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Isotope-shift spectroscopy of the 1S0 → 3P1 and 1S0 → 3P0 transitions in strontium
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Isotope-shift spectroscopy with narrow optical transitions provides a benchmark for atomic structure cal-
culations and has also been proposed as a way to constrain theories predicting physics beyond the standard
model. Here we measure frequency shifts of the 1S0 → 3P1 and 1S0 → 3P0 transitions between 84Sr, 86Sr, and 87Sr,
relative to 88Sr. Using the isotope-shift measurements of the two transitions, a King plot analysis is performed,
revealing a nonlinearity in the measured values.
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I. INTRODUCTION

Isotope shifts of atomic transition frequencies arise due
to the difference in neutron numbers for different isotopes
with the same atomic number. For a given element, these
shifts can be systematically analyzed using a King plot, which
elucidates the contributions of the field and mass shifts [1].
The King plot is typically expected to be linear, and the
experimentally determined value of the slope provides a good
benchmark for theoretical predictions [2]. Any deviations
from linearity as was observed in Sm [3] and Ba [4], or
between predicted and experimentally measured values of the
slope as was observed in Ca+ [5], are important for refining
atomic structure calculations [6]. Furthermore, recent theo-
retical proposals have suggested that linearity in King plots
could be used to put constraints on higher-order effects on
isotope shifts or on physics beyond the standard model [7,8].
Strontium has many favorable properties for studying isotope
shifts, including an abundance of stable isotopes and very
narrow optical transitions [9]. In addition, prior theoretical
work has proposed the measurement of strontium isotope
shifts as a promising probe of new physics [7,8].

Strontium has four stable isotopes: three bosons (88Sr,
86Sr, and 84Sr) and one fermion (87Sr). Mixing between the
singlet and triplet fine-structure manifolds leads to narrow-
linewidth optical transitions, and these transitions have found
use in both strontium and other alkaline-earth-(like)-atom ex-
periments [10,11]. In particular for strontium, the 1S0 → 3P1

intercombination-line transition at 689 nm (linewidth �/2π =
7.4 kHz) is used during laser cooling to operate a narrow-line
magneto-optical trap (MOT) [9,12], and the even narrower
1S0 → 3P0 clock transition at 698 nm (�/2π ∼ mHz) is the
foundation for state-of-the-art optical clocks operating at a
precision at the 10−18 level [13–15]. The clock transition is
strictly forbidden by angular momentum considerations, but
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becomes weakly allowed via hyperfine mixing in 87Sr or by
application of an external field for the bosonic isotopes [16].

While the 1S0 → 3P0 clock transition has been extensively
studied in 87Sr and 88Sr [13–20], previous measurements of
the transition in either 86Sr or 84Sr are lacking [21]. Here we
report isotope-shift spectroscopy measurements of the clock
transition for both 84Sr and 86Sr relative to the most abundant
isotope 88Sr. Furthermore, we measure all isotope shifts of
the 1S0 → 3P1 intercombination-line transition relative to 88Sr,
permitting a King plot analysis of strontium for these two tran-
sitions. Given the very narrow linewidths involved, extensions
of this work could place stringent experimental constraints on
the King linearity, ruling out candidate theories for physics
beyond the standard model or benchmarking state-of-the-art
atomic structure calculations.

II. EXPERIMENTAL PROCEDURE

All of the isotope-shift spectroscopy was performed using
laser-cooled strontium atoms at temperatures of a few μK,
held in an optical dipole trap (ODT). After applying the
spectroscopy light, we monitored atom loss by performing
absorption imaging.

The laser lights used for spectroscopy of both the 1S0 →
3P1 and 1S0 → 3P0 lines were generated using two home-built
external-cavity diode lasers based on the design in Ref. [22].
The frequency of the 689-nm laser was stabilized via an
optical phase-locked loop [23] to the master laser of the 689-
nm narrow-line MOT system. The master 689-nm laser was
locked using the Pound-Drever-Hall (PDH) method [24,25]
to a cavity constructed from ultralow expansion (ULE) glass
and housed in a temperature-stabilized vacuum chamber. To
stabilize the frequency of the 698-nm laser, we passed a few
percent of the light through a wide bandwidth electro-optic
modulator and locked the first phase-modulated sideband via
the PDH method to a second, independent ULE cavity [26].
This cavity was housed in a separate temperature-stabilized,
acoustically isolated vacuum chamber. These locking schemes
for both lasers allowed us the flexibility to shift the fre-
quency of either laser to span the isotope shifts of its re-
spective transition. For both the 689- and 698-nm lasers, the
light was referenced to a frequency comb (Menlo System
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TABLE I. Measured systematic frequency shifts and uncertainties for the 1S0 → 3P1 transition. Uncertainties indicate one standard deviation.

87

Systematic shift (kHz) 88 F ′ = 7/2 F ′ = 9/2 F ′ = 11/2 86 84

density 1.7 ± 1.7 −34.1 ± 14.5 −51.9 ± 26.8 −43.3 ± 15.6 5.1 ± 3.4 −1.4 ± 4.3
recoil 4.8 ± (<0.1) 4.8 ± (<0.1) 4.8 ± (<0.1) 4.8 ± (<0.1) 4.9 ± (<0.1) 5.0 ± (<0.1)
total 6.5 ± 1.7 −29.3 ± 14.5 −47.1 ± 26.8 −38.5 ± 15.6 10.0 ± 3.4 3.6 ± 4.3

FC1500-250-ULN) to account for long-term drift and provide
a frequency reference. Fine frequency control of each laser
beam was achieved by adjusting the drive of an acousto-optic
modulator, which was also used to stabilize the intensity of
the spectroscopy pulse. The spectroscopy laser linewidth was
characterized by locking independent 689-nm lasers to each
ULE cavity. A heterodyne beat note at 689 nm between the
two separate lasers was measured to be approximately 200 Hz
wide, which bounds the expected spectral performance of both
systems.

The remainder of the apparatus used for the spectroscopy
has been described in detail previously [27]. Laser cooling of
all isotopes proceeds according to well-established techniques
[9], with a MOT first operating on the broad 1S0 → 1P1

transition at 461 nm, followed by a narrow-line MOT oper-
ating on the 689-nm intercombination-line transition 1S0 →
3P1. For all isotopes, temperatures in the narrow-line MOT
are typically a few μK, low enough to efficiently transfer
the atoms into a single-beam far-detuned ODT at 1064 nm.
Typical temperatures in the ODT are {2.9, 2.2, 1.1, 2.7 μK}
and typical atom numbers are {1, 0.1, 0.5, 0.2} × 106 for
{88Sr, 87Sr, 86Sr, 84Sr}, respectively, with trap frequencies
{ωx, ωy, ωz}/2π = {50, 4, 495} Hz in the horizontal, axial,
and vertical directions, respectively. For the bosons, the vari-
ation in atom number is mostly due to the difference in the
natural abundance of each isotope, whereas for the fermionic
isotope the atom number is also limited by the additional
complexity of the narrow-line MOT [28].

III. MEASUREMENT OF THE 1S0 → 3P1 ISOTOPE SHIFTS

After loading the atoms into the ODT, the magnetic field
was set to 0.05 mT (0.5 G) to resolve the 3P1(m = 0) state for
the even (bosonic) isotopes. For the odd (fermionic) isotope,
which has hyperfine structure, the magnetic field was set to
zero, meaning that the Zeeman splitting was not detectable
within the line shape. The strength of the magnetic field
was calibrated by addressing the 1S0(m = 0) → 3P1(m′ = 1)
transition of 88Sr, for which the Zeeman shift is known [12].
To eliminate the effect of AC Stark shifts from the ODT we
implemented a stroboscopic procedure, where, with a typical
period of 500 μs, the ODT was turned on and off with a duty
cycle of 50% (duration of 250 μs), and applied the 689-nm
probe laser when the ODT was off, similar to the procedure
used in Refs. [29,30]. The spectroscopy light was used to
induce atom loss from the trap through light scattering and
subsequent recoil, which is primarily an incoherent process
where there is an absence of coherence between the pulses
of the stroboscopic method with the switching of the ODT.
The 689-nm spectroscopy beam was aligned at an angle

of approximately 45◦ with respect to the ODT, both in the
horizontal plane. The spectroscopy beam was collimated with
a 1/e2 beam waist of 1.25 mm in the horizontal direction and
1.71 mm in the vertical direction at the position of the atoms.
The polarization of the spectroscopy beam was set to be linear
along the direction of the magnetic field. The total illumi-
nation duration used for spectroscopy was set to between 1
and 15 ms, corresponding to multiple stroboscopic pulses,
and the peak optical intensity was at most 0.1 mW/cm2

(Isat = 3 μW/cm2). These values were chosen to ensure atom
loss of approximately 50%. After the spectroscopy pulse was
completed, the atoms were released from the ODT and we
performed absorption imaging on the 1S0 → 1P1 transition to
measure atom loss as a function of the spectroscopy laser
frequency.

For all four isotopes, data were taken across several days
and referenced to the frequency comb. Then the frequencies
were averaged to obtain a single line center for each isotope.
A final isotope shift was found by subtracting the measured
absolute frequencies relative to 88Sr, and the total errors were
added in quadrature. For the 87Sr isotope shift, we weight the
measurements of each excited-state hyperfine manifold F ′ ∈
{11/2, 9/2, 7/2} to find the nominally unshifted line center
in the absence of the hyperfine interaction [31]. However,
it is important to note that this model fits three parameters
(hyperfine A and B coefficients and an unshifted line center)
from three isotope shifts and thus is completely determined
by the available data.1 A more accurate theory of higher-order
shifts from other fine-structure levels will be necessary to
assign a more accurate isotope shift for 87Sr. This is currently
an area of ongoing theoretical research [33].

To calculate the final value for the isotope shift, we also
evaluated systematic effects, as summarized in Table I. Since
many of the systematic effects are common to both isotopes
and the isotope shift is found from a difference in those
frequencies, many potential systematic effects are common
mode and cancel to a high degree. This is particularly true
for the even isotopes, where there is no hyperfine structure.
For example, even though a magnetic field is applied during
the spectroscopy pulse for the even isotopes, the Zeeman shift
is identical to within our experimental uncertainties and does
not lead to a correction to the final isotope shift. Therefore,
as shown in Table I, the remaining systematic effects are
those that are not common mode: the density shift and recoil
shift.

1We determined |A| = 260 085 ± 2 kHz and |B| = 35 667 ±
21 kHz, consistent with previous results [32].
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TABLE II. Measured isotope shifts relative to 88Sr. For 87Sr
(1S0 → 3P1), contributions from the three excited-state hyperfine
manifolds are weighted to establish the fine-structure line center.
Uncertainties are one standard deviation and indicate statistical and
systematic uncertainties.

Isotope shift (kHz) 1S0 → 3P1
1S0 → 3P0

88-84 351495.8 ± 0.3 ± 4.6 349656 ± 1 ± 10
88-86 163818.7 ± 0.3 ± 3.8 162939 ± 2 ± 11
88-87 62186.5 ± 0.6 ± 11.7 62171 ± 1 ± 23
88-87 (F ′ = 7/2) −1351933.1 ± 2.1 ± 14.6
88-87 (F ′ = 9/2) −221676.6 ± 0.4 ± 26.9
88-87 (F ′ = 11/2) 1241485.8 ± 0.3 ± 15.7

The density shift arises due to the different scattering
lengths and atom numbers between different isotopes in our
experiment. The cumulative effect is a nonzero differential
density shift to the final isotope-shift value. We experimen-
tally determined this density shift for each isotope by measur-
ing the line center at different atom numbers while keeping
all other parameters the same. A linear fit allowed us to ex-
trapolate from our operating atom number to a nominal zero-
density frequency, yielding the systematic density shift shown
in Table I. The photon recoil shift [34] was also accounted for
and was calculated from known physical quantities.

To first order, the 1S0 → 3P1 transition is magnetic field
insensitive, and our measurements were performed at a low
magnetic field of 0.05 mT (0.5 G) for the bosons and zero
magnetic field for the fermion. Therefore, both the first- and
second-order Zeeman shifts were negligible at our level of
accuracy. The stroboscopic procedure described above re-
moved any AC Stark shifts due to the 1064-nm trapping beam.
Finally, since the intensity in the 689-nm spectroscopy pulse
was low (at most 0.1 mW/cm2) and the probe times were
short (a few ms), systematic shifts from the probe pulse were
below our experimental uncertainty.

After applying corrections for the systematic effects,
the final values for 1S0 → 3P1 isotope shifts are shown in
Table II. The total systematic uncertainties are determined by
adding the individual systematic uncertainties for each isotope
in Table I in quadrature. Our results are consistent with a
previous measurement of the 88Sr-86Sr isotope shift, which
reported a value of 163 817.4 ± 0.2 kHz [35].

IV. MEASUREMENT OF THE 1S0 → 3P0 ISOTOPE SHIFTS

The procedure for measuring the 698-nm transition
differed from the measurement of the 1S0 → 3P1

intercombination-line transition in several key ways. Since the
clock transition is strictly forbidden by angular momentum
considerations for the bosonic isotopes, a much larger field
was necessary to induce a transition in these isotopes. For 88Sr
and 86Sr a magnetic field of 10.96 ± 0.02 mT (109.6 ± 0.2 G)
was used, and 19.79 ± 0.05 mT (197.9 ± 0.5 G) was used
for 84Sr. For measurements of 87Sr, which is weakly allowed
due to hyperfine mixing, we applied zero magnetic field.
For all isotopes, the 698-nm spectroscopy pulse was applied
for 2 s with typical peak intensities of 0.87 W/cm2 for
the even isotopes and 0.12 W/cm2 for the odd isotope

FIG. 1. Spectroscopy of the 1S0 → 3P0 transition for each stron-
tium isotope. The normalized atom number is shown as a function of
the laser detuning. The solid line is a Gaussian fit to the data.

(Isat ≈ 0.4 pW/cm2). These values were chosen to ensure
approximately 50% atom loss. Atom loss was induced by the
light scattering and subsequent recoil of the 698-nm light,
which ejected the atoms out of the trap. Representative line
shapes for the 1S0 → 3P0 transitions are show in Fig. 1 for
each isotope.

The spectroscopy beam was aligned in the horizontal
plane at an angle of approximately 45◦ with respect to the
ODT and was focused onto the atoms with a 1/e2 waist
of 330 μm in the horizontal direction and 460 μm in the
vertical direction. The beam was linearly polarized parallel
to the magnetic field. Finally, because of the long interro-
gation time needed for sufficient atom loss (and therefore
sufficient signal-to-noise ratio), we were unable to apply
the stroboscopic procedure used to measure the 1S0 → 3P1

transitions, resulting in large AC Stark shifts from the trapping
beam. Due to the modified experimental procedure for the
clock transition, additional systematic shifts included thermal
shifts, second-order Zeeman shifts, and spectroscopy pulse
shifts.

For the 1S0 → 3P0 transition, the dominant systematic ef-
fects were the AC Stark shift and what we call the thermal
shift. The AC Stark shift arises from the differential polar-
izability of the 1S0 and 3P0 states at 1064 nm. The thermal
shift arises from the inhomogeneous broadening and shift
from the thermal motion in the intensity distribution of the
ODT. Experimentally, the AC Stark shift was determined by
measuring the resonance frequency as a function of the ODT
intensity. However, varying the intensity of the ODT also
varied the trap depth, which in turn varied the temperature of
the atomic cloud. This led to additional shifts in the resonance
frequency due to both the Doppler shift and the inhomoge-
neous differential AC Stark shift. To distinguish the effects
of the AC Stark shifts from the thermal shifts, we took the
thermal average using the Maxwell-Boltzmann distribution
and modeled the scattering process from the spectroscopy
pulse [29,36] (see the Appendix). As shown in Table III, the
experimentally determined values for the AC Stark shift for
each isotope agree with each other within the uncertainty.
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TABLE III. Systematic frequency shifts and one standard deviation uncertainties for the 1S0 → 3P0 transition. The three columns for 88Sr
correspond to three independent isotope-shift measurements. Uncertainties indicate one standard deviation.

88-87 88-86 88-84

Systematic shift (kHz) 88 87 88 86 88 84

density 0.8 ± 1.6 −3.8 ± 1.2 0.2 ± 0.3 −0.9 ± 0.8 0.4 ± 0.9 −2.3 ± 0.9
recoil 4.7 ± (<0.1) 4.7 ± (<0.1) 4.7 ± (<0.1) 4.8 ± (<0.1) 4.7 ± (<0.1) 4.9 ± (<0.1)
AC Stark 51 ± 5 42 ± 22 53 ± 5 51 ± 5 50 ± 5 51 ± 5
thermal −22 ± 4 −17 ± 4 −22 ± 4 −8 ± 4 −22 ± 4 −21 ± 4
second-order Zeeman −2.8 ± (<0.1) 0.0 ± (<0.1) −2.8 ± (<0.1) −2.8 ± (<0.1) −2.8 ± (<0.1) −9.1 ± (<0.1)
probe power 3.5 ± 1.6 1.3 ± 0.3 3.5 ± 1.6 3.5 ± 1.6 3.6 ± 1.6 3.6 ± 1.6
probe duration 3.4 ± 3.3 3.3 ± 1.3 3.4 ± 3.3 3.4 ± 3.3 3.4 ± 3.3 3.4 ± 3.3
total 39 ± 8 31 ± 22 40 ± 7 51 ± 7 37 ± 7 31 ± 7

Therefore, the AC stark shift is common mode and cancels
to a high degree.

For even isotopes, the systematic shift for the first-order
Zeeman effect is zero since we probe a J = 0 → J ′ = 0 tran-
sition with no hyperfine structure. To determine the second-
order Zeeman shifts for the 1S0 → 3P0 transitions, we used
our calibrated magnetic field measurements and the known
second-order Zeeman shifts [16], which are identical for all
even isotopes. Spectroscopy of 87Sr was performed at zero
magnetic field, and so the Zeeman shift was well below other
systematic effects [37].

The last systematic effects evaluated for the clock transi-
tion were related to the spectroscopy laser, occurring due to
the relatively long probe time (2 s) and high peak intensities
(0.87 W/cm2). To measure these systematics, the transition
frequency was measured as a function of both pulse power
and duration, and the shift was extrapolated to zero. Finally,
the density shift and recoil shift were obtained using the same
procedure as described for the 1S0 → 3P1 transition.

The final values for the isotope shift of the clock transition,
including systematic corrections, are shown in Table II. The
systematic shifts are summarized in Table III. The total sys-
tematic uncertainties for the clock transitions in Table II are
determined by adding the individual systematic uncertainties
for each isotope in Table III in quadrature. Comparing to
prior measurements of the 88Sr-87Sr isotope shift, which were
all approximately 62188 ± (<1) kHz [17,18,20], our result
of 62171 ± 24 kHz is consistent to well within one standard
deviation.

V. KING PLOT ANALYSIS

We performed a King plot analysis using our measured
values of the isotope shifts, including the measurements of the
88Sr-86Sr and 88Sr-84Sr isotope shifts for the clock transition.
A King plot analysis is a systematic approach to quantitatively
and visually analyze isotope shifts of different atomic transi-
tions referenced to the same isotope by relating the isotope
shifts between different transitions [1]. This is a function of
the mass and field shift constants, which are independent
of the isotopes and depend only on the transitions under
consideration [38]. Specifically, the isotope shifts between
isotopes of mass numbers A and A′ on two transitions i and

j can be written

μA,A′δνA,A′
i = Ki − Fi

Fj
Kj + Fi

Fj
μA,A′δνA,A′

j , (1)

where 1/μA,A′ = 1/mA′ − 1/mA is the inverse mass constant,
mA is the mass of isotope A [39], Ki is a constant associated
with the mass shift of transition i, Fi is the field shift constant
for transition i, and δνA,A′

i = νA′
i − νA

i is the isotope shift
between isotopes A and A′ on transition i [1,5]. For our
particular analysis, we have A = 88, and A′ ∈ {87, 86, 84},
i ≡ 1S0 → 3P0 at 698 nm, and j ≡ 1S0 → 3P1 at 689 nm.
An important point to note is that Eq. (1) describes a linear
relationship between isotope shifts of different transitions.

The King plot for our measured isotope shifts is shown
in Fig. 2. A linear fit to all three points weighted by their
uncertainties leads to a field shift constant ratio of F698/F689 =
0.987 ± 0.008 and K698 − F698

F689
K689 = 5.20 ± 5.31 GHz amu,

where the statistical and systematic uncertainties are added in
quadrature. We have also performed a linear fit by replacing
our measurement of the 88Sr-87Sr 698-nm transition isotope
shift with the more precise value from Ref. [20]. This leads
to values of F698/F689 = 0.981 ± 0.005 and K698 − F698

F689
K689 =

8.56 ± 3.45 GHz amu, which are consistent with values ob-
tained using our measurement of the 88Sr-87Sr 698-nm transi-
tion isotope shift.

Since there is some uncertainty in deriving the frequency
for 87Sr due to the hyperfine structure, we also fit the data
after excluding this point to obtain a field shift constant
ratio of F698/F689 = 0.998 ± 0.002 and K698 − F698

F689
K689 =

−1.87 ± 1.03 GHz amu where the uncertainties are propa-
gated from the uncertainties of each point for both axes. Com-
pared to this two-point linear fit, the 88Sr-87Sr 689-nm isotope
shift we determined would have to increase by 136.2 kHz to
become consistent with a linear King plot. Given that our
data points with their uncertainties lie well outside of the
straight line fit to all three points, the results in Fig. 2 suggest
a possible nonlinear contribution to Eq. (1) or may indicate
significant uncertainties in the determination of the center of
mass of the 87Sr 3P1 hyperfine structure. In particular, our data
indicate a nonlinearity using the nonlinearity measure defined
in Ref. [8]. Future theoretical and experimental studies should
help to explain our observations, including better calculations
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FIG. 2. King plot of the measured strontium isotope shifts.
(a) Linear fit to the three points derived from the six isotope-shift
measurements. The solid black line is a fit using all six of our
measured isotope shifts and the dashed gray line is a fit by replacing
our measured 88Sr-87Sr 698-nm transition isotope shift with the
value from Ref. [20], which is more precise than our measurement.
The black points are derived from our measurements and the gray
point is using the 88Sr-87Sr 698-nm transition isotope shift from
Ref. [20]. The fits are weighted by the uncertainties of each point.
Error bars and the difference between the 87Sr points derived from
our measurement and from Ref. [20] are not visible at this scale.
(b)–(d) Close-up of each point in (a) with error bars shown.

of the hyperfine mixing within the 3P states and a prediction
of the King plot slope.

VI. CONCLUSION

In summary, we have presented the spectroscopy of the
1S0 → 3P0 clock transition in 86Sr and 84Sr and reported their
isotope shifts relative to 88Sr. In conjunction with improved
measurements of the intercombination line isotope shifts, we
performed a King plot analysis and extracted constants related
to the field and mass shifts. Hyperfine effects in 87Sr com-
plicate this analysis, but the experimental precision permitted
by these two narrow optical transitions make it a rich test
bed to benchmark state-of-the-art theory. Furthermore, it has
been suggested that a comparison of isotope shifts between
neutral and ionic strontium could set stringent limits on new
physics [7,8]. However, an improved theory, accounting for
our observed nonlinearity, would be essential. Alternatively,
one could also perform this measurement with the radioactive
bosonic isotope 90Sr (half-life of approximately 29 years [40])
to avoid complications due to the hyperfine structure.

Future improvements on the measured frequencies will be
possible by applying techniques successfully used with state-
of-the-art strontium optical clocks, such as the use of magic-
wavelength dipole traps to minimize the differential AC stark

shift [41,42] and optical lattices to suppress motional broad-
ening and recoil shifts [34]. These advances should further
suppress statistical and systematic errors in both transitions,
allowing measurements with fractional uncertainties down to
the level of 10−18 [13–15]. Our results, combined with other
recent measurements of isotope shifts in Ca+ [43] and Sr+

[44], will further help to refine atomic structure calculations
and constrain new physics.
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APPENDIX: MODELING INHOMOGENEOUS
BROADENING OF THE CLOCK TRANSITION

In general, the AC Stark shift is different for different
atomic states due to state-dependent polarizabilities. The ex-
ception to this is if one operates the dipole trap at specific laser
wavelengths typically referred to as the magic wavelength
where the ground and excited states experience the same
AC Stark shifts. For strontium atoms, the magic wavelength
is 813 nm for the 698-nm clock transition and 914 nm for
the 689-nm intercombination transition [13,45]. In our ex-
periment, the optical dipole trap uses 1064-nm laser light, a
wavelength where the two states 1S0 and 3P0, have different po-
larizabilities. This leads to inhomogeneous broadening which
must be accounted for. The resulting line shape is further
complicated by the temperature of our atomic samples. Here
we describe our method for modeling and accounting for this
inhomogeneous broadening due to both the differential AC
Stark shift and the thermal shift.

We model the inhomogeneous broadening process using a
semiclassical treatment of atom loss from the trap due to the
spectroscopy pulse [36]. We can model the atom loss from
the spectroscopy pulse after some probe time, by calculating
the loss rate coefficient K . The time-dependent atom number
in the presence of the spectroscopy pulse is governed by the
differential equation

dN

dt
= −K (δω, I, T,Utrap)N, (A1)

where the loss rate coefficient K is a function of the laser
detuning δω = ωlaser − ω0 (ωlaser is the frequency of the probe
laser and ω0 is the bare atomic resonance frequency), the
probe laser intensity I , the atomic cloud temperature T , and
the dipole trap potential Utrap. The loss rate is modeled to be
proportional to an ensemble average of the scattering rate over
all atoms in the trap.

The scattering rate can be written [46]

�scat = �

2

(
s0

1 + s0 + (2�/�)2

)
, (A2)

where � is the transition linewidth, � is the effective detuning
from resonance, s0 ≡ I/Isat is the on-resonance saturation
parameter, I is the excitation laser intensity, and Isat is the
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saturation intensity. We rearrange this expression, pulling out
constant terms to write

�scat ∝ 1

(�′/2)2 + �2
, (A3)

where �′ = �
√

1 + s0 is the saturation-broadened linewidth.
For a thermal atom in a far-detuned optical dipole trap with a
given phase-space coordinate (r, p), � can be written

� = δω − p · k
m

− [Ue(r) − Ug(r)], (A4)

where the term δω − p · k/m is the Doppler-shifted laser
frequency, p is the atomic momentum vector, k is the probe
laser wave vector, m is the atomic mass, and Ue(r) − Ug(r)
is the differential AC Stark shift which arises from different
polarizabilities between the states e and g. Note that in the
treatment here we neglect all other systematic frequency off-
sets which do not depend on position, since these appear sim-
ply as frequency offsets and do not cause any inhomogeneous
effects. We also neglect gravity in our model since the atoms
are tightly confined in this direction. We can approximate the
trapping potential for the far-detuned optical trap as a parabola
and write

Ue(r) − Ug(r) = Ue,0 + 1

2
mω̄2

e r2 − Ug,0 − 1

2
mω̄2

gr2 (A5)

= Ue,0 − Ug,0 + 1

2
m

(
ω̄2

e − ω̄2
g

)
r2 (A6)

= Ue,0 − Ug,0 + 1

2
mω̄2

gr2

(
ω̄2

e

ω̄2
g

− 1

)
(A7)

= �U0 + �Utrap(r), (A8)

where ω̄g (ω̄e) is the geometric mean of the ground (excited)
state trap frequencies in all three dimensions and the trap is
effectively spherical in these coordinates. Since ω̄i ∝ √

αi,
where αi is the AC polarizability of state i ∈ {g, e}, we find

�Utrap(r) = Utrap(r)

(
αe

αg
− 1

)
, (A9)

where Utrap = mω̄2
gr2/2. For 1064-nm light, with g the 1S0

state and e the 3P0 state, we compute αe/αg ≈ 0.7. This can
also be written as a rescaling of the trap potential such that

�Utrap(r) = αUtrap(r), (A10)

with α = (αe/αg − 1) ≈ −0.295. Note that operating the
dipole trap at the magic wavelength would lead to αe = αg,
which means α = 0, and therefore the spatial dependence
would drop out of Eq. (A4).

We now turn our attention to solving for the loss rate coeffi-
cient K by taking an ensemble average over the scattering rate
expressed in Eq. (A3) using the detuning defined in Eq. (A4).
Because we are interested in deriving a line-shape function
which can be fit to experimentally measured atom loss data,
we ignore normalization and overall constant terms which can
be condensed into a single fit parameter. Taking the ensemble

average of Eq. (A3) leads to

K ∝
∫

d3r e−Utrap (r)/kBT
∫

d3p e−p2/2mkBT

×
[

1

(�′/2)2 + [δω − �U0 − p · k/m − αUtrap(r)]2

]
,

(A11)

where we have taken an integral over phase space (r, p)
weighted by the Boltzmann factor. Here kB is the Boltzmann
constant.

We wish to make this dimensionless to easily work in a
numerical fitting routine with experimental data. Focusing on
the integral d3p = d pxd pyd pz first, we can choose p̂z to point
along k. Thus, p · k = pzk, and the Boltzmann factor can be
rewritten

e−p2/2mkBT = e−(p2
x+p2

y )/2mkBT e−p2
z /2mkBT . (A12)

The integral over px and py now factors out and can be brought
into an overall scale factor. We define the dimensionless
variable y ≡ pz/

√
2mkBT . After defining β ≡ k

√
2kBT/m,

this becomes pzk/m = βy. In convenient units, for 88Sr and
2π/k = 698 nm, we get β/2π = 19.7 kHz × √

T , with T
measured in μK. This parametrization of y serves to scale
the momentum pz to the most probable momentum at a given
temperature.

Putting it all together, the integral from Eq. (A11) becomes

K ∝
∫

d3r e−Utrap (r)/kBT
∫

dy e−y2

×
[

1

(�′/2)2 + [δω − �U0 − βy − αUtrap(r)]2

]
.

(A13)

With regard to the integral over r, since we have scaled
the trap to be effectively spherical, we can write Utrap(r) =
f (r2). Thus, we can pull the angular integral from d3r ≡
r2 sin θdrdθdφ into an overall constant, leaving just the in-
tegral in r given by

K ∝
∫

r2dr e−r2mω̄2
g/2kBT

∫
dy e−y2

×
[

1

(�′/2)2 + (
δω − �U0 − βy − αmω̄2

gr2/2
)2

]
,

(A14)

where we replaced Utrap(r) with its explicit form mω̄2
gr2/2.

Defining the dimensionless variable x ≡ r
√

mω̄2
g/2kBT =

r(ω̄gk/β ), which scales r by the ratio of the trap potential
energy to the thermal energy kBT , we can rewrite the integral
as

K ∝
∫

dx x2e−x2
∫

dy e−y2

×
[

1

(�′/2)2 + [
δω − �U0 − βy − (

αm
2k2

)
β2x2

]2

]
,

(A15)

where for our system αm/2k2 ≈ −2.52 × 10−6 s.
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FIG. 3. Line-shape curves for the 698-nm clock transition. The
curves include a Gaussian model (dashed line) and a full line-shape
model (solid line) fit to the averaged data points (circle points). In
both cases, the fit error on the centroid is roughly 1 kHz; however, the
full line-shape model fits a different ω0 which varies as a function of
temperature and has a lower frequency compared to the Gaussian line
center by up to 20 kHz. This is attributable to the thermal distribution
of atoms in a dipole trap with inhomogeneous AC Stark shifts.

Returning to Eq. (A1), we use our expression (A15) for K
to solve for atom number and obtain

N (τ )

N (0)
= e−Kτ , (A16)

which can be used as an integral function to fit the four
parameters {a, [ω0 + �U0(Itrap)], �′, β}, where a is an overall
normalization factor for K , in a least-squares minimization
routine. We keep the �U0(Itrap) term explicit and highlight
its dependence on the optical dipole trap laser intensity Itrap.
We use this expression to extract the AC Stark shift systematic
correction.

Note that in theory, the integral in Eq. (A15) ranges over
the entire real line. In our numerical implementation, we

(a) (b) 

FIG. 4. Effects of thermal line shift on the clock transition.
(a) Line-shape simulations as a function of temperature with 0.79 μK
(solid line), 1.6 μK (dashed line), 2.7 μK (dash-dotted line), and
4.1 μK (dotted line). (b) Systematic offset to the Gaussian fitted
center as a function of temperature and a linear fit to the data
extracted from the simulation in (a).

truncate these integrals at finite values. In our experiment,
we typically have Utrap ∼ 160 kHz, and so Utrap/kBT ∼ 8 and
we take the position integral out to five times the thermal
energy scale. Since the integrand is convolved by a Gaussian,
continuing the integration further in the wings contributes
only marginally to the final value, and the truncation does
not change the result above other uncertainties. The ratio
Utrap/kBT ∼ 8 also allows us to approximate the trap as har-
monic.

As an example, we perform a fit using Eq. (A16) to the loss
spectra shown in Fig. 3. It is difficult to visually differentiate
the quality of the fit between the full integral line shape and a
simple Gaussian model, but there is a non-negligible thermal
line shift from a full accounting of the line shape as is evident
in the fit parameters. To account for this systematic shift, we
numerically simulate the systematic Gaussian fit offset as a
function of temperature and find it to be −7.6 ± 0.3 kHz/μK,
as shown in Fig. 4. With this result and measured temperatures
of 2.9, 2.2, 1.1, and 2.7 μK, we obtain systematic frequency
shifts of −22 ± 4, −17 ± 4, −8 ± 4, and −21 ± 4 for 88Sr,
87Sr, 86Sr, and 84Sr, respectively.

[1] W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New
York, 1984).

[2] V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Phys. Rev.
A 97, 032510 (2018).

[3] J. A. R. Griffith, G. R. Isaak, R. New, and M. P. Ralls, J. Phys.
B 14, 2769 (1981).

[4] U. Dammalapati, S. De, K. Jungmann, and L. Willmann,
Eur. Phys. J. D 53, 1 (2009).

[5] C. Shi et al., Appl. Phys. B 123, 2 (2017).
[6] C. Nazé, J. G. Li, and M. Godefroid, Phys. Rev. A 91, 032511

(2015).
[7] C. Frugiuele, E. Fuchs, G. Perez, and M. Schlaffer, Phys. Rev.

D 96, 015011 (2017).
[8] J. C. Berengut et al., Phys. Rev. Lett. 120, 091801 (2018).
[9] S. Stellmer, F. Schreck, and T. C. Killian, in Annual Review

of Cold Atoms and Molecules, edited by K. W. Madison, K.
Bongs, L. D. Carr, A. M. Rey, and H. Zhai (World Scientific,
Singapore, 2014), Vol. 2, Chap. 1.

[10] A. J. Daley, Quantum Inf. Process. 10, 865 (2011).
[11] C. He, E. Hajiyev, Z. Ren, B. Song, and G.-B. Jo, J. Phys. B 52,

102001 (2019).
[12] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami,

Phys. Rev. Lett. 82, 1116 (1999).
[13] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell,

M. Bishof, X. Zhang, S. L. Bromley, and J. Ye, Nature (London)
506, 71 (2014).

[14] T. L. Nicholson et al., Nat. Commun. 6, 6896 (2015).
[15] S. L. Campbell et al., Science 358, 90 (2017).
[16] A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W.

Barber, and L. Hollberg, Phys. Rev. Lett. 96, 083001 (2006).
[17] X. Baillard, M. Fouché, R. Le Targat, P. G. Westergaard, A.

Lecallier, Y. Le Coq, G. D. Rovera, S. Bize, and P. Lemonde,
Opt. Lett. 32, 1812 (2007).

[18] T. Akatsuka, M. Takamoto, and H. Katori, Nat. Phys. 4, 954
(2008).
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