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Recent efforts in Smart Manufacturing (SM) have
proven quite effective at elucidating system behavior using
sensing systems, communications and computational plat-
forms, along with statistical methods to collect and analyze
real-time performance data. However, how do you effec-
tively select where and when to implement these technology
solutions within manufacturing operations? Furthermore,
how do you account for the human-driven activities in manu-
facturing when inserting new technologies? Due to a reliance
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on human problem solving skills, today’s maintenance oper-
ations are largely manual processes without wide-spread au-
tomation. The current state-of-the-art maintenance manage-
ment systems and out-of-the-box solutions do not directly
provide necessary synergy between human and technology,
and many paradigms ultimately keep the human and digital
knowledge systems separate. Decision makers are using one
or the other on a case-by-case basis, causing both human and
machine to cannibalize each other’s function, leaving both
disadvantaged despite ultimately having common goals.

A new paradigm can be achieved through a hybridized
systems approach — where human intelligence is effectively
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augmented with sensing technology and decision support
tools, including analytics, diagnostics, or prognostic tools.
While these tools promise more efficient, cost-effective
maintenance decisions, and improved system productivity,
their use is hindered when it is unclear what core organi-
zational or cultural problems they are being implemented to
solve. To explicitly frame our discussion about implementa-
tion of new technologies in maintenance management around
these problems, we adopt well established error mitigation
frameworks from human factors experts — who have pro-
moted human-systems integration for decades — to mainte-
nance in manufacturing. Our resulting tiered mitigation strat-
egy guides where and how to insert SM technologies into a
human-dominated maintenance management process.

1 Introduction
The era of big data and Internet of Things (IoT) in manu-

facturing – with low cost sensors and cloud-based solutions –
has left many manufacturers with a plethora of data in many
different forms. With the recent buzz around more accessi-
ble, easy to use Artificial Intelligence (AI) solutions, some
manufacturers are asking themselves “can we just throw our
data in an AI?” Other manufacturers might ask “how can we
get smart with new technologies?” However, AI and other
Smart Manufacturing (SM) technologies are not one-size-
fits-all solutions for all data types or problems, especially
when there are many human-centered aspects in the work-
flow. Most AI and digital solutions do not work out-of-the-
box and cannot directly replace personnel in many situations.
Within manufacturing, maintenance is inherently one of the
most human-centric processes, but is uniquely suited for an
approach designed to intertwine human and digital capabil-
ities. A new paradigm is needed that involves the human,
AI and other advanced technologies working collaboratively
and efficiently within the maintenance workflow. Achiev-
ing this paradigm requires an understanding of how and why
this fails to happen in current maintenance practice. This pa-
per dissects the maintenance workflow into the tasks that are
performed by personnel, so that commonly occurring errors
can be analyzed in a unifying error framework. Using this
framework enables a tiered approach to technology imple-
mentation, guidance which is useful when manufacturers do
not necessarily know where to start.

The rest of the paper is structured as follows: the re-
mainder of Section 1 discusses maintenance in manufac-
turing, including the maintenance management workflow,
maintenance strategies, and issues that occur in practice;
Section 2 presents well established human factors research
and how it will be applied to maintenance in manufacturing;
in the subsequent sections, the maintenance workflow is bro-
ken down into three high level tasks: 1. Preparing for Main-
tenance (Section 3), 2. Performing Maintenance (Section 4),
and 3. Discovering Maintenance Needs (Section 5). Within
each of these sections, the applicable research and technolo-
gies are discussed, with high level tasks being further de-
composed into sub-tasks to determine the types of errors that
can occur. At the end of each subsection, the mitigations for

these different example errors are discussed. Section 6 sum-
marizes the steps from Sections 3-5 to generalize the error
mitigation so manufacturers can follow similar steps. Lastly,
Section 7 presents conclusions and future work opportuni-
ties.

1.1 Maintenance in Manufacturing
Maintenance is a collection of “actions intended to re-

tain an item in, or restore it to, a state in which it can per-
form a required function” [1]. It is estimated that in 2016,
US manufacturers spent $ 50 billion on maintenance and re-
pair, which is between 15 % and 70 % of the cost of goods
produced [2]. This estimate includes outsourcing of mainte-
nance and repair, but does not include expenditures on la-
bor and materials or the value of lost productivity due to
unscheduled downtime. Estimates suggest that employing
smart technologies can reduce maintenance cost from 15 %
to 98 % with a high return on investment (ROI) [2]. Within
the aerospace industry, examples of specific savings include
an estimated return on investment of 3.5:1 for moving from
reactive to predictive maintenance on electronic display sys-
tems [3] and a 56 % savings in costs from switching from
reactive to predictive maintenance for train car wheels [4, 5].

The practice and delivery of maintenance has evolved
over the last fifty years. During the late 1960’s Nolan and
Heap’s [6] investigation of failures in the airline industry
led to the development of reliability-centred maintenance
(RCM), a process still widely used today. Building on RCM,
a well defined theoretical and practical structure for main-
tenance management now exists. This is documented in
standards [7], textbooks [8, 9, 10] and by professional so-
cieties [11, 12].

In the 1970s Japanese manufacturers introduced the con-
cept of Total Productive Maintenance (TPM) [13]. The ele-
ments of TPM are 1) a focus on maximizing equipment ef-
fectiveness, 2) establishing a system of preventive mainte-
nance for the equipment’s entire life, and 3) the participation
of all employees in maintenance through a team effort with
the operator being responsible for the ultimate care of his/her
equipment [14]. TPM is widely adopted in mature manu-
facturing organizations with well documented benefits [15].
While RCM and TPM are not competing frameworks, they
have different goals: RCM determines an appropriate main-
tenance strategy while TPM is concerned with managing
how maintenance is executed.

In the late 1990s Lean maintenance became popu-
lar, which built on the concepts of TPM and RCM and
promised a transformation in manufacturing management
through standardized workflows, value stream mapping, just-
in-time (JIT) and Kanban ”Pull” systems, Jidoka (Automa-
tion with a human touch), Poka Yoke (Mistake proofing), and
the use of the plan-do-check-act process [16]. Despite the
promised benefits of lean maintenance mentioned earlier, a
literature review by Mostafa et al. found that research on
applying lean principles into maintenance had not provided
convincing evidence of success [17].
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1.2 Maintenance Strategies
Two artifacts of the maintenance management system

are particularly noteworthy. First is the maintenance work
order (MWO). This concept refers to the archival record of
the maintenance event from its inception to its completion
and is shared along the way throughout the workflow. All
maintenance work should be associated with a work order.
The second concept is the Computerized Maintenance Man-
agement System (CMMS). This system supports maintenance
management with a record of the maintenance work orders
and through access to documentation of the assets, resources,
and other relevant information. In the maintenance work-
flow we present here, the CMMS is a hypothetical system
and any actual implementation of a CMMS will vary. A
MWO is generated, tracked, and eventually archived in the
CMMS. The CMMS generates reports documenting the tasks
that are due. The maintenance strategies are dependent on
when MWOs are acted on and how they are planned through
the CMMS.

Preventive maintenance is defined as the “actions per-
formed on a time- or machine-run-based schedule (some-
times referred to as interval based) that detect, preclude, or
mitigate degradation of a component or system with the aim
of sustaining or extending its useful life through controlling
degradation to an acceptable level” [12]. Preventive tasks
and intervals are often found in manuals from original equip-
ment manufacturers and are usually a requirement as part of
warranty. Over time many asset management organizations
develop their own preventive maintenance tasks and intervals
as they gain knowledge about their assets and systems.

Condition-based maintenance is defined by Society of
Maintenance and Reliability Professionals (SMRP) [12] as
“an equipment maintenance strategy based on measuring the
condition of equipment against known standards in order to
assess whether it will fail during some future period and tak-
ing appropriate action to avoid the consequences of that fail-
ure. The condition of the equipment can be measured using
condition monitoring, statistical process control, equipment
performance or through the use of human senses.” Mainte-
nance personnel have been using inspections, process vari-
ables, vibration analysis, thermography, oil analysis, ultra-
sonic analysis, and other techniques for over 30 years. Pre-
dictive maintenance is defined in this paper as involving
physical, statistical, or machine learning models that com-
bine historical reliability and/or performance data with cur-
rent condition assessment to generate a probability of fail-
ure and/or failure event prediction interval. These machine
learning models are used to support condition-based mainte-
nance programs and to inform interval selection for preven-
tive maintenance tasks.

Despite best efforts at proactive maintenance, the
stochastic nature of asset degradation means that failures do
occur and reactive maintenance is necessary. These failures
result in corrective work, which as will be seen in detail be-
low disrupts the maintenance management process. Depend-
ing on the consequence of the failure, corrective work may
need to be executed immediately (unstructured work). Oth-
erwise, work can be passed into the planning process (struc-

tured work). In the manufacturing domain, corrective work
is often referred to as unstructured reactive work [2].

1.3 Maintenance Management Workflow
A major factor for the efficiency of maintenance man-

agement is whether the work is structured or unstructured.
To describe the preferred maintenance structure, reliability
engineers have broken down the maintenance workflow into
six major steps: 1) Analyze, 2) Select & Prioritize, 3) Plan,
4) Schedule, 5) Execute, and 6) Complete.

Analyze The Analyze activity relies on the data docu-
mented in the work order. Planners, maintenance and relia-
bility engineers use this data to inform their respective tasks.
These include reviewing inspection and as-found condition
reports to determine whether asset deterioration meets ex-
pectation and when the asset has deteriorated past that ex-
pected threshold reviewing existing strategy or interval set-
tings for inspection and maintenance, updating data for relia-
bility and risk calculations, and updating optimization mod-
els. Analysis is involved in many of the maintenance man-
agement processes.

Select & Prioritize Maintenance work can be identified
by many agents, such as operators, maintainers, engineers,
and data analysts, by events (e.g., safety incidents), as well
as from strategies stored in the CMMS, and in asset man-
agement plans, which include recommended routine main-
tenance schedules. There is always more work to do than
can be done in any one planning and scheduling period, and
hence work needs to be prioritized. Ideally there should be a
risk-based process to prioritize work for each planning cycle.
New work notifications arrive each cycle and are reviewed
alongside work orders already on the backlog and scheduled
preventive maintenance work orders due in the next mainte-
nance work cycle. From these work orders a list of tasks is
prioritized and high priority tasks are moved to the planning
stage.

Plan Planning is done by a maintenance planner. For each
task, the planner needs estimates for the following types of
questions: How long will the job take? How much and what
types of labor will be required? What parts and materials will
be required, and are they on hand? What are the costs? What
tools, equipment, or other resources, including external con-
tractors, will be required? What permits will be required?
What are the job hazards, and how will they be managed?
Many tasks, such as inspections, periodic condition monitor-
ing, and tasks with a safe work procedure and bill of mate-
rials, need limited planner input, but others, such as major
asset shutdowns, need considerable input from the planning
team. Ideally planning happens some weeks before the time
period in which work is due to be executed as part of a well-
regulated planning cycle. Once all the information is gath-
ered a work order is planned and it can be scheduled.
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Schedule Scheduling is the temporal organization of tasks
for execution. It is a complex optimization problem with
constraints such as the number of maintenance technicians
available, limited ancillary equipment such as cranes, oper-
ational requirements limiting access to equipment, and sys-
tem connectivity meaning that some work cannot occur at
the same time as others. In addition, priority work must be
balanced with preventive work so that preventive work does
not fall behind over time.

Execute Considerable investment is incurred prior to exe-
cution due to the resources involved in planning and schedul-
ing. Value from this prior work is added when the proposed
maintenance work is executed by maintenance technicians
through repair and replacement tasks to restore the required
functionality of the assets. Good quality maintenance work
restores the asset function to some required level or func-
tion, either as-good-as-new or some level between that and
the current state. Poor quality maintenance work or work
that is unnecessary can destroy value by introducing defects
and cost money for little gain.

Complete When the technician has completed an assigned
task, an important but often overlooked step is to capture data
about the maintenance work with the as-found and as-left
condition of the asset. This is documented on the work order,
reviewed by the maintenance planner who is responsible for
closing the work order, and stored in the CMMS.

Consequently, structured work refers to work that follows
this entire maintenance management workflow. Structured
work is planned and scheduled in longer time scales (nor-
mally planning sessions happen once a week and provide
a time in the future to execute the maintenance). Unstruc-
tured work is often referred to as “reactive work”, as these
jobs result from failures that are identified by asset operators
and executed immediately. These unstructured jobs are still
completed and analyzed but do not pass through the formal
planning and scheduling stages. Because unstructured work
is executed immediately, it often results in other structured
jobs associated with preventive and condition-based strate-
gies to be rescheduled.

While these activities are the focus of maintenance reli-
ability experts, this structure makes it difficult to discuss the
human role in maintenance. The human actors within this
workflow perform different tasks dependent on the situation
(i.e., unstructured vs structured work). These roles and the
responsibilities are described in Table 1.1 However, while
the person performing the task may change (e.g., a plan-
ner calculates time estimates for a job in structured work,
whereas a technician might calculate time estimates on the
fly for unstructured work), the tasks themselves largely re-
main the same. Regardless of context or situation, a human

1Different domains often use different terminologies for those roles. At
smaller organizations, certain roles might be combined, such as a planner
and scheduler or an operator and technician; however, for the purposes of
this paper, we describe the roles as different people.

must 1. Prepare for the Maintenance Job, 2. Perform the
Maintenance Job, and lastly 3. Discover Maintenance Needs.
This distinction highlights how personnel actually perform
each task and the types of errors that might occur in doing
so, with a subsequent mapping from the task performed to
the corresponding activity in the maintenance workflow for
both structured and unstructured work. This task-based anal-
ysis is necessary due to the issues that still exist in manufac-
turing maintenance practice.

1.4 Issues in Practice
The SMRP Best Practices Committee suggests a dis-

tribution of maintenance work types as follows: for all ex-
ecuted maintenance work hours, 10 % to 15 % should be
on improvement and modification work, 30 % on structured
work - split between 15 % on predictive/condition-based
work and 15 % on preventive work. Corrective maintenance
hours derived from structured work should be 50 %, 15 %
from preventive maintenance inspections and 35 % from pre-
dictive maintenance inspections. Only 5 % should be asso-
ciated with corrective maintenance from unstructured work
with a buffer of 5 to 10 % for other work. [12] In practice
many manufacturing operations do not achieve these levels.

Small-to-medium sized enterprises (SMEs) still mainly
employ a mixture of unstructured and structured mainte-
nance strategies [18]. Once again, it is important to note that
manufacturers often refer to corrective work as only unstruc-
tured, when in fact not all corrective work is unstructured
work. Larger companies are employing preventive mainte-
nance strategies, but unplanned maintenance jobs are still
frequent [18]. Alsyouf [19] found that in Swedish man-
ufacturing firms, 50 % of maintenance time was spent on
planned tasks, 37 % on unplanned tasks, and 13 % for plan-
ning the maintenance tasks. Even though preventive main-
tenance strategies are more prevalent in larger companies,
these maintenance jobs are not always performed correctly.
It is estimated that one-third of maintenance jobs are improp-
erly done or unnecessary [20]. Another study mentions that
preventive maintenance is estimated to be applied too fre-
quently in 50 % of all cases in manufacturing [21].

So why are so many SMEs employing mainly reactive
unstructured maintenance strategies? Why are larger man-
ufacturers still dealing with unstructured maintenance and
often incorrectly performing preventive maintenance proce-
dures? In a survey to manufacturers, the main barriers to
adopting advanced maintenance strategies were cost (92 %
of respondents), technology support (69 %), and human re-
sources (62 %) [18]. This illustrates the need to help man-
ufacturers find the most cost-effective path toward balanc-
ing technology solutions with human-driven tasks to improve
maintenance procedure and reduce unplanned work. To ef-
fectively achieve such a paradigm, it is necessary to examine
tasks within the maintenance management process to iden-
tify how to implement new technologies effectively by ac-
counting for human knowledge and expertise.
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Table 1. Personnel in Maintenance

Job Title Description of Responsibilities

Operator Operates machines or monitors automated machines – can be responsible for one machine or
multiple machines depending on the size of the organization and level of automation.

Technician Used here to refer to the person performing minor maintenance jobs, for example routine
inspections. These jobs can be done by both operators and maintainers.

Planner Estimates time, cost, resources and documents for maintenance jobs, purchases parts and
contracts.

Scheduler Coordinate all planned jobs for a specific period into a realizable schedule.
Analyst Analyzes and models data about equipment, operational and maintenance management per-

formance.
Maintainer A trade-qualified technician competent to perform tasks in their area of expertise.
Engineer A degree-qualified individual who provides technical support for front-line staff such as op-

erators and maintainers.

Nomenclature
AI Artificial Intelligence
AR Augmented Reality
CMMS Computerized Maintenance Management System
DES Discrete Event Simulation
ERP Enterprise Resource Planning
ET L Extract, Transform, Load
FMEA Failure Modes and Effects Analysis
HMI Human Machine Interface
IDEF Integrated Computer Aided Manufacturing (ICAM)

Definition for Function Modeling
IoT Internet of Things
KB Knowledge-Based
MES Manufacturing Execution System
ML Machine Learning
MT BF Mean Time Between Failures
MT T R Mean Time To Repair
MWO Maintenance Work Order
NLP Natural Language Processing
OEM Original Equipment Manufacturer
RB Rule-Based
RCM Reliability Centered Maintenance
ROI Return on Investment
SB Skill-Based
SM Smart Manufacturing
SME Small-to-Medium Enterprise
SMRP Society of Maintenance and Reliability Profession-

als
SOP Standard Operating Procedure
SRK Skill-, Rule-, Knowledge-Based
SWP Safe Work Procedure
T PM Total Productive Maintenance
V R Virtual Reality

2 Human Factors and the Maintenance Workflow
Incorporating a focus on human interaction with com-

plex systems by applying human factors principles is not a
new idea, and is rapidly gaining traction in sectors where
implementation of new systems carries significant overhead,
whether finiancially or culturally. In a 2011 report, the U.S.

Department of Defense published a Human Systems Integra-
tion (HSI) Plan, [22] beginning with the following overview:

The human and ever increasingly complex defense
systems are inextricably linked. [...] High levels
of human effectiveness are typically required for a
system to achieve its desired effectiveness. The syn-
ergistic interaction between the human and the sys-
tem is key to attaining improvements total system
performance and minimizing total ownership costs.
Therefore, to realize the full and intended potential
that complex systems offer, the Department must ap-
ply continuous and rigorous approaches to HSI to
ensure that the human capabilities are addressed
throughout every aspect of system acquisition [...]
In summary, this means that the human in acquisi-
tion programs is given equal treatment to hardware
and software.

To accomplish this, human factors engineers will review
functions and tasks within a system, which at their most ba-
sic assign responsibility of some activity to personnel, au-
tomated systems, or some combination thereof [23]. The
primary goal of defining these tasks is to better understand
not only the specific roles of personnel, but also how these
will shift under implementation of proposed changes to the
system.

Defining the role of human actors within a maintenance
workflow has already been a core, if controversial, topic of
interest under the existing theoretical frameworks. Main-
tenance practices in the manufacturing sector center on the
importance of individual authority versus the needs for cen-
tralized planning and scheduling of maintenance tasks. For
example, the ideas of TPM focus on high levels of individual
ownership of the asset by the operator with responsibility to
adjust and maintain the unit. This will be largely an undocu-
mented process with some work being done at the discretion
of the operator to optimize their asset’s performance. In this
approach, the operator is empowered to take responsibility
over the domain. This contrasts with the maintenance man-
agement view in which maintenance is centralized and the
aim is to minimize costs across all equipment and resources
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and only to touch equipment if the work has been prioritized,
documented, planned, and scheduled. With the introduction
of more automation requiring individuals to assume respon-
sibility for larger segments of the operation and with many
highly-knowledgeable operators aging out of the workforce,
the more centralized approach is gaining traction. However,
the need for the human knowledge and expertise is greater
than ever before and needs to be factored into the manage-
ment process so as to optimize their contributions.

In systems engineering the incorporation of a human in
any automated system is often designed as a fail-safe mech-
anism. Designing for all possibilities and failure modes is
an impossibility, so designers and maintainers exploit one of
humanity’s greatest strengths: our ability to problem solve in
unfamiliar situations and environments. However, this abil-
ity to reason from first principles has a high cognitive load,
so humans try (where possible) to use rules and heuristics —
mental shortcuts — to relax decision making and reduce the
process of forming justifications into more habitual, routine
tasks. Certainly, heuristics can be informed by prior obser-
vations of performance patterns and the success of previous
solutions or approaches, but heuristics do not always work
well to anticipate or mitigate failure: the human perform-
ing a task is left without enough context to recover from
where the heuristic left off, or to estimate risks under un-
known system behaviors or personal biases. Ironically, these
situations tend to arise more often as systems become more
automated—failure contexts become more complex and ob-
servations of particular situations become increasingly rare.
The implementation of technologies, while intended to sup-
port technicians, will also require them to learn new ways
of working. It will take time to build new sets of heuris-
tics for each scenario. Digitization of equipment, for ex-
ample, can decrease physical accessibility to manufacturing
systems, along with altering the skill-set required to per-
form technical troubleshooting. The tension between a drive
for automation to compensate for human error, and the ne-
cessity for humans to compensate for increasingly complex
automated-system failures, should be dealt with up front by
explicitly accounting for human failure modes that are caus-
ing the errors, in the original implementation plan. Orient-
ing the function of emerging technologies in manufacturing
maintenance around the causes of errors opens a path toward
efficient and holistic implementation of those technologies.

This paper is not intended to serve as a sweeping guide-
line for implementing human factors, or for performing HSI,
within maintenance in general—this would be far outside
the scope for a single paper. Rather, we focus on specific
pain points encountered in existing maintenance workflows,
specifically in the context of human error before and after im-
plementing some of the recently developing technologies in
the space. We hope to provide initial guidance on augment-
ing specific functions/tasks within the maintenance workflow
through certain types of technologies, based on how their
strengths and weaknesses mesh with the strengths and weak-
nesses of critical personnel.

2.1 Human Factors Background
To analyze the maintenance management workflow, the

role of the human in the maintenance paradigm must be
understood. This paper uses the research by Jens Ras-
mussen and James Reason to provide a framework for es-
timating prime insertion points of new technology into the
maintenance workflow. [24, 25] This framework provides
guidance towards a hybridized maintenance workflow with
both the human and technological systems working har-
moniously. The framework centers around Skill-, Rule-,
and Knowledge-Based error occurrences in the maintenance
workflow.

Rasmussen introduced the Skill-, Rule-, Knowledge-
Based Human Performance model in 1983. At the time when
computers were becoming more mainstream, Rasmussen un-
derstood that the introduction of new digital technologies re-
quired “consistent models of human performance in routine
task environments and during unfamiliar task conditions.”
This need for a human performance model ultimately led
to the Skills-, Rules-, Knowledge-Based model of human
behavior. Rasmussen proposed that human activity was a
complex sequence of activities that depend on whether the
activity was in a familiar or unfamiliar environment. He ar-
gued that, in a familiar environment, a human strives towards
some high level goal through unconscious thinking based on
similar situations. If the goal is not met, they use a set of
“rules”, which have perhaps been previously successful. In
an unfamiliar environment, when proven rules are not avail-
able, a human makes different attempts – often in their head
– towards a successful sequence to reach a goal.

Skill-Based Behavior A skill-based (SB) behavior takes
place without conscious attention or control (e.g., tracking
tasks in real time). A majority of the time, human activity
can be considered a sequence of strictly SB actions or activ-
ities. SB behavior is an unconscious action implying diffi-
culty or redundancy for a person to explain what information
is required to complete the action.

Rule-Based Behavior When a sequence of actions is con-
trolled by a rule or procedure derived from previous occa-
sions, this is a rule-based (RB) behavior. The boundary be-
tween SB and RB behavior depends on the level of training
and the attention of the person completing the task. Higher-
level RB behavior is based on the human’s explicit under-
standing of the problem and the rules used in accomplish-
ing the task, while The “rules” in RB behavior can be de-
rived empirically from previous attempts at solving a prob-
lem, communicated from another person’s know-how, or
may be prepared on occasion by conscious problem solving
and planning. These rules are dependent on the knowledge
of the environment.

Knowledge-Based Behavior When faced with an unfa-
miliar situation a human may need to rely on building new
reference knowledge: this is knowledge-based (KB) behav-
ior. A KB behavior involves explicitly formulating a goal
based on an analysis of the environment and the aim(s) of
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the task. An individual develops different plans and tests
them against the goal – either by trial and error or concep-
tually through understanding the environment and predicting
the effects of the various plans – to determine the best course
of action. This understanding requires mental models of the
task and environment to predict the impact a specific plan
might have on achieving the goal.

Error Classification While these different categories of
human behavior are very useful in human reliability research,
determining the appropriate category for individual tasks in
a workflow is difficult in general. Thus, Reason [24] takes
an error modeling approach toward the use of Rassmussen’s
skill, rule, and knowledge in his Generic Error Modeling
System (GEMS). Rather than assigning a classification to
each task, it is often more efficient to classify the error modes
(which can occur while performing each task) into skill-,
rule-, or knowledge-based errors. In the interest of using
technology to cost-effectively address errors currently exist-
ing within a maintenance workflow, we focus implementa-
tion strategies around these errors explicitly. Figure 1 dis-
plays how this workflow is implemented in GEMS through
the different levels of human performance, as well as pro-
viding some examples of various errors that can occur in the
maintenance management workflow. The GEMS mapping of
skill-, rule-, knowledge-based behavior onto errors enables
an examination of activities within maintenance tasks by fo-
cusing on events when the system is not performing as de-
sired — quite similar to system investigation through Failure
Modes and Effects Analysis (FMEA). This discussion can
help to determine the context-appropriate technologies that
can be inserted into the maintenance workflow in a way that
augments a maintenance practitioner’s ability to successfully
complete a task both efficiently and effectively.

1. Does the practitioner know that something is amiss
while it is happening (has an attentional check oc-
curred)?

No The errors involved will be SB level. Mitigations
for these would help him/her perform the attentional
check (notice the error), or make noticing at this part
of the workflow unnecessary through anticipation.

Yes Problem is being investigated at a RB or KB level

2. Does the practitioner believe they have a way to solve
the (noticed) problem?

Yes Errors will be RB level. The selected “rule” may not
actually be appropriate, and mitigations should pro-
vide more (or better) sources of data and pattern dis-
covery, e.g., sensor outfitting, machine learning mod-
els.

No They are actively searching for a new rule, making the
relevant errors KB level. Context and causally sensi-
tive models would be helpful to teach or suggest new
solutions, like simulation, schedule optimization, or
expert systems.

Using this model, the same failure in an activity may
have distinct causes — understanding at which level the fail-

ure occurs can help to address it. An SB error stems from
the inherent variability of human action with familiar tasks.
Commonly referred to as slips and lapses, they generally oc-
cur without immediate recognition that something is wrong.
It is only after an “attentional check” that one might notice
something has gone awry, and begin applying some known
rule or pattern that addresses this problem.

RB errors typically are the misclassification of situa-
tions, leading to the use of an inappropriate rule or incorrect
recall of procedure. However, once the problem-solver re-
alizes that none of their existing rules apply, he/she begins
modeling the problem space (e.g., by analogy) and search-
ing for context clues that relate the problem to past success-
ful rules. KB errors arise from the incomplete or incorrect
knowledge of the problem-solver and stem from situations
that represent the highest cognitive demand. Reason indi-
cates that this state will quickly revert to SB once a satisfac-
tory solution is found, and that this is a primary cause of sub-
optimal solutions. GEMS postulates humans behave in such
a way as to minimize their cognitive load and that many er-
rors are a result of this tendency. Once an error is recognized,
the person will move to the next higher level of cognition to
resolve the error; once resolved, they will quickly retreat to
lower cognitive effort.

2.2 Error Mitigation Framework for Efficient Technol-
ogy Adoption

This process of discovering a problem and the validity
of the current solution strategies is the same process that will
be applied at a management level when implementing new
technologies into the maintenance workflow. Unless it can
be demonstrated that 1) there might be a problem with the
current situation (SB) and 2) the solutions currently in place
are sub-optimal (RB), practitioners in the existing mainte-
nance workflow will be unlikely to use solutions that attempt
to improve performance through suggestion of new modes
of operation or behavior (KB). Knowing how to frame tech-
nology implementation in terms of these steps is key. Cul-
tural momentum and the power of the status quo is consis-
tently overlooked, and failing to understand or adapt to it is
nearly always the primary cause for technology implemen-
tation failures [26]. While this may sound extreme, in the
context of system maintainers, it makes sense: if trusted per-
sonnel in the human-centric maintenance workflow do not
believe that there is a problem, or do not think their solu-
tion is insufficient, the possible performance of new technol-
ogy will not come to fruition—no matter the expenditure that
went into implementation.

This paper does not exhaustively enumerate all poten-
tial errors, their probabilities, or the factors that affect them.
Starting on that path would require a more sophisticated
Human Reliability Analysis (HRA). 2 We leave this worth-
while task for future work. Instead, we illustrate some com-
mon errors that can occur in the maintenance workflow and

2A combination of human factors task analyses and systems engineering
FMEA. See HRA frameworks in Kirwan, Gertman, and Hollnagel [27, 28,
29]
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how GEMS can be used to highlight common opportunities
and pitfalls when implementing technologies meant to as-
sist the maintenance management process. Sequentially pro-
gressing through SB, RB, then KB errors and deciding the
risk and mitigation possibilities of each through available re-
sources provides valuable guidance, especially when choos-
ing a starting point can be difficult in the face of capital or
personnel costs. Importantly, we

(a) classify example errors that commonly occur during
maintenance tasks, and

(b) discuss how the features of each task tend toward more
or less errors of a given type.

Going through a similar exercise prior to selecting or im-
plementing new hardware or software systems will assist in
matching use-cases, as well as mitigating consequential er-
rors effectively, since different technologies are designed to
address widely different error types.

A tiered error-mitigation strategy, based on patterns ob-
served in literature and industrial application, structures our
discussion of inserting advanced technologies into a main-
tenance workflow. Improvement opportunities are aligned
to the consequences of the problems they address, balanced
with feasibility of implementation in terms of cost, logistics,
and organizational maturity. In this strategy, errors are ad-
dressed based on their cognitive load.

The discussion that follows centers around the differ-
ent errors in the maintenance workflow and the human actor
who commits them. It is important to note that these errors
are committed by a variety of roles, and not necessarily by
just the technician (as is often thought by maintenance man-
agers). The errors presented are often discussed on an indi-
vidual basis (e.g., one technician does not notice an alarm);
however, manufacturers must view these errors at a system-
atic level to understand the true “pain points” in their factory.
A single technician not noticing an alarm is not typically high
risk, but having a majority of technicians systematically miss
alarms is a larger, more important issue to recognize. As
such, while it is tempting to focus on individual actors as
problem sources, better guidance is needed that assists man-
ufacturers in tracking and estimating errors across the entire
factory.

In the following sections, applicable research and tech-
nologies are discussed that apply to the tasks in the mainte-
nance workflow. Examples of errors are described for each
task: 1. Prepare for Maintenance (Section 3), 2. Perform
Maintenance (Section 4), and 3. Determine Maintenance
Needs (Section 5), and errors are mapped to the sub-tasks
in Tables 2, 3, 4. Each table maps sub-tasks (Column 1), to
example errors (Column 2) and their corresponding GEMS
classification (Column 3). The errors and mitigations as pre-
sented are intended to be exemplary of common errors prac-
titioners will encounter in the maintenance workflow.

3 Prepare for Maintenance
Prepare for Maintenance involves a number of actions

to enable execution of maintenance work. The tasks per-

formed by the human actors in maintenance are largely the
same, but are performed in different stages of the mainte-
nance management workflow and are performed by different
people depending on structured versus unstructured work.
For structured maintenance events, the required tasks are pre-
pared by a maintenance planner/scheduler over a period of
days, weeks or months. During unstructured maintenance
events, the jobs and required actions are identified, often by
an operator or technician while in the field, and usually under
time constraints as the component may have already failed.
A number of research efforts center around the prepare for
maintenance task, as discussed in the following subsection.

3.1 Applicable Research & Technologies
Maintenance preparation is a very human-centric oper-

ation relying on tacit knowledge of how similar jobs have
been planned in the past, what has worked well, and what has
not. Various efforts have codified this knowledge using safe
work procedures, bills of materials, and post-work reviews
[10, 9]. As the balance of work to plan moves from correc-
tive to preventive and predictive work, the opportunity for
semi-automation of the maintenance planning process will
increase.

Despite the considerable academic focus on mainte-
nance scheduling under the umbrella of maintenance opti-
mization, the levels of transaction automation and the use
of simulation models in this process are small. Mainte-
nance optimization uses mathematical models to find either
the optimum balance between costs and benefits of main-
tenance or the most appropriate interval or moment to exe-
cute maintenance. An overview of the maintenance model-
ing approaches and examples of their applications are avail-
able in Dekker (1996 and 1998), Marquez, and Jardine
[30, 31, 32, 33]. Both engineers and mathematicians have
contributed to the area. Due to the complexity of these mod-
els they have not been easy to apply to real world manufac-
turing systems in practice [30].

Maintenance simulation models are classified in a num-
ber of ways. First, are they for planning or scheduling? The
vast majority of optimization models in the literature address
scheduling. Secondly, at what level is the maintenance de-
cision being taken: organizational, plant, system, unit, or
component? A consequence of the level consideration is that
decisions at higher levels need to take all lower levels into
account. Many different types of dependencies must be con-
sidered and these can only be accounted for in a simplified
and often inaccurate way [31]. Finally the model needs to
consider time scale. Is the model to support a decision with
impact in the near or long term? Are we thinking about the
next schedule period or something that could have long-term,
but deferred impact, on the life of the asset?

Discrete event simulation is widely used to model main-
tenance systems and the uptake of new optimization meth-
ods, such as genetic algorithms, has been rapid. However, a
review by Alragbhi [34] found only a few real life case stud-
ies were published and the academic cases that dominate the
literature, such as a single machine producing a single prod-
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uct, are oversimplified and do not reflect the complexity and
interactions of real systems.

Scheduling practice differs greatly depending on the
type of system. Scheduling practices in manufacturing dif-
fer depending on whether the operation is a batch process or
continuous process and on the availability of buffers. The
presence of buffers in the system allows for a more flexi-
ble approach for minor maintenance and for opportunistic
maintenance to occur [35, 36, 37, 38]. Examples of work
on maintenance in a manufacturing context mainly have fo-
cused on management of preventative maintenance activities
[39, 40] or maintenance resources [41] to optimize manufac-
turing system performance.

Practical and applicable models are needed that derive a
set of optimized maintenance schedules offering a range of
trade-offs across the objectives from which managers can se-
lect for their immediate needs. The modeling system needs
to be able to adjust schedules on a real-time basis as circum-
stances and/or priorities change. Maintenance optimization
is a complex problem, with multiple possible objectives such
as system reliability, cost, availability and various combina-
tions of these (many plants easily involve over 100,000 peri-
odic activities). The complexity of the optimization has often
precluded the use of decision guidance systems in real-time
under current practices. Emerging technological advances
are enabling better support in these systems, however new
solvers are required to develop and solve the proposed mod-
els. Too often in the past engineers have focused on optimiz-
ing a particular asset or subsystem, where the complexity is
more manageable, rather than considering the entire mainte-
nance management system.

Digital twins are an emergent focus for many in man-
ufacturing and are an integral part of Smart Manufacturing
[42, 43, 44]. A digital twin is a digital model of the as-
set system. It is constructed using digital information of the
physical asset and its environment and can be continuously
updated from sensor data. This should enable better plan-
ning, prediction and simulation of future outcomes.

Despite the widespread use of discrete event simulation
models, commercial and research interest in the potential of
agent-based simulation approaches is increasing, particularly
when organizational and human factors need to be incorpo-
rated [45, 46].

As discussed earlier, it is not simple to incorporate these
technologies seamlessly into the maintenance management
workflow. By decomposing the perform maintenance task
into sub-tasks, we can better analyze the types of errors that
occur and the potential mitigations. These sub-tasks include:
1) Identification – considering steps necessary in the main-
tenance execution process, 2) Planning – determining the re-
quired resources to perform the jobs, and 3) Scheduling –
determining the schedule, when the job will be performed,
and in what sequence with other jobs. The typical errors for
this stage are described in Table 2.

3.2 Identification Task Errors
The identification of work occurs through the structured

processes and also during reactive work as described in Sec-
tion 2. In the latter case the maintainer must identify the
work to be done when he/she gets to the failed asset. Simi-
lar human processes are involved in both examples of ‘iden-
tification’. Some examples of errors that occur during the
identification task are below.

SB A Condition Based Maintenance (CBM) technician
fails to notice the vibration sensor is not adhered prop-
erly so the data collected is wrong. (Assess Sub-task)

RB A CBM technician identifies a high peak in vibration
when collecting data on Pump 1 but the source is actu-
ally the adjacent pump. (Assess Sub-task)

KB CBM monitoring technician generates a work order
that machine X1’s “lead-screw’s vibration is high”.
This failure mode has not previously been seen and
there are no visible symptoms. The proposed work is
subsequently overridden by planner who believes the
analysis is inaccurate. (Assess Sub-task)

Traditionally the approach to dealing with SB errors on
the plant floor is through increased surveillance with the use
of sensors, process control and alarms. These techniques
give more than one person the opportunity to identify the
fault. Another common approach has been the development
of checklists. However, these checklists can promote mind-
less completion of forms – even if the form is incorrect or
incomplete – for the sake of just completing the form be-
cause they are told to complete it, instead of mindfully com-
pleting the forms to properly and accurately document the
activity. A proliferation of unqualified checklists can also
create issues and, where they are useful, should be replaced
by centrally developed and version controlled maintenance
procedures. Currently, few technical solutions address when
the planner is dealing with paperwork when many distrac-
tions and other calls on his/her time exist. Improved supervi-
sion, workload management and team support are often key
to improving concentration and mindful execution of routine
work [47, 48].

RB and KB errors (See Table 2) in identification of work
often result from different mental models of the failure or its
consequence between parties involved. As in the illustra-
tion above, the technician assumes the vibration data is from
Pump 1, according to his/her previous experiences, and so
assumes the data is correct even though it is incorrect.

These errors can be mitigated through investment in dig-
itization of the prioritization and approval processes for the
planner or through improved training (for the maintainers).
Ensuring that the initial SB errors are mitigated first where
possible, enables the higher-level RB and KB errors to be
addressed through these more advanced approaches.

3.3 Planning Task Errors
Planning involves estimation of necessary resources,

time, cost for each job based on historical organizational
data, rules and practices and the experience of the human
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Table 2. Prepare for Maintenance Tasks: Errors and Mitigations

Sub-task Example-Error Description Error Type

Identification Tasks

React Failure not noticed SB
Failure ignored RB

Anticipate Incorrect interval for replacement RB
Assess Incorrect condition for replacement RB

Operator misses condition SB
Misunderstand condition calculation KB

Planning Tasks

Estimate Error in calculation SB
Match task to wrong SWP RB
Estimate from wrong sources of data or experience RB

Procure Misevaluate available resources (when to purchase parts/use in-
house)

RB

Mismatch contractors or pick the wrong parts RB
Prepare/Document Miss/overlook a necessary document SB

Include or require wrong documents RB
Proposed procedure is non-optimal KB
Ignore previous feedback from execution team KB

Scheduling Tasks

Prioritize Poorly track resource availability SB
Misevaluate interrelationships between different maintenance tasks KB

Assign Poor match of skills of technicians to the job RB
Lack of communication between executing team and scheduler KB

planner. Parts must be procured and maintainers and tools
selected, and documents are prepared to assist in execution.
The tasks within Planning are similar for both structured and
unstructured work. However, for structured work the tasks
are performed on a longer time scale and by a dedicated
planner. This contrasts with the shorter time scale (often
right when a failure occurs) associated with the unstructured
work done by an operator or technician. A summary of com-
mon errors and their classifications are located in Table 2 and
some examples are discussed below.

SB When planning a rebuild on Machine X the mainte-
nance planner miscalculates the time estimate for job
1. (Estimate Sub-task)

RB The planner orders all the same parts as used in the last
Machine X rebuild rather than considering the work
specifically identified for this rebuild. (Estimate Sub-
task)

RB The new maintenance planner contracts Company A for
Machine X rebuild, because of a past relationship, but
Company B should also have been considered. (Pro-
cure Sub-task)

KB The planner miscalculates the downtime required for
Machine X rebuild by failing to take account of re-
source constraints. (Prepare/Document Sub-task)

SB errors during this task, such as forgetting a neces-
sary document or making a slip during an estimate calcula-
tion can be aided by centrally managed and controlled proce-
dures that are easy to use. Many of the errors during this task
are RB errors that involve matching an aspect of the work or-
der to some necessary document or resource. These type of
errors could be well suited for machine learning solutions be-
cause these algorithms can learn the important features of the
maintenance task and match to the correct previous solutions
to provide estimates of resources, time, cost, etc.; however,
these solutions can be difficult to implement because of the
way in which data about the tasks is stored (natural language)
and because of the variety of different contexts in which the
same task can be executed. If these SB errors are dominant,
investment in the search-based solutions enabling planners
to locate information on previous similar tasks can assist.
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3.4 Scheduling Task Errors
Once the tasks are planned, they must be scheduled for a

specific time. For structured work, this task is completed by
a scheduler. However, it can be done in the field by a tech-
nician or operator when a failure occurs and an unstructured
job is initiated. Coordinating the scheduling of many ma-
chines, people, parts, contractors and production equipment
requires consideration of many permutations for optimal so-
lutions. This complexity can potentially lead to a number
of higher level errors such as those seen in Table 2 and dis-
cussed below:

SB Maintenance scheduler forgets that Team A has a safety
Day and schedules work when they are not available.
(Prioritize Sub-task)

RB Technician 1 is chosen for an A-type job, as always;
Technician 2 has recently been A-certified, and is not
being assigned A-type jobs. (Assign Sub-task)

KB The scheduler reuses an old schedule for rebuild of Ma-
chine A even though analysis the last time this rebuild
was done resulted in a 50% time overrun. (Assign Sub-
task)

Given the complex nature of scheduling, a high inci-
dent of KB errors are likely to occur. These types of KB
errors can benefit from investment in project planning soft-
ware and scheduling and optimization models. SB errors,
such as when a scheduler has a lapse determining availability
of a technician or asset, can be mitigated through scripts to
assist in availability calculations from calendars. RB errors
that occur in matching a work order to an appropriate tech-
nician can benefit from the analysis and modeling solutions
discussed in Section 3.3 on Planning tasks. Scheduling is one
of the more difficult tasks to provide easy-to-implement solu-
tions; however, it can benefit from planning tools that enable
a variety of schedules to be tested and various constraints to
be incorporated.

4 Perform Maintenance
The Perform Maintenance stage consists of executing

the maintenance actions, and recording the necessary in-
formation about the job. The majority of tasks are similar
whether the work is structured or unstructured. The research
efforts in this space are described in the following subsec-
tion.

4.1 Applicable Research & Technologies
The perform maintenance task includes the maintainer

documenting the as-found and as-left conditions of the
equipment as well as the work that was done. The steps in
executing maintenance work have changed very little in the
last 40 years. Many of the same tools and processes are used.
There have been advances in support tools, for example laser
alignment to replace dial indicators, auto-lubers, and greater
use of digital interfaces to support troubleshooting for elec-
trical/electronic equipment but the nature of the way work

is executed today would be familiar to many retired techni-
cians.

Each time a maintainer or technician interacts with
equipment, he or she expands their own expertise of the as-
set and captures a textual description of observations of the
asset and records what was done, when, and how. The lack
of correct and complete data in work order records to sup-
port analysis is widely acknowledged. Recent work to bet-
ter understand factors that affect data quality of maintenance
work orders include [49, 48]. Work orders typically contain
unstructured text with jargon, abbreviations, and incomplete
data. Primary interests for analysis are information to estab-
lish the as-found condition, the causality of failure including
the failure mechanism, and a description of the maintenance
work executed and parts used. This data is often in the work
order texts, but it is not extracted in a machine-readable way.
As a result maintenance staff rely heavily on personal exper-
tise, word-of-mouth, and ad-hoc data exchange, consulting
the records when these other methods fail.

Research from several different academic perspectives
has been conducted on the execution of maintenance work;
however, these types of studies have seldom translated into
meaningful change on the maintenance shop floor. Human
factors specialists have looked at how maintainers interact
with assets [50]. The impact of human error on maintenance
outcomes has been of significant interest [51] and spurred at-
tention from other organizational psychologists in exploring
how culture affects motivation and the execution of quality
work and consistency in following procedures [52, 47]. Con-
siderable interest exists now in the potential for mobile tech-
nologies such as assisted reality and GPS tracking to better
understand and support maintainers in the field both in the
execution of their work and in how data about the work is
collected [53]. The latter is of vital interest to engineers as
a maintainer’s observations on the as-found condition of an
asset can be vital input to validating condition-based work
orders.

The explosion of current technology dealing with multi-
modal data sources is particularly relevant to maintenance
management. The information about asset condition, failure
cause, and maintenance work extends beyond what is cap-
tured using language in written work order records. While
work orders are central to maintenance processes, maintain-
ers communicate with each other and others using a wide
variety of media, including photos, videos, emails, text mes-
sages and phones, in addition to other resources such as sen-
sor data. Support systems are emerging to provide access to
critical information about maintenance issues from disparate
sources. Given the emergence of alternate ways of collecting
data from maintainers with mobile devices containing cam-
eras and audio to sensor data from machines, methods to ef-
ficiently process and synthesize these different modes of data
capture to provide asset health status assessment are needed.
Assisted and augmented reality (AR) head-set systems are
emerging into the market that provide maintainers with ac-
cess to audio and visual support in the field and the ability to
look at drawings and other relevant information in a head set
visor [54, 55, 56].

12
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
Approved for public release; distribution is unlimited.



Technical developments are needed to enable maintain-
ers to efficiently capture, retrieve, absorb, process and ex-
change knowledge about equipment and maintenance work.
One of the most exciting recent developments is in natural
language processing to enable work order texts to be read
and analyzed more efficiently by computers. Examples of
recent work in this area include [57, 58, 59, 60]. This work
is complemented by developments in semantic knowledge
representation technologies to capture data and contextual
relationships between data. This will support the develop-
ment of inference engines capable of performing basic rea-
soning over maintenance operations enabling better decision
support and improved quality control.

Another notable development is the emergence of on-
tologies for maintenance that are aimed at addressing differ-
ent needs such as data integration, semantic interoperabil-
ity, and decision support in maintenance. For example, sev-
eral ontological approaches have been proposed to overcome
the problems of heterogeneity and inconsistency in mainte-
nance records through semantic data annotation and integra-
tion [61, 62]. When formal ontologies are used for anno-
tating vast bodies of data, this data can be more easily re-
trieved, integrated and summarized. Also, the annotated data
can easily be exploited for purposes of semantic reasoning.
In a recent initiative, referred to as the Industrial Ontologies
Foundry (IOF), an international network of ontology devel-
opers are working towards developing a set of modular, pub-
lic, and reusable ontologies in multiple industrial domains
[63, 64]. Their work includes a reference ontology for main-
tenance.

To discuss how the technologies within this stage can
be implemented in the maintenance workflow, the perform
maintenance task is decomposed into the following sub-
tasks: 1) Assessing and Diagnosing, 2) Executing the Main-
tenance Action, and 3) Completing and Recording the Ac-
tion. The set of typical errors for this stage is in Table 3.

4.2 Assessment and Diagnostic Task Errors
The Assessment and Diagnostic Tasks depend on the

type of work required, such as assessing the equipment con-
dition to see if condition of the asset is as expected from
the work order and if the task described in the work order
is appropriate. These tasks rely heavily on the tacit knowl-
edge of the maintainer, whether heuristics or rules-of-thumb,
that can be applied in uncertain or developing circumstances.
One way to think of this is if an assessment does not match
the assigned work, similar diagnostic and assessment tasks
are required as in the reactive identification tasks, discussed
above. This means that many of the SB and RB errors men-
tioned previously (specifically for unstructured work) apply
to this task as well.

In supporting these tasks maintenance technicians may
face specific challenges. If they are in the field (this may
be remote from the maintenance shop such as on the fac-
tory floor), they can be isolated from reference material or
knowledge bases and their team and supervisors. In addi-

tion ergonomic constraints often exist — e.g., using a touch-
screen is difficult with gloves, which can make access to dig-
ital support tools challenging. In addition, digital support
tools need to be rugged to survive dust, water and unsecured
work places that can be present in maintenance situations.
This isolation from easy-to-access reference material differ-
entiates this step as having a high concentration of possible
KB errors, for example:

SB There is a noise in a pump-motor unit, the technician
notices the noise as assesses it as a potential failure
but gets side-tracked and fails to report it. (Assess Sub-
task)

RB The engineer investigates the noise in the pump-motor
unit in the field but decides it is ’normal’ when it is not.
(Assess Sub-task)

KB The vibration analyst diagnoses the pump has a bear-
ing failure due to lack of lubrication but the cause was
a seal failure. (Diagnose Sub-task)

The sources for error during Assessment and Diagnostic
tasks that have significant impact are less often slips or lapses
in memory (SB errors), but rather stem from the complexity
in diagnosis of the cause of machine failures or sub-optimal
performance. Machines of the same make and model can
be at different life stages, have experienced different oper-
ating profiles and maintenance events. This means that all
machines are subtly different and hence diagnostic rules that
should work on one machine, do not always work on another.
This situation results in RB and KB errors during execution.
The need to address unfamiliar situations in the field, often
in a remote location and without immediate access to knowl-
edge bases, compounds the need for more sophisticated ap-
proaches toward technological enhancement of agents exe-
cuting maintenance. Rapid advances have been made in as-
sisted reality glasses and headsets for diagnosis. These tools
need to be supported by trained people and new business pro-
cesses.

4.3 Maintenance Execution Task Errors
The Execute Maintenance task occurs when the main-

tenance action is explicitly performed. Work can be a rou-
tine job (performed regularly) or non-routine, involving new
steps that may not be familiar. The Execute task is also
highly human-dependent. Routine work includes many SB
errors, while non-routine work involves more RB and KB
errors, as described below.

SB Technician 1 forgets to loosen the motor when in-
stalling new v-belts. (Perform Sub-task)

RB Technician knowingly replaces only one of the v-belts
rather than the whole set as he/she had done this
last time and there has been no adverse repercussions.
(Triage Sub-task)

KB The technician knows that an adjustment in alignment
needs to be made for thermal growth but cannot remem-
ber the rules and formula. (Triage Sub-task)
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Table 3. Perform Maintenance Tasks: Errors and Mitigations

Sub-task Example-Error Description Error Type

Assessment and Diagnostic Tasks

Assess Overlook symptoms that indicate poor equipment health SB
Incorrect condition features used in assessment RB

Compare Incorrectly assume validity of assigned work RB
Diagnose Unfamiliar symptoms lead to incorrect fault diagnosis KB

Incorrect diagnostic conclusion due to lack of experience KB

Execute Maintenance Action Tasks

Perform Forget necessary tools needed to complete job SB
Lapse in execution quality due to focus constraints SB

Triage Mistake nature of work for similar type having distinct solutions RB
Attempt execution without requisite experience, tools or supervision KB

Completion and Recording Tasks

Recall Technician does not remember significant symptoms SB
Recalled features are not relevant to analysis RB

Record Work performed is entered incorrectly, or schema structure is incom-
plete

RB

Technician gives up searching prior to finding appropriate problem-
code

RB

Technician misunderstands or is unaware use-case and functionality
of the data structure (e.g. controlled-vocabulary)

KB

The errors out of Execute Maintenance are dependent on
the type of work. Issues like forgetting a set of tools before
reaching a job location, or accidentally forgetting to loosen
the motor while in a hurry, are not necessarily able to be mit-
igated through direct automation. Rather, these tend to ease
over time on an individual level with experience on the shop-
floor and better planning. Obvious aides like digital assis-
tants may be additions to speed up this process, however, au-
tomation systems are not capable of replacing a human at the
skills-level in this manual, tacit, dexterity-intensive task. RB
and KB errors in this task stem from lack of appropriate ex-
perience of the technician. One approach to mitigating these
inexperience errors, especially where effective rules do exist
in the expertise of senior staff, is a buddy system [65]. Such
a system is increasingly being digitally augmented through
the use of assisted reality as described in Section 4.2 or re-
mote support systems which allows a technician to bring in
an expert virtually.

For the KB errors, training is always useful, though it is
impossible to train for every occurrence. Knowledge-bases
tend to be of limited use here, since ergonomic constraints
(like gloves, ambient/background noise, etc) make interfac-
ing with traditional digital systems — or even documenta-
tion — rather difficult. However, recent developments in
assisted- and augmented- reality displays (AR/VR) can by-

pass this ergonomic problem, especially in preparation for
jobs on difficult or seldom accessed equipment. It is im-
portant to remember that these displays do not provide such
functionality out-of-the-box, and several supporting tech-
nologies, like interconnected data storage and digital twin
reference models, will need to be successfully adopted prior
to reaping benefits from the continually decreasing cost of
this exciting technology.

4.4 Completion and Recording Task Errors
When addressing the state of data recording in mainte-

nance, regardless of sensor-outfitting or other types of data-
streams, one goal of recording maintenance information is
to capture the activities of a person executing maintenance
— their ability to diagnose and solve problems. Recording
this information requires the technician to recall features as-
sociated with the work order that distinguish it from other
work orders. Once these features have been recalled, they
must be recorded by translating into a format acceptable for
predefined data structure required by the CMMS.

Recalling features poorly is typically a sign of unstruc-
tured work. Slips and lapses are more likely to occur in this
recall phase, e.g.:

SB Emergency MWO’s 18 and 19 were executed yester-
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day, but work pressures meant the information was not
recorded until today. Cannot recall which of MWO 18
or 19 was the seal replacement on Machine A3 (Recall
Sub-task)

Structured work tends to reduce the likelihood of this
type of failure mode: pre-documented assignments that have
been planned and scheduled a priori will have associated
documentation that assists or automates a significant amount
of feature recall, leaving only the most relevant human ac-
tions to be input by hand. However, simply using a work
order generated by a CMMS does not by any means guaran-
tee high quality data. Translating data into a CMMS will ne-
cessitate higher-level cognitive engagement, and associated
errors quickly transcend the skill-based level:

RB Technicians have been asked to classify failures with
specific names and codes to help with analysis but Tech-
nician A continues to use the names he/ she has used in
the past instead. (Record Sub-task)

KB There are 5 fault codes and the technician struggles to
find one that actually describes the fault, so selects the
“miscellaneous” code but provides no further informa-
tion. (Record Sub-task)

Addressing these types of errors is more difficult. Solutions
to the SB errors (e.g., standard MWO structure, pre-filled
MWO forms, designated time-slots for data entry after every
work order, etc.) could provide significant return on invest-
ment to improve data quality, and should be in place prior
to addressing the higher-level RB and KB problems. Rec-
ommendation systems and user-interface design can be help-
ful in improving potential value of the recorded data. Sta-
tistical summaries of common themes in existing “miscella-
neous” work order records, through the use of Natural Lan-
guage Processing, is potentially useful, though care to in-
clude expert judgments must be taken when processing tech-
nical, domain-specific, short-hand-filled language [58, 60].

Recommendation systems could be applied during the
completion stage to augment a technician’s ability to rapidly
sort his/her knowledge into the required format. [66] If suf-
ficient effort has been made to create and maintain digital
references for an entire line, real-time suggestions for record-
ing related symptoms or components could provide a boost
to both data-quality and the speed of experience-gain for the
maintenance team. Given sufficient investment, these tools
could provide additional input and context that assists tech-
nicians in creating the rules and knowledge they need —
combating the errors induced from often-dense, difficult-to-
navigate user interfaces for selecting from a complex web of
controlled vocabularies that so often occur in this space.

5 Discover Maintenance Needs
Discover Maintenance Needs tasks involve the use of

software tools to create value from existing data, and inform
the future workings of other tasks. These tasks are indepen-
dent of structured versus unstructured work, but the tasks

performed inform future structured work. Technology and
research in this stage are described in the next subsection.

5.1 Applicable Research & Technologies
Discovering maintenance needs should be the product of

a maintenance strategy informed by on-going analysis of as-
set condition, performance, and failures. Maintenance strat-
egy is informed by an understanding of the function of the
component, its failure behavior, and the consequence of loss
of function as determined by a FMEA [67]. A Risk Pri-
ority Number is produced based on the likelihood, conse-
quence, and detectability of each functional failure. Mainte-
nance strategies are developed for the most critical functional
failures using a Reliability-Centered Maintenance (RCM) or
similar process [68, 69] and described in a variety of stan-
dards [1, 70]. Common names for these strategies are de-
sign out (or improvement), predictive and condition-based,
preventive, failure finding, and run-to-failure. Condition-
based strategies produce tasks to collect and analyze the per-
formance or condition data (but not to do the work arising
from the analysis). Run to failure strategies, employed when
there is low consequence of failure and the cost necessary
to prevent it exceeds the cost of the failure, result in cor-
rective maintenance work. For RCM, the interested reader
is referred to Rausand [68] and examples from infrastruc-
ture applications, such as electric power distribution sys-
tems [71, 72], maritime operations [73], and wind turbines
[74]. Although RCM is widely used in defense, automobile,
aerospace, and electronics for product design, there appears
to be limited, well-cited literature, such as Tu and Jonsson
[75, 76], on the use of RCM for the equipment used in man-
ufacturing processes. A potential roadblock to the imple-
mentation of novel sensing and analytics opportunities is a
manufacturing plant’s lack of a well-framed and functioning
maintenance strategy process.

The subject of analysis in maintenance work is vast
and encompasses topics such as reliability analysis, health
condition diagnostics and prognostics, predictive mainte-
nance models, strategy selection models, maintenance per-
formance, and spare parts modeling. Despite the growing
number of papers published on these topics each year, the
uptake of the various models by industry is low [77]. Much
work, particularly in prognostics has been theoretical and
restricted to a small number of models and failure modes.
There are few published examples for manufacturing sys-
tems and, more generally, on systems exposed to a normal
range of operating and business conditions [78]. Published
models rarely examine their practical and theoretical limi-
tations in sufficient detail to understand when and where the
model should and should not be applied. Other issues include
how to assess model performance and uncertainty quantifica-
tion [79].

Although asset manufacturers and operators have used
sensors and manual data collection for decades to collect
health data on assets, developments towards IoT offer a
new opportunity where data is transmitted from assets to the
Cloud [80]. In this architecture, data for health estimation
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(e.g., condition monitoring, environmental condition data,
previous maintenance work, and operating data) is more
readily available for health monitoring and prognostic as-
sessment to assist in identifying maintenance work. The cost
and ease of sensor deployment also creates opportunity for
more relevant data collection. This sharing of information
across assets and platforms should enable the development
of a system view and the flexibility to assess and manage
existing and emerging risks [80].

The potential for these developments to impact manu-
facturing maintenance is widely evident. Asset-owning com-
panies are implementing software platforms to better under-
stand their maintenance needs especially for predictive main-
tenance applications. The market for software platforms
to integrate data from multiple sources and support the use
of this data in analytics and access to the results through
web applications is dramatically growing. Examples include,
but are not limited to, Dassault Systems 3DExperience [81],
General Electrics Predix [82], PTC ThingWorx [83], Induc-
tive Automation Ignition [84], and Siemens Mindsphere plat-
forms [85]. Beyond the commercial market, free, and acces-
sible open-source statistical and machine learning algorithm
packages, online training, software platforms and visualiza-
tion applications are making these capabilities accessible to
manufacturers on a lower budget.

While these technologies expand the potential for bet-
ter maintenance practices, they are not without complication.
The growth in research in the application of the technologies
is enormous but the path to wide-spread application has not
yet been paved. Challenges exist with both identifying the
opportunities for better prediction and with creating the in-
frastructure needed to get the right data at the right time.

There is no shortage of predictive maintenance models
proposed in the scholarly literature with over 25,000 ‘predic-
tive maintenance’ papers listed in Google Scholar in 2018
alone. As a result of the growing choice of available diag-
nostic and prognostic models, a number of papers have been
written to provide guidance on model selection, for example
in Leep, Lee, Sikorska [86, 87, 78].

Machine learning technology is proving useful in this
context. Machine learning models train on large amounts
of data to provide output predictions given new input from
many large historical datasets (e.g., Neural Networks, Sup-
port Vector Machines, Bayesian Networks). Provided rele-
vant and sufficiently-sized datasets, these data-driven mod-
els can be good at detecting and predicting poorly under-
stood or poorly modeled system behavior without a strong
dependency on the relevant physics or other dynamics. How-
ever, the nature of failure datasets creates particular chal-
lenges. Failures, particularly of critical equipment, are rare.
Most equipment is replaced in whole or in part before the
end of life. As a result, failure datasets are unbalanced and
sparse. In addition, for reliable analytics the datasets need
to be assigned meaning, or labeled, which can be an oner-
ous task. Without this labeling, the ground truth for valida-
tion often does not exist. Furthermore, condition monitoring
data, when available, is often collected on assets using dif-
ferent methods at different time intervals which complicates

the analysis process. Poor quality data results in greater com-
plexity of the analytic models that at best muddies inference
and at worst misleads inference and produces persistent pre-
diction bias. These contextual issues, if not dealt with rigor-
ously in model selection and validation practice, lead to poor
performance and a loss of trust by decision makers.

Another challenge in deploying analytics is that each
data-driven model is developed for a specific application, re-
sulting in the need for a plethora of models depending on
the scale and complexity of the manufacturing system. At a
minimum a prognostic or diagnostic model needs model se-
lection justification, validation, application limitations, and
uncertainty quantification [77]. Developing a model for each
dominant failure mode involves significant time and cost,
which is increased by maintenance and validation of the
model as the asset ages or operating conditions change. Con-
siderable opportunities exist to develop new processes, plat-
forms, and standards –an ecosystem– to support these mod-
els enabling them to be more widely adopted.

To aid in technology insertion, the determine mainte-
nance needs task is broken into sub-tasks: 1) Data Extrac-
tion, Transformation, Loading (ETL) for organizing data and
2) Modeling and Analysis. The tasks are mainly performed
by engineers and data scientists, requiring system architec-
ture knowledge, expert elicitation, and mathematical or phys-
ical modeling assumptions. The common errors for this stage
are described in Table 4.

5.2 Data Extraction, Transformation, and Loading
Task Errors

Data does not exist in a vacuum, and cannot provide
value without intermediary steps. Collecting, storing, pro-
cessing, and serving data to analysis tools are all core parts
of data engineering and are relevant to MWO data. The tasks
required of data analysts are typically organized as ETL. Ex-
traction refers to getting data from relevant data sources, such
as machines on the shop floor. Transformation is the act of
preparing the data, such as cleaning, data type selection, or
feature engineering. Loading is the process of sending the
data to the another system for modeling and analysis. Be-
cause the goal of a properly implemented ETL system is the
automation of data transfer and organization, sources for KB
errors are typically few, occurring around misuse of software
or functionality. Rather, key errors possible in these tasks are
largely SB and RB:

SB Data tables do not record units for the sensor readings.
(Transform Sub-task)

SB Data engineer merges two tables using the wrong join
process. (Transform Sub-task)

RB The data analyst uses an Excel spreadsheet from a col-
league without checking if cells are updating properly.
(Load Sub-task)

KB Reliability engineer when loading data puts zeros into
empty NA cells which skews all the subsequent analysis.
(Load Sub-task)
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Table 4. Discover Maintenance Needs Tasks: Errors and Mitigations

Sub-task Example-Error Description Error Type

Data Extraction, Transformation, and Loading (ETL) Tasks

Extract Inappropriate data quantity or type SB
Not planning for volume SB
Collect wrong data for desired analysis RB

Transform Dimensions/units/feature compatibilty error SB
Discard potentially useful data RB

Load Choosing wrong hardware RB
Misunderstanding software tools KB

Modeling and Analytics Tasks

Detect Trends Not noticing trends SB
Detecting false trends (overfitting) SB
Insufficient communication of trends SB

Define Patterns Inappropriate model or modeling assumptions RB
Misinterpret correlation as causation RB

Identify Causality Unknown relationships driving unknown failure modes KB
Lack framework for synthesizing model output into actionable
strategies

KB

Lapses in design specification, like forgetting to use
proper and consistent units throughout a pipeline, are often
found when communication between ETL architects and the
end-users (such as engineers and data analysts) is weak. Us-
ing standard formats for things like time-stamps (e.g., ISO
8601 [88]) is a common way to build interoperable data
stores, but care must be taken to account for both present
and future data storage needs of the enterprise when decid-
ing to adopt formats or processes. One way to account for
these data storage and transformation needs can be the use
of standard data exchange protocols [89] and manufactur-
ing information standards [90]. Protocols should be designed
through strong relationships between management, planners,
and data architects, along with the providers of any digi-
tal tools being used. Because experimentation with digital
pipelines can be low-risk in the early stages (i.e. does not
immediately impact production), it may be worthwhile to
allow acceptable errors during technology adoption phases
while exploring possible ETL architectures. This ensures
that the final implemented design will correctly fit organi-
zational needs, while exploiting the most recent techniques
in ETL’s rapidly shifting landscape.

Because planning for future storage and processing need
is so critical, cloud computing through services like Ama-
zon Web Services (AWS) [91] or Microsoft’s Azure platform
[92] present opportunities for flexible expansion of capabil-
ities, that can scale with the needs of a system as it grows.
Likewise, understanding exactly what functionality does and
does not exist in adopted or purchased software stacks is key
to planning ahead. If an engineer creates custom software to
facilitate specific needs of an organization, good documen-

tation practices are necessary for future understanding of the
software. However, the engineer may never create this doc-
umentation due to time constraints, thus leading to the in-
nate knowledge of that software retiring when they leave the
company. By encouraging knowledge transfer (e.g., to recent
hires) and guideline creation, risk of relying on customized
software and code for critical tasks can be reduced.

5.3 Modeling and Analytics Task Errors
Once data is loaded for analysis, it is analyzed through

use of statistical summaries, model training, and data visu-
alization. While there is no universal procedure for data an-
alytics, there are practices to follow when modeling and an-
alyzing data: 1) detection of trends in data, 2) defining of
patterns between data types, and 3) identification of causal
relationships and application potential. These practices map
well with the GEMS, since the goals of each stage are sim-
ilar to the goals of a problem solver — noticing a problem,
noticing patterns that fix the problem, then understanding the
mechanisms that cause the problem.

SB Bearing sensor data from the past 5 months can be ac-
cessed via disparate spreadsheets, which indicate nom-
inal system health over time, despite a 2-week period of
increasing vibration (Detect Trends Sub-task)

RB Analyst estimates tool wear overhead with a physics-
based model that calculates a mean time to failure met-
ric for a part; this model is not calibrated for one of the
required depth-of-cut + diameter combinations (Define
Patterns Sub-task)

KB A neural network trained with infrared maps of steel
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heat predicts a quality drop is imminent. The analyst
is unable to determine a probable cause of the failure
mode from the model, despite previously good model
accuracy. (Identify Causality Sub-task)

The first example is an oversight and can be addressed
by making the data easier to see and accessible to more peo-
ple. Numerous no cost, open source tools exist to perform
initial statistical summary of data for reporting the key indi-
cators of a need for work, and to visualize the data in ways
that make trend detection at multiple time- and length-scales
much more obvious. Starting to standardize or automate data
pipelines that explicitly result in basic plots for machine per-
formance summaries can be beneficial in building trust in
an automated system [93, 94]. Addressing these errors is
intertwined with proper ETL solutions, as discussed above:
having a controlled data repository that structures and cross-
links information makes designing and deploying such vi-
sualizations much easier. When well designed ETL is com-
bined with dashboards (typically centralized displays of real-
time streaming information), these types of well designed
visualizations can take steps into mitigating RB and KB er-
rors, by gathering disparate data sources into a single, easy-
to-reference location which is accessible to multiple people.
This makes the error of missed trends much less likely, and
informs the creation of new rules for standard work.

A second major mitigation strategy, especially for the
RB analysis errors, is the use of data-driven or hybrid data
+ physics models, for the detection and exploitation of pat-
terns in observed equipment or system behavior for predict-
ing health or performance. These are typically considered as
part of Prognostics and Health Monitoring (PHM), a rapidly
advancing sub-field of reliability engineering as described
in Section 3.1. A key trade-off for using such models is
that while high-accuracy predictions can be made when high
quality and high quantity data is available, the models are not
always interpretable, can be over-fitted, and may not be in-
dicating causal (but rather coincidental) links between inputs
and outputs. It is obviously better to be alerted to a pre-
diction of failure than not, but if actionable strategies based
on causal relationships are required, significantly more effort
may be needed. False positive alarms reduce trust in the ana-
lysts and their predictions [95, 96]. Some forms of semantic
and causal reasoning is possible, perhaps through design of
custom ontologies or high-fidelity physics simulations, but
implementing these tailor-made solutions presents a barrier,
in infrastructure, labor, and research costs. Fortunately, ex-
pert knowledge can sometimes be applied to identify causa-
tion.

Based on this, investment only in the analysis stage
starts out with high potential returns, but reaches a horizon as
the needed technology to infer context and causality reaches
the edge of the state-of-the-art. Readily-available technolo-
gies can assist analysts in addressing SB and RB errors is an
efficient way to encourage them to use their own domain ex-
pertise in determining causality and potential strategies. This
lays the groundwork to enable higher impact improvements
in KB-intensive tasks, like execution and scheduling.

6 Discussion
Sections 3-5 provide a high level task and error analysis

of the maintenance management workflow. Some common
errors are classified according to Reason’s GEMS framework
(skill-, rule-, and knowledge-based errors). Careful consid-
eration is made to distinguish between structured versus un-
structured job tasks and errors. While the tasks and errors
had much overlap, often they were performed by different
roles within the organization and at different time scales.
The errors are largely the same, but they occur more often
with unstructured work. Unstructured jobs require decisions
made in near real time by roles in the organization that are
not meant to be making these decisions (e.g., a maintainer
estimating severity of a failure on the fly) and in high stress
situations (e.g., during a machine failure that can lead to pro-
duction impacts). Shifting towards a more structured main-
tenance paradigm is important for an organization’s success
with new technology insertion. The steps provided in this pa-
per are a beginning in this direction, however, as discussed,
technological solutions are not the only mitigation strategy;
cultural shifts are necessary as well [97].

Mitigation strategies are discussed for commonly occur-
ring errors, independent of structured or unstructured jobs.
These mitigation strategies range from necessary cultural
changes to advanced AI solutions, however, these errors and
mitigations do not represent every possible situation at dif-
ferent manufacturing facilities. How does a manufacturer re-
peat this same process and how should they implement their
own technological solutions?

If one approaches modernizing a factory with new dig-
ital technological solutions as a problem solving situation,
in a similar process to GEMS and the above discussion, the
first step begins when stakeholders in the organization begin
to perform an attentional check [25]. This step must happen
before any problem can be solved because, by definition, this
check identifies SB errors that are occurring without con-
scious recognition that something is wrong by the human ac-
tor.

For example, an operator not noticing an alarm that indi-
cates failure is a potential SB error identified in Table 2. One
solution to this problem, could be to install a sensor visual-
ization dashboard to display the performance of the system
for many to view. This solution could potentially solve the
problem, but requires new sensors, logic for failure identifi-
cation, visualization packages, etc. Does this solution always
mitigate the error of not noticing a failure? By capturing new
data and creating a new visualization solution, will the visu-
alization clearly indicate failure so that the error does not oc-
cur? If the operator can miss an alarm, he/she can very easily
not notice an icon in a visualization dashboard. It might not
come to light that this solution is poor until a high investment
in both time and cost is sunk into the project. A low technol-
ogy solution might be a better answer to initially solve this
error. For example, implementing a prototype visualization
using existing data sources to ensure the operator can adapt
to the new technology, or instilling a cultural enabler that
could include a buddy system, so the operator can learn from
more experienced colleagues could alleviate this error.
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One of the most common causes for technology imple-
mentation failures, such as new CMMS, is an inability to
make the necessary cultural changes [26]. Too often pro-
ponents of new software systems believe that the software
implementation is the change, rather than putting effort in
appropriate organizational change management processes to
support the installation. For example, if operators and tech-
nicians are making many SB errors, such as not remembering
significant symptoms from a maintenance job, a CMMS sys-
tem will not immediately solve this problem. These types
of errors often occur because the technician has no incentive
to enter correct, long-form data about the maintenance job.
In fact, the poor organizational culture encourages bad data
entry, as these technicians are judged on how well and how
quickly they solve the problem, not on the quality of the data
[49]. If a CMMS system was installed, without addressing
the SB errors, the technicians would still follow bad data en-
try practices, albeit on a much more expensive system. How-
ever, by discovering and attempting to mitigate SB errors,
we enable a more efficient investigation into more emerg-
ing, sophisticated technologies that hold greater promise to
automate systems and more directly assist human decision
making.

As SB errors are mitigated, a trust for new technolo-
gies builds. By alleviating the SB errors, the differences be-
tween the RB and KB errors will also emerge. It is typically
the most knowledge intensive tasks for which humans are
required, making these errors some of the most difficult to
completely mitigate with new technologies. The next step
after discovering and mitigating SB errors is investigating
the emerging technologies for RB errors.

RB errors, by their nature, involve patterns and rules
that are misapplied or an inappropriate rule. The avenues
to identify the occurrence of rule-based errors include the
use of digital pattern recognition and recall processes. For
example, routine tasks can be aided through machine learn-
ing technologies that can learn the important features of the
work. This technology augments the planner, scheduler, en-
gineer and technician, who can use the knowledge to make
appropriate decisions and focus on other tasks in their job.

Once the SB and RB errors are mitigated, manufactur-
ers can attempt to address KB errors. As stated above, KB
errors are difficult to mitigate with automation and are bet-
ter suited for augmentation technologies that aid the human
in the task. For example, imagine a technician attempts to
solve a problem that he or she has never encountered before.
To completely replace the human actor, in this scenario, with
a robot is not realistic with the current technology solutions.
It may be cost and time-effective to investigate AR solutions
that can link with more experienced technicians and Com-
puter Aided Design (CAD) drawings of the asset to visualize
and talk through the current problem. However, while the
solutions themselves might be low cost, creating an environ-
ment that connects CAD drawings, technicians, and visual-
ization tools with assisted reality headsets, is often difficult
for manufacturers to tackle if this is the first SM technology
they employ.

While this procedure of error identification and technol-

ogy mapping can help manufacturers, how can researchers
push forward and create solutions that are used by manufac-
turers? Researchers are needed to reduce the cost of entry
to these solutions, both in time, monetary cost, and required
expertise. The exercise of identifying tasks and errors can
leads to a better understanding of a manufacturer’s trouble
areas and provide more concrete use cases for researchers;
however, scenarios are often not enough for some data-driven
techniques. Realistic datasets, that are analogous to the data
that occurs during maintenance, are necessary to train and
prepare the data-driven models [98]. These types of datasets
would support the development of open source data analysis
and visualization tools that can greatly benefit manufactur-
ers.

As the technologies are further developed and current
technologies are deployed, guidelines for when and how
to use various technologies are necessary. This paper ulti-
mately provides guidance on what types of errors are domi-
nant throughout the maintenance procedure, but stops short
of discussing at length the pros and cons of each technology
solution. Researchers can create and contribute to standard
guidelines on what tools work and why for specific types of
manufacturing datasets and problems. Guidance is also re-
quired to determine how to turn the outputs of the data anal-
ysis tools into actionable intelligence in a consistent manner.
Lastly, manufacturers need to share their success stories in
implementing these technologies for maintenance manage-
ment. As shown in [2], the ROI of Smart Manufacturing
technology implementation in maintenance ranges from 15
% to 98 %. As many manufacturers are nervous of the cost
of these technologies, more rigorous studies of ROI are nec-
essary to pave the way for other manufacturers. This paper
can provide a first step in a Smart Manufacturing journey in
maintenance.

7 Conclusions and Future Work
This paper analyzes each step of the maintenance work-

flow: both reviewing current industrial implementations
of research for each maintenance activity and providing a
framework for determining the most cost effective points
of entry for emerging technologies in Smart Manufacturing.
The maintenance activities are broken down by tasks and po-
tential errors are identified using Reason’s taxonomy. The
errors are classified according to Rasmussen’s skill-, rule-,
knowledge- performance model. This classification provides
a framework to discuss the most effective areas to introduce
emerging Smart Manufacturing technologies. Low- technol-
ogy solutions, particularly cultural changes, can sometimes
be employed to rectify skill-based errors; AI-driven solu-
tions may solve rule-based errors; and knowledge-based er-
rors will need high effort, high cost, and high fidelity system
models to pull together many disparate data sources that form
the human expertise.

Several potential areas for future exploration follow
from this work:
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More complete task analyses of the maintenance process
— Further human reliability research should provide a more
sophisticated breakdown of tasks, sub-tasks, and the associ-
ated potential errors. This type of analysis is necessary to
fully recognize the relationship between the human actors
in maintenance and the technology solutions applicable to a
manufacturing facility. Using a more complete task analysis
on the maintenance workflow, will allow researchers to better
understand the interrelationships of the human and technol-
ogy within the maintenance workflow.

Systematic error identification and tracking — Solu-
tions are needed to provide manufacturers with guidance on
how to perform this analysis across the entire manufactur-
ing facility. A key aspect of recognizing error severity is
the determination of key performance shaping factors: en-
vironmental or other contextual influences that modify er-
ror likelihood (also called common performance conditions,
see [29]). Having a repository of manufacturing maintenance
errors, perhaps taking a cue from the U.S. Nuclear Regu-
latory Commission Human Event Repository and Analysis
(HERA) database [99], could prove useful for more efficient
error modeling, going forward.

Human models and assistance through machine learning
— In areas like maintenance that require human engage-
ment, and tend to generate smaller data compared to other
domains, up-and-coming advances in machine learning that
can handle a lack of large training datasets will have an un-
derstated impact on our ability to model and assist relevant
aspects of human behavior. These types of models, whether
focused on reliability prediction, ergonomic optimization, or
performance measures, are becoming possible through hy-
bridized learning techniques, which exploit existing basic
knowledge about some model while still adapting to new cir-
cumstances in reasonable ways. This provides a mechanism
for ML to assist less experienced practitioners in learning
their domain: “intelligence augmentation” over “artificial in-
telligence” [100]. Techniques like restricting predictions to a
learned space of useful results [101, 102], discovering com-
putational models for difficult-to-quantify user preference in
decision making [103, 104], and many more, can be directly
applied to better model and assist maintenance practitioner’s
diagnostic and execution behavior.

Guidelines on tools that are available in Smart Manufac-
turing and the potential benefits and drawbacks of each
method or tool — This paper provided examples of tools
that are available in industry, but did not enumerate every po-
tential Smart Manufacturing technology. More work is nec-
essary to discuss how and when to use specific techniques
for the appropriate problem in manufacturing, including not
only potential benefits but also drawbacks.

Reference datasets from manufacturers for analysis
comparison — Within manufacturing, publicly available
datasets mimicking real world scenarios are lacking. Without

these datasets, it is difficult for analysis to provide solutions
that works in real manufacturing environments.

Standard guidelines on how to perform this analysis
consistently within manufacturing — While this paper
provides the first steps in this process, this work can be
forwarded through standard organizations to provide simple-
to-follow guidance allowing manufacturers to perform this
analysis on their own in a structured way.

As the factories of the future become more and more
automated, the skills required to support manufacturing op-
erations will shift from operations to maintenance. In this en-
vironment, manufacturers need to understand the best place
to start with implementing these emerging technologies. The
optimal path forward with technology for maintenance is not
to replace a human in the workflow. A solution that aug-
ments the human’s abilities will take advantage of the hu-
man’s cognitive capability while removing the reducing er-
rors. In fact, in the future, Intelligence Augmentation (IA)
might become a more practical approach, compared to AI,
since it supplements human’s cognitive process at different
levels of Bloom’s Taxonomy while keeping the human at the
center of the decision-making process [105]. This paper al-
lows manufacturers to stop asking how to get “smart”, but
instead allows manufacturers to ask how can we “smartly”
implement new technologies in maintenance with the high-
est probability for success by accounting for the errors the
technology will alleviate.

Disclaimer
The use of any products described in this paper does not

imply recommendation or endorsement by the National In-
stitute of Standards and Technology, nor does it imply that
products are necessarily the best available for the purpose.
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