M operator denotes the expected value (mean) over the path
formula one U+ agvestop1, which captures all paths reaching
agvestop1 states. Attempting to evaluate Query 1 in PRISM re-
sulted in several limitations and inconsistencies. First, attempt-
ing to import the reward functions while using the explicit engine
resulted in an error stating there was no model generator to con-
struct the rewards structure. This limitation was addressed as of
PRISM version 4.6, however, due to the recent timing of this re-
lease, we were unable to directly test the newly supported func-
tionality [15]. Therefore, without the explicit engine, the long
model construction time discussed previously made it impracti-
cal to evaluate Query 1 on the larger models. With smaller mod-
els, for which the model construction time was not prohibitive,
evaluation was attempted using the hybrid engine. In this case,
PRISM returned a result of infinity, which was inconsistent with
CTML. This behavior is a design choice in the PRISM property
specification language and occurs when the probability of reach-
ing a destination state is less than one [14, 16]. By specification
of the mobile manipulator test scenario, it is not guaranteed that
the AGV will e-stop. Therefore, Query 1 could not be fully eval-
uated using PRISM.

4.2.2 Query 2. “What is the probability that the ma-
nipulator eventually fails to locate AP1 while the AGV is parked
at stop 1?” For this query, we define an atomic function
ap1 f ail-stop1 with value 1 for the states where the manipula-
tor fails to locate AP1 while the AGV is parked at the first stop
next to the RMMA, and 0 otherwise. This situation occurs if the
maximum number of steps in the spiral search pattern has been
exceeded and AP1 is still not detected by the RLS. This query
can be expressed by CTML as:

M oneU× ap1 f ail-stop1 (2a)

This is similar to Query 1, except that here we use the Until Mul-
tiply operator U× to compute a probability along a path before
reaching the first ap1 f ail-stop1 state s with ap1 f ail-stop1(s)>
0. The expected value operator M over the path formula
one U× ap1 f ail-stop1 computes the sum over all states s with
ap1 f ail-stop1(s) > 0, the probability that s is reached before
any other state s′ with ap1 f ail-stop1(s′) > 0, multiplied by
ap1 f ail-stop1(s). Note that the CTML formula for Query 2 is
shown in Eqn. 2a. Query 2 can be successfully translated to
PCTL in PRISM using Eqn. 2b. The reachability operator F , as
described in the PRISM manual, can be used to express formulas
like “true U p”, which specifies that p is eventually true. Then,
the probability for the formula can be obtained via the operator
P=? in PRISM.

P=? (F ap1 f ail-stop1 l) (2b)
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FIGURE 7. MOBILE MANIPULATOR PETRI NET: SPIRAL SEARCH SUBNET.

4.2.3 Query 3. “Given that an AGV e-stop occurred
while the AGV was attempting to reach stop 1, what is the prob-
ability that the manipulator fails to locate AP1?” Similar to
Query 6 presented by Jing and Miner for the dining philosopher
model [1], Query 3 requires a conditional probability of the form
Pr(B|A), where A denotes an AGV e-stop while the AGV at-
tempts to park at the first stop next to the RMMA. B denotes a
failure to localize the AP1 reflector while the AGV is parked at
the first stop next to the RMMA. To solve the conditional proba-
bility, we find the probability of events B and A occurring simul-
taneously and then divide the result by the probability that event
A occurs. The CTML formula for this query is shown in Eqn.
3a, which can also be successfully translated to PLTL in PRISM
and is shown in Eqn. 3b.

M oneU× ( (M oneU× ap1 f ail-stop1 )∗ agvestop1)
M oneU× agvestop1

(3a)

P=? (F ( (agvestop1 l ) ∧ (F ap1 f ail-stop1 l ) ) )
P=? (F agvestop1 l )

(3b)

4.2.4 Query 4. “What is the expected number of steps
taken to locate AP1 while the AGV is parked at stop 1?” Here
we define two atomic functions. ap1step-stop1 assigns a value

of 1 for all states in which the manipulator increments an addi-
tional step in the spiral search localization pattern when attempt-
ing to locate the reflector AP1 while the AGV is parked at the first
stop next to the RMMA, and 0 otherwise. The atomic function
ap1pass-stop1 assigns a value of 1 for each state in which the
manipulator detects the AP1 reflector while the AGV is parked
at the first stop next to the RMMA, and 0 otherwise. The CTML
formula for Query 4 is presented in Eqn. 4.

M ap1step-stop1U+ap1pass-stop1 (4)

For reasons similar to Query 1, and because the atomic function
ap1step-stop1 does not have a match for the atomic proposition
true in PCTL, this query could not be translated for PRISM.

4.2.5 Query 5. “Given the AGV is parked at stop 1 and
the manipulator fails to locate AP1, what is the probability that
AP2 is located within 10 time units?” We define an atomic func-
tion ap2pass-stop1 that assigns a value of 1 for each state in
which the manipulator detects the AP2 reflector while the AGV
is parked at the first stop next to the RMMA, and 0 otherwise.
This query is similar to Query 3, except we must use a time
bounded formula. First, we determine the probability to reach
the states where the AP2 reflector is located within 10 time steps
when the AGV is parked at the first stop next to the RMMA,
starting from every possible state. Then, we filter out all but the
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FIGURE 8. LINE PLOT COMPARING RUNTIMES OF QUERY 2.

states where the manipulator fails to locate AP1 while the AGV
is parked at the first stop. We then sum, over all ap1 f ail-stop1
states, the probability to reach the first state multiplied by the
probability to locate ap2pass-stop1 starting from the state. This
quantity must be divided by M oneU× ap1 f ail-stop1, which has
been explained in Query 2. The CTML formula for Query 5 is
shown in Eqn. 5.

M oneU×((M oneU≤10
× ap2pass-stop1)∗ap1 f ail-stop1)

M oneU× ap1 f ail-stop1
(5)

Query 5 could not be translated for use with the PRISM tool,
since time-bounded operators are not expressible in PLTL [3,10].

4.2.6 Query 6. “Given the AGV e-stops while the AGV
is approaching stop 1 what is the expected time until the manip-
ulator fails to locate AP1?” Similar to Queries 3 and 5, we first
determine the expected time until the manipulator fails to locate
the AP1 reflector when the AGV is parked at the first stop next to
the RMMA, starting from each possible state. Then, we filter out
all but the states where the AGV is e-stopped when attempting
to reach the first stop next to the RMMA. We then sum over all
agvestop1 states, the probability to reach the first state multiplied
by the expected time to ap1 f ail-stop1 starting from that state.
Finally, this quantity must be divided by M one U× agvestop1.
The CTML formula for Query 6 is presented in Eqn. 6.

M oneU×((M oneU+ap1 f ail-stop1)∗agvestop1)
M oneU× agvestop1

(6)

Query 6 could not be translated for use with PRISM because the
tool does not support nested real-valued formulas [1].

5 RESULTS AND COMPARISON
The numerical results and CPU runtimes for each query

evaluated using CTML and PRISM are listed in Tab. 1, which

FIGURE 9. LINE PLOT COMPARING RUNTIMES OF QUERY 3.

shows the relative precision of 10−4 for numerical results. Line
plots comparing the runtimes between CTML and PRISM for
Queries 2 and 3 are also provided in Fig. 8 and Fig. 9.

We now interpret the CTML results of the sample queries
and compare the difference in query support between the two
tools. The results for Query 1 yielded one time-step on average
until the AGV e-stops as the AGV travels to the first stop next to
the RMMA. When we compare the results of Queries 2 and 3,
the probability of failing to detect AP1 is not influenced by the
occurrence of an AGV e-stop since the result of both queries tend
toward zero. It is also shown that, in absence of additional un-
certainty, failing to detect the AP1 reflector is not a likely occur-
rence. This is further reinforced by the results of Query 4, which
shows that between no steps and one step on average should be
required to detect AP1 when the AGV is parked at the first stop.
Query 5, however, shows that the probability of failing to de-
tect AP1 at the first stop and then detecting AP2 within 10 times
steps is 37%. The result for Query 6 shows that, given an AGV
e-stop occurred, between 0 and 1 time-steps elapse on average
until the manipulator fails to locate AP1. Out of the six queries
evaluated using CTML, only two could be translated such that all
of the generated models could be successfully and consistently
evaluated using PRISM for the reasons given in Section 4.2. For
Queries 2 and 3, the numerical results of PRISM were identical
to those of CTML.

For the ease of implementation, preparing the model as input
for PRISM was more complicated than CTML since the states,
transitions, and labels of the model had to be split across three
files for each generated DTMC model whereas CTML could de-
fine all needed structures in one file. Furthermore, CTML did not
require separately defined reward and labeling functions, as was
the case with PRISM. We were also unable to determine a way to
explicitly define different, named reward functions for use with
the property specification language. This restricted us to using
only one explicitly-defined reward function at a time.

In terms of the runtime, the longest user time for executing a
query in CTML corresponded with Query 1, which was evaluated
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TABLE 1. SAMPLE QUERY RESULTS AND CPU RUN TIME

Parameters (E t r n N)2

1, 1, 1, 1, 1 2, 2, 1, 2, 1, 4, 10, 1, 1, 1 4, 10, 1, 2, 1 3, 3, 1, 3, 1 4, 10, 1, 3, 1 4, 4, 1, 4, 1 4, 10, 1, 4, 2 4, 10, 1, 4, 3 4, 10, 1, 4, 4

States

357 3,621 3,819 30,305 42,164 200,115 606,305 2,171,190 3,106,315 4,041,440

Arcs (CTML)

421 4,352 4,702 37,384 51,139 247,054 739,504 2,683,829 3,840,954 4,998,079

Arcs (PRISM)

Query No. Tool 501 5,189 5,637 44,789 61,055 295,909 883,669 3,212,934 4,597,559 5,982,184

Q13 CTML 1.1118 1.0008 1.0011 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

User Time4 0.140 0.361 0.358 0.980 0.995 4.116 7.069 57.041 77.943 127.787

Q2a5 CTML 0.0049 0.0018 0.0000 0.0000 0.0006 0.0000 0.0002 0.0000 0.0000 0.0000

User Time 0.126 0.269 0.279 0.636 0.737 1.624 3.144 10.276 14.478 20.812

Q2b5 PRISM 0.0049 0.0018 0.0000 0.0000 0.0006 0.0000 0.0002 0.0000 0.0000 0.0000

User Time 1.829 2.050 2.020 2.652 2.729 4.568 10.935 27.677 47.722 85.786

PRISM Time6 0.019 0.053 0.067 0.223 0.238 1.094 3.761 10.350 17.231 28.285

Q3a5 CTML 0.0049 0.0018 0.0000 0.0000 0.0006 0.0000 0.0002 0.0000 0.0000 0.0000

User Time 0.153 0.359 0.314 0.911 1.031 2.461 5.521 24.174 37.526 42.835

Q3b5 PRISM 0.0049 0.0018 0.0000 0.0000 0.0006 0.0000 0.0002 0.0000 0.0000 0.0000

User Time 3.536 4.097 4.176 5.888 6.472 12.085 28.287 122.074 180.884 249.742

PRISM Time 0.134 0.201 0.169 0.575 0.711 3.3000 9.6280 43.7320 67.1710 93.4110

Q47 CTML 0.0049 0.0091 0.0132 0.0132 0.0115 0.0132 0.0125 0.0132 0.0132 0.0132

User Time 0.143 0.321 0.298 0.758 1.012 2.471 6.122 27.254 34.247 45.738

Q55 CTML 0.3333 0.3611 0.3704 0.3704 0.3704 0.3704 0.3704 0.3704 0.3704 0.3704

User Time 0.153 0.313 0.305 0.908 1.176 2.494 4.675 18.340 23.682 34.548

Q63 CTML 0.0865 0.0386 0.0000 0.0000 0.0153 0.0000 0.0057 0.0000 0.0000 0.0000

User Time 0.163 0.370 0.387 1.011 1.097 4.730 8.783 41.010 55.517 68.300
2 See Section 3.1; 3 Computed as time-steps; 4 User Mode CPU Time, in seconds, as measured by the time command line utility; 5 Computed as probability;
6 Internally measured model-checking time, in seconds, offered by PRISM; 7 Computed as spiral search-steps.

in just over 2 minutes when run on a model with approximately
4 million states and almost 5 million arcs. When comparing the
runtimes of Queries 2 and 3, it was found that the user time
of CTML was consistently lower than the user time measured
for PRISM as the number of states and arcs in the models in-
creased. However, the internally measured PRISM model check-
ing time, or “PRISM time”, yielded the following. For Query 2,
the PRISM time was slightly lower than the CTML user time for
the models with less than 600,000 states. For models exceeding
600,000 states, the PRISM time exceeded the CTML user time.
For Query 3, the CTML user time overtook the PRISM time after
the model size exceeded 200,000 states.

6 CONCLUSION
In this work, we explored the practical utility of the theoret-

ically established advantages of CTML by using the language to
evaluate a set of sample queries on a modeled, manufacturing-
based application. The benefits and practical application of
CTML established in this paper allows for consideration of fu-

ture extensions. For example, existing work has pursued the de-
velopment of a formal verification framework for SysML activity
diagrams in which activity diagrams were translated to Proba-
bilistic Timed Automata (PTAs) for use with PRISM [17]. Alter-
native approaches opted to map the activity diagrams to DTMCs
or Petri nets [18,19]. Integration of CTML into such frameworks
could further enhance CTML ease of implementation by allow-
ing the use of existing SysML models such as the previously de-
veloped mobile manipulator performance test model [8].

Furthermore, such work could facilitate an exploration to-
wards integrating CTML with PLM software. Existing work has
demonstrated interest in unifying MBSE with PLM with noted
benefits including the ability of such models to adapt throughout
the design process and to provide a centralized source of design
reference [20]. Interest has also been shown in efforts to unify the
use of temporal-logic based verification and MBSE within PLM
tool chains [21,22]. In this work, Form-L language (described as
being comparable to LTL) was integrated with the Modelica lan-
guage to facilitate subsequent case study on requirements man-
agement for cyber-physical systems [21].
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