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Abstract. In 2010, the National Institute of Standards and Technology (NIST)

launched the Digital Library of Mathematical Functions (DLMF), a free online

resource containing definitions, recurrence relations, differential equations, and
other crucial information about mathematical functions useful to researchers

working in application areas in the mathematical and physical sciences. Al-

though the DLMF was designed to replace the widely cited National Bureau
of Standards(NBS) Handbook of Mathematical Functions commonly known as

Abramowitz and Stegun (A&S), the goal was a compendium far beyond a book

on the web, incorporating web tools and technologies for accessing, rendering,
and searching math and graphics content. This paper focuses primarily on the

research and technical challenges involved in creating the DLMF’s graphics

content, and in particular, its interactive 3D visualizations, where users can
explore more than 200 graphs of high level mathematical function surfaces.

1. Introduction

In 2010, after a multi-year effort dating back to the late 1990s, the National
Institute of Standards and Technology (NIST) released the Digital Library of Math-
ematical Functions (DLMF)[9], a free online resource containing definitions, recur-
rence relations, differential equations, and other crucial information to aid in the
understanding and computation of mathematical functions that arise in applica-
tion areas in the mathematical and physical sciences. Although the DLMF might
be viewed as an update and replacement for the 1964 Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (A&S) [1], in reality,
it is quite different in both focus and content.

A&S was originally known for its tables. Its existence can be traced back to
the Mathematical Tables Project created in 1938 by NIST’s predecessor, the Na-
tional Bureau of Standards (NBS), to address a crucial need for accurate tables to
assist in the computation of functions commonly occuring in practical problems [5].
The project was administered by the Works Projects Administration, a New Deal
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agency of President Franklin Roosevelt. Highly educated, but out of work math-
ematicians and physicists supervised a staff of human ‘computers’ who performed
calculations for reference tables of function values. From 1938 to 1946, 37 volumes
of tables were published, including tables of trigonometric functions, logarithms,
the exponential function, and probability functions [5]. Realizing the importance
of having the information all in one place, NBS mathematician Milton Abramowitz,
a technical leader of the Mathematical Tables Project, eventually pushed for the
publication of a compendium of tables and related material. This compendium,
with emphasis on higher level functions such as Bessel functions, hypergeometric
functions, and elliptic functions was published as the Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables in 1964. It is often sim-
ply called Abramowitz & Stegun or A&S in honor of its editors Milton Abramowitz
and Irene Stegun who were Chief and Assistant Chief, respectively, of the Compu-
tation Laboratory of the NBS Applied Mathematics Division around the start of
the project in 1956. Stegun took over the project and shepherded it to completion
when Abramowitz died suddenly of a heart attack in 1958[5].

A casual glance at A&S clearly shows that tables predominate the handbook,
but each function also includes related material such as formulas representing dif-
ferential equations, definite and indefinite integrals, inequalities, recurrence rela-
tions, power series, asymptotic expansions, polynomial and rational approxima-
tions, graphs, and other qualitative information that might be useful for under-
standing and computing values of the function. For practicioners this “related
material” has moved to the forefront over the years, while the tables have receded
in importance due to the prevalence of reliable numerical software and computer
algebra packages that have severely decreased the need for tables for computing
function values by interpolation. Acknowledging this, it was decided that tables
would not be included in the design for the DLMF. Nevertheless, the addition of
new chapters on functions of growing significance and information on new proper-
ties of existing A&S functions increased the DLMF’s content significantly over that
of A&S.

The fact that the DLMF is web-based has opened up many possibilities that
are still being explored. Navigational tools and hyperlinks allow the user to move
around the site in a variety of ways. A database of metadata provides information
for pop-up boxes where users can find links to sources, defined variables, cross
references, alternative text formats such as LaTeX, MathML, and image formats,
or notes on changes made to content. With the DLMF’s math-aware search engine
users can search by function names, particular formulas, and in some cases types of
functions, for example, ‘trig’. The site includes 600 2D and 3D plots along with 200
dynamic interactive visualizations where users can explore the graphs of elementary
and high level mathematical functions. An overview of the technological capabilities
in the DLMF was recently published in a Physics Today article[20]. In this paper
we take a more in-depth view of the DLMF’s graphics by looking at the ongoing
research and development behind its interactive 3D visualizations.

Section 2 describes the techniques used to construct the computational grids
for plotting the graphs shown in the visualizations. In Section 3 we look at our
utilization and advancement of techniques for displaying interactive 3D graphics
on the web and discuss some of the interesting capabilities available in the DLMF
visualizations. Section 4 discusses ongoing challenges and future areas for research.
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Figure 1. Numerical grid generation is defined by a curvilinear
coordinate map from a canonical domain to the oddly shaped phys-
ical domain prescribed by the application.

2. Grid Generation

During the design phase of the DLMF in the late 1990s and early 2000s little
thought was given to how one might plot and render complex function graphs on
the web. The focus was on the primary mathematical content that chapter authors
would be asked to write. However, once a draft of the first chapter, on Airy and
related functions, was written, we began looking at the best way to create the
illustrative graphs the chapter needed. On looking at computer algebra systems we
found that most did an excellent job plotting 2D graphs, which could be exported to
an acceptable format for viewing on the web. For 3D graphs of function surfaces, the
story was quite different. Most systems had rudimentary or non-existent machinery
for properly clipping the graph when it was necessary to restrict the displayed range
to illuminate significant features, such as poles or zeros. In one case the surface was
properly clipped when viewed inside the system, but the unclipped data reappeared
when the plot data was exported to a file. The problems we observed led us to design
our own software for grid generation and, as we show in the next section, inspired
our development of visualizations utilizing emerging web 3D technology.

We solved the clipping problem by computing the function over a 2D grid whose
boundary included a level curve, or contour, of the function. We created the grid
by using numerical grid generation, which defines a curvilinear coordinate system
through a map from a canonical domain, such as a square in 2D, to the physical
domain of interest, as shown in Figure 1.

Numerical grid generation is just one of several methods for creating a grid,
or mesh, for solving problems over an oddly shaped domain. It has often been
used with finite difference methods to solve partial differential equations (PDEs)



4 B.V. SAUNDERS

governing flow around interesting geometries such as an airplane wing, ship’s hull,
or automobile body. Numerical grid generation is sometimes called structured grid
generation because of the natural array order of the grid points on the physical
domain [23]. Unstructured methods such as Delaunay triangulations, quadtree
methods, or hybrid methods that combine both structured and unstructured meshes
are often the methods of choice for extremely complex geometries. However, they
require the storage of grid node connectivity information that can sometimes cause
memory issues.

Structured methods can require a bit of ingenuity if the boundary shape is
complex, but they may allow one to write more efficient code for some applications.
In our case the structured order facilitated the coding of the interactive features
for our visualizations. Our code is based on an algorithm we initially designed
for problems in aerodynamics and solidification theory [13, 14, 16]. We modified
the code to accurately approximate function boundary and contour data as well as
capture significant function attributes such as poles, zeros, branch cuts, and other
singularities.

When numerical grid generation is used for solving PDEs, the coordinate map-
ping must be one-to-one and onto to ensure invertibility. The goal is to transform
the equations from the physical domain to equations over a simpler canonical do-
main where the difference equations and boundary conditions are easier to apply.
Although, in our case, the 2D grid over the physical domain becomes the compu-
tational grid for the function being plotted, the same one-to-one correspondence is
still needed since it ultimately affects the accuracy of the surface clipping and the
smoothness of the colormap when the surface is rendered on the web [15, 17]

Our basic algorithm constructs a curvilinear coordinate spline mapping T from
the unit square I2 to the physical domain and is defined by

(2.1) T(ξ, η) =

(
x(ξ, η)
y(ξ, η)

)
=

( ∑m
i=1

∑n
j=1 αijBij(ξ, η)∑m

i=1

∑n
j=1 βijBij(ξ, η)

)
where each Bij is the tensor product of cubic B-splines. Therefore, Bij(ξ, η) =
Bi(ξ)Bj(η) where Bi and Bj are elements of cubic B-spline sequences associ-

ated with finite nondecreasing knot sequences, say, {pi}m+4
1 and {qj}n+4

1 , respec-
tively [13].

To quickly obtain initial αij and βij coefficients for T we construct a transfi-
nite blending function mapping [11, 23, 10] that interpolates the boundary of the
physical domain. Conveniently, the spline coefficients can be divided into boundary
coefficients that map the boundary of the square onto the boundary of the physical
domain, and interior coefficients [13, 14], which hopefully map the interior of the
square onto the interior of the physical domain. Their initial values are obtained by
evaluating the transfinite interpolant at knot averages as described in [4], to pro-
duce a shape preserving approximation that reproduces straight lines and preserves
convexity. If more accuracy is needed on part of the boundary, we use de Boor’s
SPLINT routine [4] to find coefficients that produce a cubic spline interpolant of
that side. It is important that the spline knots and boundary coefficients be chosen
carefully to produce an accurate representation of the physical boundary.

For simple boundaries, the initial coefficients produce a grid that is adequate
for most applications, but if the boundary is more complicated or highly nonconvex,
modifications of the coefficients are often necessary. To improve the grid, we fix
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Figure 2. Initial and optimized puzzle grids.

the boundary coefficients and use a variational method to find interior coefficients
that minimize the functional

(2.2) F =

∫
I2

(
w1

{(
∂J

∂ξ

)2

+

(
∂J

∂η

)2
}

+ w2

{
∂T

∂ξ
· ∂T

∂η

}2
)
dA

where T denotes the grid generation mapping, J is the Jacobian of the mapping,
and w1 and w2 are weight constants. This integral controls mesh smoothness and
orthogonality. A large value for w1 will decrease the variance in Jacobian values
at nearby points, making the grid smoother. The w2 weighted term represents
the dot product of the tangent vectors ∂T/∂ξ and ∂T/∂η. Therefore, minimizing
this term enhances grid orthogonality. A change of variables shows this term to be
equivalent to the volume weighted version of the orthogonality term in the Brackbill
and Saltzman functional [6]. Figure 2 shows the initial and optimized grids for a
physical domain shaped like a puzzle piece.

Figure 3 shows the computational grid and Riemann zeta function surface plot
created using it. The grid boundaries, including the exterior boundary and the
interior one around the pole, contain contour data for a height of 3. Computing
the function over the grid produces a smooth clipping of the surface. A number of
the “non-trivial” zeros of the Riemann zeta function can be viewed by exploring
the figure on the DLMF site [9]. In our original code we input the location of the
zeros to guarantee that there are gridpoints there. We are currently working on an
algorithm that will automatically move gridpoints to the vicinity of a zero.

The current algorithm contains two significant changes over the original. First,
we have added an adaptive term w3{uJ2} to the integrand of the functional, where
w3 is a weight constant, and u represents external criteria for adapting the grid.
If we were solving a system of partial differential equations, u might represent the
gradient of the evolving solution or an approximation of truncation error. For our
purposes, we want u to contain curvature and gradient information related to the
function surface. The goal is to create a grid generation system that adaptively
moves gridpoints to areas of high curvature or large gradient. With a change of
variables this term is equivalent to the weighted volume variation, or adaptive,
component of the Brackbill and Saltzman functional [6, 23]. Therefore, the en-
hanced integral should allow some control over mesh smoothness, orthogonality,
and through u, permit an adaptive concentration of grid lines.
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Figure 3. Riemann zeta function surface obtained by computing
function over grid shown.

Second, a more fundamental change in our algorithm is replacing the mapping
T by a composite mapping T∗ = T◦Φ where Φ is a tensor product spline mapping
from the unit square I2 to I2 with its own coefficients and knot sequences [18].
Adaptive methods typically construct a reference grid [22] or distribution mesh
[21, 13] by moving points on the canonical domain based on some adaptive criteria.
The reference/distribution mesh is then mapped to the physical domain to create
an adaptive mesh there. Mathematically this could be viewed as the composition
of two maps where one maps the canonical domain to itself and the other maps the
canonical domain to the physical domain. DeRose, et al., created composite maps
in B-spline or Bézier form [7, 8].

For now, we have not tried to create a simple representation for our composite
map, that is, we leave Φ and T in their separate forms. The boundary coefficients
of T can remain fixed while the coefficients of Φ are adjusted to reparameterize
the boundary points. The Φ map can be used to create a reference grid that pro-
duces the desired adaptive effect without disturbing the accuracy of the boundary
approximation.

After choosing initial T and Φ coefficients that approximate transfinite interpo-
lation we can improve our final physical grid, that is, the smoothness, orthogonality,
or concentration of grid points by minimizing the following functional with respect
to either the Φ coefficients or interior T coefficients:

(2.3)

F ∗ =

∫
I2

(
w1

{(
∂J∗

∂ξ

)2

+

(
∂J∗

∂η

)2
}

+ w2

{
∂T∗

∂ξ
· ∂T∗

∂η

}2

+ w3{uJ∗2}

)
dA

where ∗ has been added to indicate the terms are associated with the composite
mapping T∗. Then J∗, the Jacobian of T∗ is the product of J and JΦ where J is the
Jacobian of T and JΦ, the Jacobian of Φ. To simplify our notation, ∗ is not added
to the weight constants or u. Figure 4 shows a puzzle shaped grid adapted to the
vertical line x = 5.5. We first optimize with respect to the interior T coefficients
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Figure 4. Reference grid and adapted puzzle grid.

to obtain an acceptable physical grid as shown in Figure 2. We then optimize with
respect to the Φ coefficients to adapt the grid to the line. Our adaptive function u
is defined by

(2.4) u(x, y) = e−50(x−5.5)2 .

We have defined other expressions for u to adapt grids to circular arcs, circles, and
intersecting lines [18]. We are now focusing on improving the performance of the
code and experimenting with various definitions of u to capture function curvature
and gradient data. Also, since our function data is computed using a variety of
codes and computer algebra packages, we are also working on the integration of our
grid generation code with various software packages and systems.

3. 3D Web Graphics and DLMF Implementation

The individual chapters of both A&S and the DLMF were authored by various
mathematicians and physicists of note. One A&S author was Philip J. Davis, who
was at NBS at that time. Davis prepared the chapter on gamma and related
functions, which he designed to serve as a model for the other authors. Davis hired
Frank W.J. Olver who authored the A&S chapter on Bessel functions. Years later,
Olver would serve as DLMF Mathematics Editor, Editor and Chief, and author
several chapters in the DLMF.

More than 35 years after the publication of A&S, Davis, then a professor at
Brown, was invited back to hear about NIST’s plans for the development of the
DLMF. Davis’ tepid response to our preliminary colorful, but static 3D graphs for
the first DLMF chapter, Airy and related functions, actually sparked our research
and design of 3D function surface visualizations that grew in sophistication as
technology for displaying 3D graphics on the web advanced.

3.1. 3D Web Graphics. As mentioned earlier, we found that at the start of
the DLMF project in the late 1990s and 2000s, the export of 3D graphics data by
well-known computer algebra systems was inadequate for our needs. After looking
into the graphics technology being used and studied at NIST, we concluded that
VRML (Virtual Reality Modeling Language) was our best option. VRML is a 3D
file format for creating interactive graphics for viewing on the web. There were
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a variety of VRML viewer browsers that could be freely downloaded, but over
time the maintenance of some of the best was discontinued and the quality of new
browsers was mixed. Furthermore, as we began to better understand what features
we wanted to see in DLMF visualizations, the complexity of our visualizations
increased, making it more and more difficult to find VRML browsers that could
handle our graphics files, even when our codes appeared to follow VRML standards.

Noting the industry transition from VRML to X3D (Extensible 3D), graphics
team member Qiming Wang designed a VRML to X3D converter. By the launch
of the DLMF in 2010 we had created close to 200 interactive visualizations of
mathematical function surfaces accessible in both formats [12].

However, our ultimate goal was to make the DLMF visualizations accessible on
Windows, Mac, and Linux platforms. We found VRML/X3D browsers that worked
for Windows and Mac, but never found a Linux browser that could successfully
handle our graphics files. Also, having to download a viewer browser/plug-in to see
the visualizations was a headache for both maintainers and users of the DLMF site.
Problems arose whenever the browsers needed to be updated, or whenever there
were changes to the platform operating system.

Motivated by these concerns, in mid 2011 we began monitoring the develop-
ment of WebGL, a JavaScript API (application programming interface) for render-
ing graphics in a web browser without a viewer plug-in. Then, thanks to the work
of Johannes Behr and colleagues [2] on X3DOM, which permitted the direct inte-
gration of X3D nodes into HTML content, we were able to make a crucial decision.
We would convert all the DLMF visualizations to WebGL by using the X3DOM
framework to build the application around our X3D codes. We were encouraged
by our early success in creating a few initial visualizations that worked in a beta
WebGL accessible Mozilla Firefox browser. We were also bolstered by preliminary
X3DOM/WebGL work by NIST researcher Sandy Ressler and the work of Steven
Birr, et al., on the LiverAnatomyExplorer WebGL Tool [3] . We began an inten-
sive effort to convert all the DLMF 3D visualizations to WebGL and seamlessly
integrate the displays into the HTML pages of the associated chapters. The new
visualizations first appeared in DLMF Version 1.0.7 released on March 21, 2014.

Building our application using the X3DOM framework allowed us to reuse most
of our X3D code to create the WebGL files. The most challenging work was re-
coding the dynamic displays and interactive features. After first creating stand
alone WebGL files, we worked with NIST computer scientist Brian Antonishek
and Bruce Miller, information architect of the DLMF website, to make the coding
changes needed to integrate the visualizations into DLMF HTML files. We also
made style changes to achieve a more polished look. Most importantly we success-
fully achieved our main goal: To reproduce or enhance the capabilities available
in our VRML/X3D visualizations and provide additional capabilities where possi-
ble. WebGL is now the default format for viewing the DLMF visualizations and
VRML/X3D files are being phased out [19].

3.2. DLMF Graphics Features. The best way to experience the DLMF
visualizations is to go directly to the graphics sections found in most chapters and
explore the capabilities available. The visualizations can now be viewed in most
common web browsers on Windows, Mac, or Linux platforms. A few features are
highlighted in this section.
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Figure 5. Modulus of Pearcey integral visualization embedded
in DLMF webpage. Intersection of y direction cutting plane with
surface displayed on bounding box sides and in pop-up display on
side panel.

Figure 5 shows the general display for our surface visualizations. The user
may click on the figure and rotate it freely or choose a stored viewpoint from the
selection offered on the panel to the right. If a surface represents a complex valued
function, the user is offered a phase, or argument, based color map in addition to
the height, or modulus, color map. This option will not appear if the function is
real valued.

Figure 6 shows a density plot for a Jacobian Elliptic function adjacent to its
surface plot. A user can apply the scaling option to collapse the function in the
vertical direction to obtain the density plot.

At the top of Figure 7 a type of Bessel function known as a Hankel function is
shown with a height-based color map. Its branch cut is evident when one switches
to a phase color map, and on scaling the surface height to zero, the phase density
plot shown at the bottom emerges. On the website, one should note the difference
in how the color spectrum is traversed as one travels around a pole versus a zero.

4. Current and Future Areas for Research

Clearly, a significant amount of work is involved in the design, creation, and
maintenance of the visualizations in the DLMF. Initially, much of the 3D graphics
work was motivated by deficiencies we saw in available software and computer
algebra systems at the time. The rendering of 3D plots has improved in many
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Figure 6. Jacobian Elliptic function cn(x, k) and density plot.

Figure 7. Modulus of Hankel function H
(1)
5.5 (x + iy) and phase

density plot.

systems, and export options have expanded tremendously, but we still notice that
the quality of the 3D data exported may not match what is seen on the screen.

Creating our own grids and visualizations gives us access to the data and rou-
tines that control our visualizations. This is helpful if we want to expand existing
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features or create new ones. Also, since our work is open to the public, we can get
feedback from other researchers through publications and presentations at confer-
ences.

There are several directions to go with our grid generation work. The ultimate
goal is to develop a robust method that can be used to create quality grids in a
reasonable amount of time. For now we will continue the work on adaptive cur-
vature/gradient grids. We may also explore a parametric grid generation mapping
which might work better if there are poles or other areas where there are steep
gradients. Also, there have been some initial discussions with other grid genera-
tion researchers on the feasibility of creating a true zoom where the grid is refined
and function values recomputed. Such an implementation would require a fast grid
generation algorithm and hierarchical or locally refined techniques. Also, exploring
unstructured triangulations and hybrid methods are still a possibility.

In addition to the true zoom, we might consider other changes to the visu-
alizations such as adding or improving color maps, or including plots of real and
imaginary parts of functions along with the modulus. In any case, while we expect
to stick with our X3DOM/WebGL platform for the near future, we will strive to
stay informed about trends in 3D web technology that might enhance our visual-
izations.

Disclaimer

All references to commercial products are provided only for clarification of the
results presented. Their identification does not imply recommendation or endorse-
ment by NIST.
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