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We have computed the thermally averaged total, elastic rate coefficient for the collision of a room-temperature
helium atom with an ultracold lithium atom. This rate coefficient has been computed as part of the char-
acterization of a cold-atom vacuum sensor based on laser-cooled 6Li or 7Li atoms that will operate in the
ultrahigh-vacuum (p < 10−6 Pa) and extreme-high-vacuum (p < 10−10 Pa) regimes. The analysis involves
computing the X 2�+ HeLi Born-Oppenheimer potential followed by the numerical solution of the relevant radial
Schrödinger equation. The potential is computed using a single-reference-coupled-cluster electronic-structure
method with basis sets of different completeness in order to characterize our uncertainty budget. We predict
that the rate coefficient for a 300 K helium gas and a 1 μK Li gas is 1.467(13) × 10−9 cm3/s for 4He + 6Li
and 1.471(13) × 10−9 cm3/s for 4He + 7Li, where the numbers in parentheses are the one-standard-deviation
uncertainties in the last two significant digits. We quantify the temperature dependence as well. Finally, we
evaluate the s-wave scattering length and binding of the single van der Waals bound state of HeLi. We predict
that this weakly bound level has a binding energy of −0.0064(43) × hc cm−1 and −0.0122(67) × hc cm−1

for 4He 6Li and 4He7Li, respectively. The calculated binding energy of 4He7Li is consistent with the sole
experimental determination.

DOI: 10.1103/PhysRevA.101.012702

I. INTRODUCTION

The cold-atom vacuum standard (CAVS) shows promise
in establishing an accurate primary pressure standard at room
temperature in the ultrahigh-vacuum (UHV, p < 10−6 Pa) and
extreme-high-vacuum (XHV, p < 10−10 Pa) regimes, where
currently there are no reliable alternatives [1–4]. An opera-
tional CAVS device is expected to have fractional uncertain-
ties in pressure readings of only several percentage points.
In a CAVS device the pressure is proportional to the rate of
atom loss of a small sample of ultracold alkali-metal sensor
atoms from collisions with ambient atoms and molecules in
the vacuum. Molecular hydrogen is the dominant unavoid-
able background constituent at our target pressures. Other
constituents, e.g., He, N2, Ar, H2O, CO2,..., are either also
unavoidable or deliberately added [2].

Rate coefficients for alkali-metal atoms colliding with
these constituents will need to be determined either experi-
mentally or theoretically. Our previous theoretical study re-
garding these collisions involved the determination of the
loss-rate coefficient between lithium sensor atoms and molec-
ular hydrogen, where lithium with its light mass is the most

promising candidate sensor atom [4]. This rate coefficient is
predicted with a 2% one-standard-deviation uncertainty.

Comparisons of pressure measurements with the CAVS
device to existing pressure standards at pressures larger than
10−6 Pa will validate the CAVS. In principle, this can be done
by adding a known amount of any gas. A logical choice would
be H2 as the rate coefficients are already known. Helium is
another natural candidate. It is a nonreactive gas and is often
introduced as a way to help detect leaks in vacuum chambers.

In the CAVS device, a gas of ground-state lithium atoms is
prepared at a temperature of ≈1 μK in a single hyperfine state.
Lithium atoms will escape their trap, of depth approximately
ten times their temperature, through collisions with helium
atoms with near unit likelihood. We thus look to compute
the energy-dependent total elastic cross section σ (E ) between
4He and 6,7Li as well as the thermally averaged rate coef-
ficients K (THe, TLi), where E is the relative collision energy
and THe and TLi are the helium and lithium gas temperatures,
respectively.

Additionally, the HeLi dimer has been of interest for a
number of years due to its unique single near-threshold bound
state, useful for studies regarding three-body recombination
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and absorption or adsorption of alkali-metal atoms on he-
lium clusters of various sizes [5–7]. Since the 1970s many
attempts have been made at computing the ground HeLi
Born-Oppenheimer potential based on ab initio electronic
structure methods [8–13]. More recently, this weakly bound
state was experimentally observed; however, the experimental
uncertainty was on the order of the binding energy with a
central value that is an order of magnitude larger than the
theoretical predictions [14]. We will also make a prediction
for this binding energy, specifically focusing on the theoretical
uncertainty. Finally, in anticipation of experiments where both
dilute helium and lithium gasses are laser or evaporatively
cooled and brought in contact, we present values for the
so-called interspecies s-wave scattering length.

This paper is organized as follows. In Sec. II we present
the ab initio X 2�+ Born-Oppenheimer potential at different
levels of accuracy within single-reference coupled-cluster the-
ory. We also provide comparisons to two other determinations
from the literature. Bound-state energies and radial wave func-
tions of the 4He 6,7Li isotopologues are computed for each
potential by numerically solving the relevant Schrödinger
equation in Sec. III. Elastic cross sections and phase shifts
are given in Sec. IV. The phase shifts are also compared to
approximate semiclassical models. Section V characterizes
the thermal rate coefficients. The values and uncertainties
of the binding energy, the scattering length, and the helium-
temperature-dependent parametrization of the thermalized
rate coefficient are provided in Sec. VI. We conclude in
Sec. VII.

II. POTENTIAL CURVES

The bound state and room-temperature collision between a
lithium atom and a helium atom are dictated by the isotropic
ground X 2�+ adiabatic Born-Oppenheimer potential V (R),
where R is the interatomic separation between He and Li.
Previously, this potential was computed in Refs. [9,11,13]. In
this section, we construct two potentials from this data and
describe our determination of this potential.

The first potential we consider is the analytical representa-
tion of the potential from Ref. [9] denoted here by V KTTY(R).
The second potential V CSD(R) is constructed by combining
the results from Refs. [11,13] with the long-range dispersion
potential of Ref. [15]. Specifically, V CSD(R) contains the
ab initio self-consistent-field (SCF) data from Ref. [13] for
the repulsive inner wall with R ∈ [3.0a0, 8.0a0], the post-
SCF data from Ref. [11] for the potential well with R ∈
(8.0a0, 20.0a0], and a dispersive form for R > 20.0a0. The
dispersion potential is written as

V disp(R) = −C6/R6 − C8/R8 − C10/R10, (1)

with the dispersion coefficients C6, C8, and C10 from Ref. [15].
Here 1a0 = 0.052 917 7 . . . nm is the Bohr radius. We ensure
that the connection between each section is smooth and inter-
polate using a third-order Akima spline [16]. The dispersive
form of the potential V KTTY(R) has coefficients that are within
0.2% of those of V CSD(R).

We additionally compute the X 2�+ potential making use
of modern ab initio electronic structure implementations.
Our motivation for recomputing the potential energy curve

is our desire to place an uncertainty on binding energy and
rate constants, which follows our experience in defining un-
certainties for the Li + H2 system in Ref. [4]. The X 2�+
potential is computed using the coupled-cluster (CC) program
of Kállay et al. [17] using unrestricted Hartree-Fock functions
and correlating all five electrons at the coupled cluster with
full single, double, and triple excitations (CCSDT) level of
theory. The augmented, correlation consistent, polarized va-
lence basis set aug-cc-pVxZ was used for helium, and the
weighted-core variant aug-cc-pwCVxZ was used for lithium,
where the cardinal number x = T , Q, or 5. For each cardinal
number we correct for the basis set superposition error (BSSE)
using the counterpoise-correction algorithm of Ref. [18]. Near
the equilibrium separation this correction for the x = 5 po-
tential is about one half of the splitting between the x = Q
and 5 potentials. For brevity, we use V xZ (R) to denote these
corrected potentials, where x = T, Q, and 5. We then extrap-
olate to the complete basis set (CBS) limit [19] using the
functional form V nZ = V ∞Z + Be−(n−1) + Ce−(n−1)2

at each
R, where n = 3, 4, or 5 for the cardinal number x = Q, T ,
or 5, respectively. The x = ∞ case corresponds to the CBS
extrapolated potential.

At R = 20.0a0, each V xZ (R) is connected to V disp(R) us-
ing the same dispersion coefficients as used for the CSD
potential. The potentials V xZ (R) for x = T, Q, 5, and ∞,
the dispersion coefficients, and the procedure to connect the
two parts are given in Table I. We would like to note that
the authors of Ref. [20] find that C6 = 22.44(2) Eha6

0, where
Eh is the Hartree energy and the value in the parentheses is
the one-standard-deviation uncertainty for the last significant
digit. This value of C6 would improve the connections of the
potentials at R = 20a0; however, Ref. [20] does not provide
values for the other dispersion coefficients. Hence, we opted
to use the values from Ref. [15]. The difference does not affect
our final uncertainty budget for the observables.

Figure 1 compares all potentials. The V xZ (R) potentials
are indistinguishable for R < 10.0a0 in Fig. 1(a). At fixed
potential energy their inner turning points are smaller than
those of V CSD(R) and V KTTY(R). Figure 1(b) focuses on the
potential well, where its depth De is De/hc ≈ 1.5 cm−1 or
equivalently De/kB ≈ 2.1 K, much less than the 300 K room-
temperature collision energies. Here, h is Planck’s constant, c
is the speed of light in vacuum, and kB is the Boltzmann con-
stant. Moreover, we observe that De becomes diminishingly
larger for x = T , Q, 5, and ∞. The depth of the CSD and
KTTY potentials agrees best with that of the V QZ (R) poten-
tial. Differences �V xZ (R) ≡ V xZ (R) − V ∞Z (R) between the
potentials are shown in Figs. 1(c) and 1(d) as functions of
R. Around the potential minimum R ≈ 11.5a0, the potentials
are found to be within 1 × hc cm−1 of one another. Table II
enumerates De and equilibrium separation re for each of the
potentials.

A motivation to recompute the potential with modern
electronic structure methods is based on the observation
that the CSD and KTTY potentials have different predic-
tions for the shape of the repulsive inner wall. The au-
thors who computed the KTTY potential focused on the
description of the attractive part of the potential, while the
inner wall of the CSD potential is only based on a SCF
method. We only use the V xZ (R) potentials to characterize
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TABLE I. Parameters of the V xZ (R) potentials. The top part of
the table contains the counterpoise-corrected values of V xZ (R)/hc
in units of cm−1 with x = T , Q, 5, and ∞ for a discrete set of
R between 3.0a0 and 20.0a0. The V ∞Z (R) potential is a complete
basis set extrapolation from the other three potentials. The bottom
part of the table contains the dispersion coefficients in atomic units
taken from Ref. [15] and used for R � 20.0a0. The same dispersion
coefficients are used for all four potentials. We use a third-order
Akima spline [16] to interpolate the potentials for R < 20.0 and
ensure smoothness by adding points from the analytical dispersion
potential starting from R = 20.0a0. The relative difference between
the dispersive potential and the computed but not shown V ∞Z (R) at
R = 20.0a0 is (V disp − V ∞Z )/|V ∞Z | = −0.44%.

3.0a0 � R < 20.0a0

R(a0) T Z QZ 5Z ∞Z

3.0 3576.65 3530.93 3521.41 3515.95
3.5 2423.05 2390.32 2385.13 2382.19
4.0 1813.88 1791.27 1787.33 1785.09
5.0 927.626 917.100 914.116 912.389
6.0 393.027 386.687 384.699 383.546
7.0 143.505 139.981 138.588 137.776
8.0 45.4608 43.6096 42.8019 42.3305
9.0 11.6136 10.6269 10.2007 9.952069
10.0 1.36949 0.872811 0.634163 0.494666
10.5 −0.362180 −0.701191 −0.881184 −0.986539
11.0 −1.115934 −1.342014 −1.475021 −1.552971
11.5 −1.356918 −1.505578 −1.601378 −1.657581
12.0 −1.344700 −1.442236 −1.509158 −1.548444
12.5 −1.219903 −1.284685 −1.331307 −1.358688
13.0 −1.057361 −1.101349 −1.132562 −1.150891
13.5 −0.893477 −0.923978 −0.944840 −0.957087
14.0 −0.744006 −0.765941 −0.779854 −0.788014
14.5 −0.615025 −0.631148 −0.640523 −0.646016
15.0 −0.506991 −0.518992 −0.525419 −0.529182
16.0 −0.345690 −0.352037 −0.355191 −0.357036
17.0 −0.238559 −0.241875 −0.243513 −0.244471
18.0 −0.167477 −0.169103 −0.170051 −0.170607
19.0 −0.119673 −0.120402 −0.120922 −0.121227

R � 20.0a0

C6 22.535 Eha6
0

C8 1084.2 Eha8
0

C10 72665.0 Eha10
0

the uncertainties in the binding energy and thermalized rate
coefficients.

III. BOUND STATE OF HeLi

Rovibrational bound states of an isotropic potential are
determined from the radial solutions u�(R) of the single-
channel Schrödinger equation

d2u�(R)

dR2
+

[
k2 − �(� + 1)

R2
− 2μ

h̄2 V (R)

]
u�(R) = 0, (2)

where � is the orbital angular momentum, μ is the reduced
atomic mass for the 4He + 6,7Li system, and h̄ is the reduced
Planck constant. The potential operator V (R) is the X 1�+
Born-Oppenheimer potential determined in the previous
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FIG. 1. Potential energy curves of the ground X 2�+ state of
HeLi as functions of the internuclear separation R. In all panels, the
turquoise (double-dot-dashed), blue (dot-dashed), red (dashed), and
black (solid) curves represent our CC potentials V xZ (R), with x = T ,
Q, 5, and ∞, respectively. The CSD and KTTY potentials obtained
from the literature are represented by the brown curve with square
markers and the orange curve with circle markers, respectively.
(a) Comparison of the repulsive wall of the six potentials. The
four V xZ (R) potentials are indistinguishable on this scale. (b) The
attractive part of the potentials. Note that the vertical scale is 3 orders
of magnitude smaller than that in panel (a). The zero of energy
in both panels corresponds to the dissociation limit. Panels (c) and
(d) show differences in potential energy with respect to the V ∞Z (R)
potential for separations as in panels (a) and (b), respectively.

section and approaches zero as R → ∞. The relative wave
number k is defined through E = h̄2k2/2μ, where E is the
collision energy.

We compute the bound-state energies and radial wave func-
tions for each of the potentials V X (R), where X = T Z , QZ ,
5Z , ∞Z , CSD, and KTTY. We discretize the kinetic energy
operator −d2/dR2 using the discrete variable representation
(DVR) approach from Ref. [21] and solve the resulting matrix
eigenvalue problem using LAPACK [22]. The radial grid is
chosen carefully in anticipation of the rather large extent of
the unit-normalized bound-state wave functions. We include
R up to 6 000a0 and are able to reproduce the bound-state
energies of the KTTY potential for both isotopologues to the
four significant digits given by Ref. [9].

We find that the potentials have only a single bound state
with binding energy E0. It occurs for the � = 0 partial wave
or the rotational quantum number. Table II lists E0 and the ex-
pected size of the wave function 〈R〉 for each of the potentials
and 4He 6,7Li isotopologues. The bound-state energy is lower
for deeper potentials. In fact, for the 4He 7Li isotopologue the
absolute value of E∞Z

0 is 12 times larger than |ET Z
0 |. Similarly,

〈R〉 decreases by a factor of 2. This behavior is even more
dramatic for the 4He 6Li isotopologue. Figure 2 compares
the 4He 7Li bound-state radial wave functions for the six
potentials. They have a single maximum around R ≈ 20.0a0

and then gradually decrease to 0. More weakly bound states
have more diffuse wave functions. The expected size 〈R〉 is
also shown.
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TABLE II. Selected spectroscopic and collisional properties of seven X 2�+ HeLi potentials, with the CC-∞Z entry being our most
accurate determination. For each potential we present the equilibrium separation re and the depth of the potential De. The binding energy of
the sole bound state E0, the expected size 〈R〉 of this bound state’s wave function, and the cross section σRT at collision energy E = ERT = kB×
300 K are shown for the two isotopologues 4He 6,7Li. The energies De and E0 are with respect to the atomization limit.

De/hc
4He 6Li 4He 7Li

Potential re (a0) (cm−1) E0/hc (cm−1) 〈R〉 (a0) σRT (a2
0 ) E0/hc (cm−1) 〈R〉 (a0) σRT (a2

0 )

KTTY 11.64 1.543 −0.001 053 91.71 494.3 −0.003 907 53.20 496.7
CSD 11.55 1.489 −0.000 766 105.0 478.1 −0.003 299 56.62 480.1
CC-T Z 11.71 1.372 −0.000 098 267.6 478.7 −0.001 487 77.60 481.1
CC-QZ 11.54 1.506 −0.002 004 70.25 472.0 −0.005 539 46.76 474.4
CC-5Z 11.46 1.602 −0.004 429 51.66 469.1 −0.009 373 38.96 471.5
CC-∞Z 11.42 1.661 −0.006 375 45.25 467.5 −0.012 199 35.72 469.9

IV. CROSS SECTIONS AND PHASE SHIFTS

The scattering length and cross sections are determined
from numerical scattering state solutions of Eq. (2). Our
numerical solver follows the propagator method of Johnson
[23]. Namely, for each � and E we propagate the logarithmic
derivative of the wave function to sufficiently large R with
a variable step size that adjusts according to changes in the
solutions. Phase shifts η�(E ) are extracted by matching to
free-particle solutions and used to determine the s-wave or
� = 0 scattering length aX = − tan ηX

�=0(E )/k in the limit of
E → 0 and combined to form total cross sections

σ X (E ) = 4π

k2

�MAX∑
�=0

(2� + 1) sin2 ηX
� (E ), (3)

where the superscript X is one of T Z , QZ , 5Z , ∞Z , KTTY,
or CSD and identifies the potential V X (E ) used to com-
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FIG. 2. Radial wave functions of the 4He7Li bound state as
functions of the internuclear separation R. The x axis is on a loga-
rithmic scale. The turquoise (double-dot-dashed), blue (dot-dashed),
red (dashed), and black (solid) lines are for the V xZ (R) potentials with
x = T , Q, 5, and ∞, respectively. Wave functions for the CSD and
KTTY potentials are shown by a brown curve with square markers
and an orange curve with circle markers, respectively. The vertical
solid lines with corresponding colors are the expected wave-function
sizes 〈R〉.

pute η�(E ). Formally, �MAX = ∞; However, sufficient con-
vergence in σ X (E ) is reached with �MAX = 200 for our energy
domain 0 < E � kB × 3000 K. In essence, changes in σ (E )
from the cutoff in the summation over � are much less than
those among the potentials. The rather large energy domain
relative to room temperature is motivated by convergence
requirements for thermalized rate coefficients.

Figure 3 shows cross sections as functions of collision en-
ergy between 0 and kB × 3000 K for the potentials described
in Sec. II. The cross sections are monotonically decreasing
functions of energy. Due to the fact that the potentials are
shallow and contain only a single bound state, we do not
observe shape resonances. The nearly identical V xZ (R) poten-
tials with x = T , Q, 5, and ∞ produce nearly identical σ xZ (E )
with a progression to smaller cross sections with increasing
cardinal number x. Interestingly, σ KTTY(E ) is significantly
larger than our ab initio σ xZ (E ), but functionally similar.
The cross section from V CSD(R) has a different functional
form. Differences in the cross sections are due to the different
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FIG. 3. Cross sections for 4He + 7Li collisions, σ (E ), as func-
tions of the collision energy E . The turquoise (double-dot-dashed),
blue (dot-dashed), red (dashed), and black (solid) lines are cross
sections based on our CC potentials V xZ (R) with x = T , Q, 5, and
∞, respectively. The results for the CSD and KTTY potentials taken
from the literature are shown as the brown curve with square markers
and the orange curve with circle markers, respectively.
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FIG. 4. Phase shifts η�(ERT) as functions of the partial wave �

for 4He + 6Li at collision energy E = ERT = kB × 300 K based on
the V ∞Z (R) potential. The red square markers correspond to phase
shifts obtained using coupled-channels calculations, while the solid
black line corresponds to results based on a WKBJ approximation
for η�(E ). The two are indistinguishable on the scale of the figure.
The inset is a blowup of the main panel.

repulsive walls of V X (R) for R < 10.0a0. Our modern CC
potentials provide a better description of this inner wall and
thus provide more accurate cross sections.

It is worth noting that the semiclassical Wentzel-Kramers-
Brillouin-Jeffreys (WKBJ) approximation for the phase
shift is accurate for room-temperature collisions. Figure 4
shows phase shifts η∞Z

� (E ) as functions of � at energy
E = ERT = kB × 300 K computed using the propagator
method and the WKBJ approximation from Ref. [24]. The
difference in η�(E ) between the two approaches is at most
0.05π , largest at small partial waves. Furthermore, near the
glory partial wave �G, defined as the partial wave where
η�(E ) is maximal, the difference is no more than 10−3π . For
E = ERT, �G = 31. The cross sections determined from the
propagator method and the WKBJ approximation agree to
0.42% at E = ERT.

We observe that η�(E ) from � = ∞ to �G does not go
through a single π phase. This was also the case for Li + H2

collisions at room temperature [4]. Consequently, the com-
monly used Born approximation for the phase shift based
solely on the 1/R6 long-range dispersion potential

ηBA
� (E ) = 3π

32

(
E

E6

)2 1

�5
(4)

does not accurately approximate the total cross section. The
contribution from the partial waves around �G cannot be
ignored. Here, E6 = h̄2/2μβ2

6 and β6 = (2μC6/h̄2)1/4 are the
energy and length scale associated with the van der Waals
dispersion potential.

V. THERMALIZED RATE COEFFICIENTS

The thermalized rate coefficients K (THe, TLi) are found
by integrating over Maxwell-Boltzmann distributions with
He at temperature THe and Li at temperature TLi. This pro-
cess reduces to a single integral over collision energy after

FIG. 5. Thermalized rate coefficients KxZ (THe, TLi ) as functions
of the 4He temperature THe with 7Li held at TLi = 1 μK. The nearly
overlapping turquoise (double-dot-dashed), blue (dot-dashed), red
(dashed), and black (solid) lines are KxZ with x = T , Q, 5, and ∞,
respectively. The inset shows a blow-up of the region 250 K � THe �
350 K, where the differences in KxZ can be better seen.

integrating out the center-of-mass motion. Specifically,

K (THe, TLi) = 2√
π

√
2kBTeff

μ

∫ ∞

0
dζ ζe−ζ σ (ζ kBTeff ), (5)

where ζ = E/kBTeff and

Teff = mHe

mLi + mHe
TLi + mLi

mLi + mHe
THe (6)

is an effective temperature.
The resulting K (THe, TLi) for the potentials V xZ (R) are

shown in Fig. 5 as functions of THe with TLi = 1 μK. Near
room temperature, the thermalized rate constants are func-
tionally close to linear and are well represented by a Taylor
expansion to second order in THe around TRT = 300 K and
first order in TLi around 1 μK. Specifically,

K (THe, TLi) = K0 + K1 (THe − TRT)

+ 1

2
K2 (THe − TRT)2 + mHe

mLi
K1 (TLi − 1 μK), (7)

with expansion coefficients Ki. The relationship between the
expansion coefficients linear in THe − TRT and TLi − 1 μK
follows from the fact that the rate coefficient only depends
on Teff .

VI. UNCERTAINTY ANALYSIS OF BINDING ENERGY,
SCATTERING LENGTH, AND RATE COEFFICIENTS

The largest source of uncertainty in the binding energy, the
scattering length, and the thermalized rate coefficients comes
from our inability to compute V (R) exactly. The uncertainties
from our numerical procedures in solving Eq. (2) are neg-
ligible in comparison. We quantify the uncertainties by first
introducing the parametrization

V (R; ξ ) ≡ V ∞Z (R) + ξ W (R), (8)
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where W (R) ≡ V QZ (R) − V ∞Z (R) and ξ is a dimensionless
parameter. The potential V (R; ξ ) reasonably reproduces each
of the V xZ (R) potentials with ξ = 6.7, 1.0, 0.36, and 0.0 for
x = T , Q, 5, and ∞, respectively. The decreasing changes in
ξ in the progression of the cardinal number x from T to ∞
indicates convergence of the electronic structure calculations.

The value ξ = ξ∞Z = 0.0 is our best attempt at the true
potential. We then treat ξ as a Gaussian-distributed ran-
dom variable with mean ξ∞Z and one-standard-deviation
uncertainty σ (ξ ) = 1.0, or equivalently the difference
|V QZ (R) − V ∞Z (R)| is the uncertainty of V ∞Z (R). We believe
that this is a conservative estimate of the uncertainty and
encompasses uncertainties from the BSSE and CBS extrap-
olations as well as those from small nonadiabatic recoil and
relativistic corrections. In fact, nonadiabatic and relativistic
corrections are expected to change the potential on the order
of (me/μ)V (R) and α2V (R), respectively, where me is the
mass of the electron and α is the fine-structure constant. These
changes are much smaller than the energy difference between
the QZ and ∞Z potentials.

In this framework the bound-state energy is then given by

E0(ξ ) = E0 + E1ξ + O(ξ 2), (9)

where Ei are expansion coefficients. From the binding ener-
gies in Table II, we note that a linear expansion is sufficient
for ξ � 1, but that higher orders of ξ are needed to account
for the binding energy of the V T Z (R) potential, our least
accurate potential. As this potential lies more than six standard
deviations away from our best estimate of the potential, it does
not effect our uncertainty analysis. From error propagation the
one-standard-deviation uncertainty of the bound-state energy
is then

σ (E0) = E1σ (ξ ). (10)

We have similarly determined the uncertainty of the s-wave or
� = 0 scattering length a(ξ ) = a0 + a1ξ + O(ξ 2) and σ (a) =
a1σ (ξ ).

We also compute the uncertainty of the thermalized rate
coefficients K (THe, TLi; ξ ). Expanding each of the expansion
coefficients in Eq. (7) around ξ = 0, we have

Ki(ξ ) = κi,0 + κi,1ξ, (11)

where κi, j are the expansion coefficients in ξ and Ki(0) =
κi,0 = K∞Z

i . Again through error propagation, we have

σ 2(K ) =
∑
i, j

KKiKK j r(K j,K j ) σ (Ki )σ (K j ), (12)

where the correlation coefficient between K j and K j is
r(K j,K j ) and σ (Ki ) are individual uncertainties. Since there
is only a single random variable ξ that characterizes the
distribution of the Ki, we realize that r(K j,K j ) = 1 and
σ (Ki ) = κi,1σ (ξ ) from Eq. (11).

Our final values and uncertainties for the expansion coef-
ficients Ki, E0, and a are given in Table III. The expansion
coefficients Ki for the 4He-6Li and 4He-7Li collisions differ by
less than their stated uncertainties. The equivalent differences
for the binding energies and scattering lengths are larger but

TABLE III. (a) Predicted values and one-standard-deviation un-
certainties for expansion coefficients K0, K1, and K2 of the thermal-
ized total rate coefficient K (THe, TLi ) as defined in Eq. (7) for near-
room-temperature helium and 1 μK 6,7Li sensor atoms with Tref =
300 K. The uncertainty σ (K ) is found by error propagation with cor-
relation coefficients r(Ki,K j ) = 1 when i 
= j. (b) Predicted values
and one-standard-deviation uncertainties for the binding energy of
the single bound state and the zero-collision-energy scattering length
of the two isotopologues 4He 6,7Li. The experimental binding-energy
data are from Ref. [14].

K0 K1 K2

(a) (cm3/s) (cm3/s/K) (cm3/s/K2)

4He 6Li 1.467(13) ×10−9 2.155(23) ×10−12 −4.141(71) ×10−15

4He 7Li 1.471(13) ×10−9 2.152(24) ×10−12 −4.131(76) ×10−15

E0/hc (cm−1)
Scattering length

(b) Theory Experiment (units of a0)
4He 6Li −0.64(43) ×10−2 +80(50)
4He 7Li −1.22(67) ×10−2 −2.4(2.5) ×10−2 +60(20)

still their uncertainties overlap. These differences form an
(over)estimate of the size of nonadiabatic corrections, where
an electron is unable to follow its atom; i.e., the system seems
to change its mass slightly during the collision. The change in
the reduced mass μ based on 6Li or 7Li atoms is much larger.

Our prediction for the binding energy for the 4He 7Li
isotopologue can be compared with the experimental determi-
nation in Ref. [14]. The values are consistent within the error
bars. The relative uncertainty of the theoretical binding energy
σ (E0)/|E0| = 0.55 is only a factor of 2 smaller than that of the
experiment. Improving the theoretical accuracy will require
improved and larger basis sets or including the complete
configuration interaction. Such intensive computations fall
outside the scope of our study.

The expansion in Eq. (7) with coefficients from Table III
reproduces the rate coefficients for the V ∞Z (R) potential to
0.1% for THe ∈ [TRT − 50 K, TRT + 50 K] for both isotopo-
logues. The dependence on the Li temperature up to 100 μK
is negligible, but is included for completeness.

VII. CONCLUSIONS

We have determined total rate coefficients for the elastic
scattering of lithium with helium near room temperature based
on a calculation of the Li-He potential energy surface. We give
rates for 6Li and 7Li colliding with 4He. The rate coefficients
are important input parameters for the CAVS, a primary
vacuum sensor operating in the UHV regime that is based
on atom loss from a small sample of ultracold lithium atoms.
We have carefully analyzed the uncertainty of our potential
and been able to quote a fractional uncertainty for the rate
coefficient of 1.0%. This accuracy is sufficient for the current
goals of an operational CAVS. We have also given estimates
of scattering lengths in the limit of zero collision energy and
determined the binding energy of the only bound state in
the Li-He potential. The latter is in agreement with the only
experimental determination.
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